Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2020, Vol. 46 ›› Issue (6): 937-949.doi: 10.3724/SP.J.1006.2020.93049

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Characteristics of annual climate resource distribution and utilization for different cropping systems in the south of Yellow-Huaihe-Haihe Rivers plain

ZHOU Bao-Yuan1,GE Jun-Zhu2,HOU Hai-Peng3,SUN Xue-Fang4,DING Zai-Song1,LI Cong-Feng1,MA Wei1,*(),ZHAO Ming1,*()   

  1. 1Institute of Crop Sciences, Chinese Academy of Agricultural Sciences / Key Laboratory of Crop Physiology and Ecology, Ministry of Agriculture, Beijing 100081, China
    2College of Agronomy & Resource and Environment, Tianjin Agricultural University, Tianjin 300384, China
    3Planting Technology Extension, Department of Tianjin Agricultural Development Service Center, Tianjin 300061, China
    4College of Agronomy, Qingdao Agricultural University, Qingdao 266109, Shandong, China
  • Received:2019-09-10 Accepted:2019-12-26 Online:2020-06-12 Published:2020-01-15
  • Contact: Wei MA,Ming ZHAO E-mail:mawei02@caas.cn;zhaoming@caas.cn
  • Supported by:
    National Key Research and Development Program of China(2018YFD0300504)

Abstract:

Clarifying the characteristics of annual yield, distribution and utilization of climatic resources, and establishing rational quantitative indexes of annual climatic resources distribution for different cropping systems are helpful to provide theoretical basis for further improving annual yield and resource use efficiency in the Yellow-Huaihe-Haihe Rivers plain. In this study, the experiment was conducted from 2011 to 2015 at Xinxiang, Henan province to analyze the grain yield, biomass, dry matter production energy, and distribution and utilization efficiency of climatic resources under four cropping systems, namely winter wheat-summer maize, winter wheat-summer soybean, double maize and one-season spring maize. There were no differences in the annual grain yield, total biomass, and dry matter production energy between the winter wheat-summer maize and double maize cropping systems, but they were significantly higher than those of the winter wheat-summer soybean and one-season spring maize cropping systems, with an average increase of 45.4%-61.5%, 37.3%-71.3%, and 35.77%-70.7%, respectively. The annual radiation production efficiency, radiation use efficiency of grain and total biomass for double maize and one-season spring maize cropping systems were significantly higher than those of the winter wheat-summer maize and winter wheat-summer soybean cropping systems, with an average increase of 11.8%-66.7% in the annual radiation production efficiency, and 0.13-0.42 and 0.18-0.69 percentage points increase in the radiation use efficiency of grain and total biomass, respectively. The accumulative temperature distribution rate for two seasons of winter wheat-summer maize was 45.6% and 54.4%, respectively, while those of double maize was 51.4% and 48.6%, respectively. The accumulative temperature ratio between two seasons was of winter wheat-summer maize 0.8, while that of double maize was 1.1. Considering both yield and resource use efficiency, winter wheat-summer maize and double maize cropping systems can be used to optimize the layout of planting patterns and support the sustainable development of agricultural production in the Yellow-Huaihe-Haihe Rivers plain. Furthermore, clarifying the accumulated temperature distribution rate and the accumulated temperature ratio between two seasons is helpful to optimize climate resource distribution, and further improve the yield potential and the resources use efficiency of double cropping system in the Yellow- Huaihe-Haihe Rivers plain.

Key words: the south of Yellow-Huaihe-Haihe Rivers plain, cropping system, yield, resource distribution, resource use efficiency

Fig. 1

Daily mean temperature, radiation and precipitation at Xinxiang from Oct. 2011 to Nov. 2015"

Table 1

Scheme for high-yielding cultivation of different cropping systems from 2011 to 2015"

年份
Year
种植体系
Cropping system
作物类型
Crop type
品种
Variety
密度
Plant density
(×104 plant hm-2)
播种期
Sowing date (month/day)
收获期
Harvest date
(month/day)
2011-2012 W-M 冬小麦Winter wheat 矮抗58 Aikang 58 375 10/13 6/5
夏玉米Summer maize 郑单958 Zhengdan 958 7.50 6/12 9/28
W-S 冬小麦Winter wheat 矮抗58 Aikang 58 375 10/13 6/5
夏大豆Summer soybean 中黄35 Zhonghuang 35 22.5 6/13 9/25
M-M 早春季Spring maize 先玉335 Xianyu 335 6.75 3/21 7/20
晚夏季Summer maize 郑单958 Zhengdan 958 7.50 7/20 11/11
M 春玉米Spring maize 先玉335 Xianyu 335 6.00 4/22 9/3
2012-2013 W-M 冬小麦Winter wheat 矮抗58 Aikang 58 450 10/10 6/4
夏玉米Summer maize 郑单958 Zhengdan 958 7.50 6/8 9/25
W-S 冬小麦Winter wheat 矮抗58 Aikang 58 450 10/10 6/2
夏大豆Summer soybean 中黄35 Zhonghuang 35 30.0 6/10 9/25
M-M 早春季Spring maize 先玉335 Xianyu 335 6.75 3/23 7/19
晚夏季Summer maize 郑单958 Zhengdan 958 7.50 7/21 11/15
M 春玉米Spring maize 先玉335 Xianyu 335 6.00 4/25 9/4
2013-2014 W-M 冬小麦Winter wheat 矮抗58 Aikang 58 450 10/10 5/29
夏玉米Summer maize 郑单958 Zhengdan 958 7.50 6/8 9/27
W-S 冬小麦Winter wheat 矮抗58 Aikang 58 450 10/10 6/2
夏大豆Summer soybean 中黄35 Zhonghuang 35 30.0 6/8 9/22
M-M 早春季Spring maize 先玉335 Xianyu 335 6.75 3/25 7/18
晚夏季Summer maize 郑单958 Zhengdan 958 7.50 7/19 11/12
M 春玉米Spring maize 先玉335 Xianyu 335 6.00 4/27 9/8
2014-2015 W-M 冬小麦Winter wheat 矮抗58 Aikang 58 450 10/9 6/5
夏玉米Summer maize 郑单958 Zhengdan 958 7.50 6/13 9/25
W-S 冬小麦Winter wheat 矮抗58 Aikang 58 450 10/9 6/8
夏大豆Summer soybean 中黄35 Zhonghuang 35 30.0 6/15 9/25
M-M 早春季Spring maize 先玉335 Xianyu 335 6.75 3/23 7/21
晚夏季Summer maize 郑单958 Zhengdan 958 7.50 7/22 11/21
M 春玉米Spring maize 先玉335 Xianyu 335 6.00 4/28 9/10

Fig. 2

Grain yield of different cropping systems from 2011 to 2015 A: the annual grain yield; B: the grain yield of first season; C: the grain yield of second season; W-M: winter wheat-summer maize double cropping system; M-M: double maize cropping system; W-S: winter wheat-summer soybean double cropping system; M: spring maize. Bars superscripted by different lowercases are significantly different at the 0.05 probability level. "

Fig. 3

Total biomass, and dry matter production energy of different cropping systems from 2011 to 2015 A: the annual total biomass; B: the biomass of first season; C: the biomass of the second season; D: the annual dry matter production energy; E: the dry matter production energy of first season; F: the dry matter production energy of second season; W-M: winter wheat-summer maize double cropping system; M-M: double maize cropping system; W-S: winter wheat-summer soybean double cropping system; M: spring maize. Bars superscripted by different lowercases are significantly different at the 0.05 probability level."

Table 2

Distribution of accumulated temperature of different cropping systems from 2011 to 2015"

年份
Year
处理
Treatment
第一季First season 第二季Second season 周年Annual
积温
AT (°C)
分配率
TDR (%)
积温
AT (°C)
分配率
TDR (%)
积温
AT (°C)
两季比
TR
2011-2012 W-M 2348.5 45.4 2828.7 54.6 5177.2 0.83
M-M 2681.1 52.3 2442.4 47.7 5123.5 1.10
W-S 2348.5 46.6 2692.0 53.4 5040.5 0.87
M 3275.0
2012-2013 W-M 2255.0 43.7 2908.2 56.3 5163.2 0.78
M-M 2562.0 50.0 2558.8 50.0 5120.8 1.00
W-S 2296.0 46.1 2687.5 53.9 4983.5 0.85
M 3334.5
2013-2014 W-M 2267.3 45.3 2736.5 54.7 5003.8 0.83
M-M 2631.7 52.2 2406.5 47.8 5038.2 1.09
W-S 2358.6 47.1 2644.2 52.9 5002.8 0.89
M 3324.6
2014-2015 W-M 2527.4 48.0 2733.4 52.0 5260.8 0.92
M-M 2570.3 51.1 2460.4 48.9 5030.7 1.04
W-S 2467.7 47.6 2716.0 52.4 5183.7 0.91
M 3261.9
平均值Mean W-M 2349.6 b 45.6 b 2801.7 a 54.4 a 5151.3 a 0.8 c
M-M 2611.3 a 51.4 a 2467.0 b 48.6 b 5078.3 a 1.1 a
W-S 2367.7 b 46.9 b 2684.9 a 53.1 a 5052.6 a 0.9 b
M 3299.0 b

Table 3

Distribution of accumulated radiation of different cropping systems from 2011 to 2015"

年份
Year
处理
Treatment
第一季First season 第二季Second season 周年Annual
辐射量
Ra (MJ m-2)
分配率
RDR (%)
辐射量
Ra (MJ m-2)
分配率
RDR (%)
辐射量
Ra (MJ m-2)
两季比
RR
2011-2012 W-M 2184.2 55.7 1738.2 44.3 3922.4 1.3
M-M 2062.2 56.8 1570.7 43.2 3632.9 1.3
W-S 2184.2 57.5 1614.0 42.5 3798.1 1.4
M 2110.2
2012-2013 W-M 2131.2 56.5 1638.1 43.5 3769.2 1.3
M-M 1761.0 52.6 1585.2 47.4 3346.2 1.1
W-S 2160.5 58.9 1510.3 41.1 3670.9 1.4
M 1995.6
2013-2014 W-M 2103.4 58.5 1493.2 41.5 3596.6 1.4
M-M 1873.4 58.7 1316.3 41.3 3189.7 1.4
W-S 2173.5 59.8 1462.3 40.2 3635.8 1.5
M 1982.4
2014-2015 W-M 2208.2 57.2 1651.4 42.8 3859.6 1.3
M-M 1974.3 55.2 1600.8 44.8 3575.1 1.2
W-S 2159.6 56.8 1644.8 43.2 3804.4 1.3
M 2128.9
平均值Mean W-M 2156.7 a 57.0 a 1630.2 a 43.0 a 3787.0 a 1.3 a
M-M 1917.7 b 55.8 b 1518.3 b 44.2 a 3436.0 b 1.3 a
W-S 2169.5 a 58.2 a 1557.8 ab 41.8 b 3727.3 a 1.4 a
M 2054.3 c

Table 4

Production efficiency of accumulated temperature, radiation, and precipitation of different cropping systems from 2011 to 2015"

年份
Year
处理
Treatment
积温生产效率
Production efficiency of AT
(kg hm-2 oC-1)
光能生产效率
Production efficiency of Ra
(g MJ-1)
降水生产效率
Production efficiency of Pr
(kg hm-2 mm-1)
第一季
First season
第二季
Second season
周年
Annual
第一季
First season
第二季
Second season
周年
Annual
第一季
First season
第二季
Second season
周年
Annual
2011-2012 W-M 3.8 4.0 3.9 0.42 0.65 0.52 48.5 41.4 44.3
M-M 4.0 3.8 3.9 0.50 0.58 0.54 68.5 56.1 62.0
W-S 3.8 1.7 2.7 0.41 0.29 0.36 47.7 17.3 29.8
M 3.8 0.59 51.5
2012-2013 W-M 3.8 3.9 3.9 0.42 0.62 0.51 88.4 32.2 45.9
M-M 4.1 3.8 4.0 0.58 0.60 0.59 35.3 61.5 44.4
W-S 3.8 1.8 2.7 0.40 0.33 0.37 85.1 15.8 32.9
M 3.6 0.60 31.2
2013-2014 W-M 3.7 4.0 3.9 0.42 0.67 0.52 69.7 22.5 32.9
M-M 4.0 3.8 3.9 0.56 0.69 0.61 60.4 25.7 37.0
W-S 3.7 1.8 2.7 0.40 0.33 0.37 68.5 11.5 24.8
M 3.9 0.65 37.7
2014-2015 W-M 3.5 3.9 3.8 0.40 0.62 0.50 55.5 32.2 40.0
M-M 4.1 3.8 4.0 0.52 0.58 0.55 42.6 35.6 39.0
W-S 3.5 1.4 2.4 0.40 0.24 0.33 53.5 12.3 26.1
M 3.8 0.58 38.7
平均值
Mean
W-M 3.8 b 3.9 a 3.9 a 0.42 b 0.64 a 0.51 b 65.5 a 30.2 b 40.2 b
M-M 4.1 a 3.8 a 4.0 a 0.54 a 0.61 a 0.57 a 50.7 b 38.1 a 43.8 a
W-S 3.7 b 1.7 b 2.6 b 0.40 b 0.30 b 0.36 c 63.8 a 13.6 c 28.1 c
M 3.8 a 0.60 a 38.6 b

Table 5

Radiation use efficiency of different cropping systems from 2011 to 2015"

年份
Year
处理
Treatment
籽粒光能利用效率
Radiation use efficiency of grain (%)
总生物量光能利用效率
Radiation use efficiency of total biomass (%)
第一季
First season
第二季
Second season
周年
Annual
第一季
First season
第二季
Second season
周年
Annual
2011-2012 W-M 0.73 1.17 0.92 1.59 2.21 1.86
M-M 0.91 1.06 0.97 1.86 2.23 2.02
W-S 0.72 0.62 0.68 1.62 1.13 1.41
M 1.07 1.97
2012-2013 W-M 0.74 1.12 0.90 1.60 2.17 1.85
M-M 1.04 1.09 1.06 2.10 2.26 2.17
W-S 0.70 0.70 0.70 1.52 1.23 1.40
M 1.08 1.94
2013-2014 W-M 0.73 1.22 0.93 1.58 2.34 1.90
M-M 1.01 1.25 1.11 1.92 2.62 2.21
W-S 0.72 0.71 0.70 1.49 1.23 1.38
M 1.17 2.28
2014-2015 W-M 0.71 1.12 0.88 1.61 2.12 1.83
M-M 0.95 1.04 0.99 1.83 2.07 1.93
W-S 0.72 0.51 0.62 1.53 1.10 1.34
M 1.05 1.96
平均值
Mean
W-M 0.73 b 1.15 a 0.91 b 1.60 b 2.21 a 1.86 b
M-M 0.97 a 1.10 a 1.04 a 1.92 a 2.28 a 2.08 a
W-S 0.70 b 0.63 b 0.67 c 1.54 b 1.17 b 1.39 c
M 1.09 a 2.04 a
[1] 中华人民共和国农业部. 中国农业统计资料. 北京: 中国农业出版社, 2015.
Ministry of Agriculture of the Peoples’ Republic of China. China Agriculture Statistical Report. Beijing: China Agriculture Press, 2015 (in Chinese).
[2] 蔡剑, 姜东 . 气候变化对中国冬小麦生产的影响. 农业环境科学学报, 2011,30:1726-1733.
Cai J, Jiang D . The effect of climate change on winter wheat production in China. J Agro-Env Sci, 2011,30:1726-1733 (in Chinese with English abstract).
[3] 杨晓光, 刘志娟, 陈阜 . 全球气候变暖对中国种植制度可能影响: I. 气候变暖对中国种植制度北界和粮食产量可能影响的分析. 中国农业科学, 2010,43:329-336.
Yang X G, Liu Z J, Chen F . The possible effects of global warming on cropping systems in China: I. The possible effects of climate warming on northern limits of cropping systems and crop yields in China. Sci Environ Sin, 2010,43:329-336 (in Chinese with English abstract).
[4] Borrás L, Gambín B L . Trait dissection of maize kernel weight: towards integrating hierarchical scales using a plant growth approach. Field Crops Res, 2010,118:1-12.
[5] Cairns J E, Sonder K, Zaidi P H, Verhulst N, Mahuku G, Babu R, Nair S K, Das B, Govaerts B, Vinayan M T, Rashid Z, Noor J J, Devi P, San Vicente F, Prasanna B M . Maize production in a changing climate: impacts, adaptation, and mitigation strategies. Adv Agron, 2012,114:1-58.
[6] Tao F, Yokozawa M, Xu Y L, Hayashi Y, Zhang Z . Climate changes and trends in phenology and yields of field crops in China, 1981-2000. Agric For Meteorol, 2006,138:82-92.
[7] Wang J, Wang E L, Yang X G, Zhang F S, Yin H . Increased yield potential of wheat-maize cropping system in the North China Plain by climate change adaptation. Climatic Change, 2012,113:825-840.
[8] Warrington I J, Kanemasu E T . Corn growth response to temperature and photoperiod: I. Seedling emergence, tassel initiation and anthesis. Agron J, 1983,75:749-754.
[9] Tollenaar M . Duration of the grain-filling period in maize is not affected by photoperiod and incident PPFD during the vegetative phase. Field Crops Res, 1999,62:15-21.
[10] Chen C Q, Lei C X, Deng A X, Qian C R, Hoogmoed W, Zhang W J . Will higher minimum temperatures increase corn production in Northeast China? An analysis of historical data over 1965-2008. Agric For Meterol, 2011,151:1580-1588.
[11] Liu Y E, Xie R Z, Hou P, Li S K, Zhang H B, Ming B, Long H L, Liang S M . Phenological responses of maize to changes in environment when grown at different latitudes in China. Field Crops Res, 2013,144:192-199.
[12] Loomis R S, Williams W A . Maximum crop productivity: an estimate. Crop Sci, 1963,3:67-72.
[13] 李三爱, 巨辉, 池宝亮 . 作物生产潜力研究进展. 中国农业气象, 2005,26:106-111.
Li S A, Ju H, Chi B L . Reviews on crop potential productivity researches. Chin J Agrometeor, 2005,26:106-111 (in Chinese with English abstract).
[14] 黄川荣, 刘洪 . 气候变化对黄淮海平原冬小麦与夏玉米生产潜力的影响. 中国农业气象, 2011,32:118-123.
Huang C R, Liu H . The effect of the climate change on potential productivity of winter wheat and summer maize in the Huang-Huai-Hai Plain. Chin J Agroneteor, 2011,32:118-123 (in Chinese with English abstract).
[15] 成雪峰, 张凤云 . 黄淮海夏大豆生产现状及发展对策. 大豆科学, 2010,29:157-160.
Cheng X F, Zhang F Y . Present conditions and countermeasures of soybean production in Huang-Huai-Hai regions. Soybean Sci, 2010,29:157-160 (in Chinese with English abstract).
[16] 王树安 . 中国吨粮田建设. 北京: 北京农业大学出版社, 1994.
Wang S A. Construction of the Grain Field with a Yield of 15 tons per Hectare in China. Beijing: Beijing Agricultural University Press, 1994 (in Chinese).
[17] 陈阜, 逄焕成 . 冬小麦/春玉米/夏玉米间套作复合群体的高产机理探讨. 中国农业大学学报, 2000,5(5):12-16.
Chen F, Pang H C . Research on mechanism for maximum yield of intercropping pattern wheat/corn/corn. J China Agric Univ, 2000,5(5):12-16 (in Chinese with English abstract).
[18] 赵秉强, 张福锁, 李增嘉, 李凤超, 劳秀荣, 史春余, 董庆裕, 张骏, 刘嘉军, 杨恩学 . 黄淮海农区集约种植制度的超高产特性研究. 中国农业科学, 2001,34:649-655.
Zhao B Q, Zhang F S, Li Z J, Li F C, Lao X R, Shi C Y, Dong Q Y, Zhang J, Liu J J, Yang E X . Studies on the super-high yield characteristics of three intensive multiple cropping systems in Huanghuaihai area. Sci Agric Sin, 2001,34:649-655 (in Chinese with English abstract).
[19] Meng Q F, Sun Q P, Chen X P, Cui Z L, Yue S C, Zhang F S, Römheld V . Alternative cropping systems for sustainable water and nitrogen use in the North China Plain. Agric Ecosyst Environ, 2012,146:93-102.
[20] 李立娟, 王美云, 赵明 . 品种对双季玉米早春季和晚夏季的适应性研究. 作物学报, 2011,37:1660-1665
Li L J, Wang M Y, Zhao M . Adaptability of varieties to double-cropping in early spring and late summer. Acta Agron Sin, 2011,37:1660-1665 (in Chinese with English abstract).
[21] 李立娟, 王美云, 薛庆林, 崔彦宏, 侯海鹏, 葛均筑, 赵明 . 黄淮海双季玉米产量性能与资源效率的研究. 作物学报, 2011,37:1229-1234.
Li L J, Wang M Y, Xue Q L, Cui Y H, Hou H P, Ge J Z, Zhao M . Yield performance and resource efficiency of double-cropping maize in the Yellow, Huai and Hai river valleys region. Acta Agron Sin, 2011,37:1229-1234 (in Chinese with English abstract).
[22] 王美云, 任天志, 赵明, 李少昆, 王晓波, 李立娟, 陈长利 . 双季青贮玉米模式物质生产及资源利用效率研究. 作物学报, 2007,33:1316-1323.
Wang M Y, Ren T Z, Zhao M, Li S K, Wang X B, Li L J, Chen C L . Matter production and resources use efficiency of double cropping silage maize system. Acta Agron Sin, 2007,33:1316-1323 (in Chinese with English abstract).
[23] 徐勇, 齐文虎, 谢高地, 章予舒 . 农业自然资源利用效率的因子-能量评价模型及其应用. 资源科学, 2002,24(3):86-91.
Xu Y, Qi W H, Xie G D, Zhang Y S . The factor-energy evaluation model of agricultural natural resources utilization efficiency and its application. Resour Sci, 2002,24(3):86-91 (in Chinese with English abstract).
[24] 周宝元, 马玮, 孙雪芳, 丁在松, 李从锋, 赵明 . 冬小麦-夏玉米高产模式周年气候资源分配与利用特征研究. 作物学报, 2019,45:589-600.
Zhou B Y, Ma W, Sun X F, Ding Z S, Li C F, Zhao M . Characteristics of annual climate resource distribution and utilization in high-yielding winter wheat-summer maize double cropping system. Acta Agron Sin, 2019,45:589-600 (in Chinese with English abstract).
[25] 杨羡敏, 曾燕, 邱新法, 姜爱军 . 1960-2000年黄河流域太阳总辐射气候变化规律研究. 应用气象学报, 2005,16:243-247.
Yang X M, Zeng Y, Qiu X F, Jiang A J . The climatic change of solar radiation over the yellow river basin during 1961-2000. J Appl Meteorol Sci, 2005,16:243-247 (in Chinese).
[26] 郑海霞, 封志明, 游松财 . 基于GIS 的甘肃省农业生产潜力研究. 地理科学进展, 2003,22:400-408.
Zheng H X, Feng Z M, You S C . A study on potential land productivity based on GIS technology in Gansu province. Prog Geogr, 2003,22:400-408 (in Chinese with English abstract).
[27] 李卫东, 张孟臣 . 黄淮海夏大豆及品种参数. 北京: 中国农业科学技术出版社, 2006. p 7.
Li W D, Zhang M C. Summer Soybean Varieties and Their Parameters at Huang-Huai-Hai Region. Beijing: Chinese Agricultural Science and Technology Press, 2006. p 7 (in Chinese).
[28] Zhang X Y, Chen S Y, Sun H Y, Wang Y M, Shao L W . Water use efficiency and associated traits in winter wheat cultivars in the North China Plain. Agric Water Manage, 2010,97:1117-1125.
[29] Hu Y K, Moiwo J P, Yang Y H, Han S M, Yang Y M . Agricultural water-saving and sustainable groundwater management in Shijiazhuang irrigation district North China Plain. J Hydrol, 2010,393:219-232.
[30] 吴丹 . 双季玉米在河北平原适应性的系统研究.河北农业大学硕士学位论文, 河北保定, 2014.
Wu D . A Systematic Study on Adaptability of Maize-maize Double Cropping in the Hebei Plain. MS Thesis of Agricultural University of Hebei, Baoing, Hebei, China, 2014 (in Chinese with English abstract).
[31] Xu C L, Zhao H X, Zhang P, Wang Y Y, Huang S B, Meng Q F, Wang P . Delaying wheat seeding time and maize harvest improved water use efficiency in a warm temperature continental monsoon climate. Agron J, 2018,110:1420-1429.
[32] Xiong W, Matthews R, Holman I, Lin E, Xu Y L . Modelling China’s potential maize production at regional scale under climate change. Clim Change, 2007,85:433-451.
[33] Zhou B Y, Yue Y, Sun X F, Wang X B, Wang Z M, Ma W, Zhao M . Maize grain yield and dry matter production responses to variations in weather conditions. Agron J, 2016,108:196-204.
[34] He L, Asseng S, Zhao G, Wu D R, Yang X Y, Zhuang W, Jin N, Yu Q . Impacts of recent climate warming, cultivar changes, and crop management on winter wheat phenology across the Loess Plateau of China. Agric For Meteorol, 2015,200:135-143.
[35] Liu Y E, Hou P, Xie R Z, Li S K, Zhang H B, Ming B, Ma D L, Liang S M . Spatial adaptabilities of spring maize to variation of climatic conditions. Crop Sci, 2013,53:1693-1703.
[36] Sun H Y, Zhang X Y, Chen S Y, Pei D, Liu C M . Effects of harvest and sowing time on the performance of the rotation of winter wheat-summer maize in the North China Plain. Ind Crops Prod, 2007,25:239-247.
[37] 周宝元, 马玮, 孙雪芳, 高卓晗, 丁在松, 李从锋, 赵明 . 播/收期对冬小麦-夏玉米一年两熟模式周年气候资源分配与利用特征的影响. 中国农业科学, 2019,52:1501-1517.
Zhou B Y, Ma W, Sun X F, Gao Z H, Ding Z S, Li C F, Zhao M . Effects of different sowing and harvest dates of winter wheat-summer maize under double cropping system on the annual climate resource distribution and utilization. Sci Agric Sin, 2019,52:1501-1517 (in Chinese with English abstract).
[38] Liu Y E, Xie R Z, Hou P, Li S K, Zhang H B, Ming B, Long H L, Liang S M . Phenological responses of maize to changes in environment when grown at different latitudes in China. Field Crops Res, 2013,144:192-199.
[39] Dong J, Liu J, Tao F, Xu X L, Wang J B . Spatio-temporal changes in annual accumulated temperature in China and the effects on cropping systems, 1980s to 2000. Climate Res, 2009,40:37-48.
[1] WANG Dan, ZHOU Bao-Yuan, MA Wei, GE Jun-Zhu, DING Zai-Song, LI Cong-Feng, ZHAO Ming. Characteristics of the annual distribution and utilization of climate resource for double maize cropping system in the middle reaches of Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(6): 1437-1450.
[2] WANG Wang-Nian, GE Jun-Zhu, YANG Hai-Chang, YIN Fa-Ting, HUANG Tai-Li, KUAI Jie, WANG Jing, WANG Bo, ZHOU Guang-Sheng, FU Ting-Dong. Adaptation of feed crops to saline-alkali soil stress and effect of improving saline-alkali soil [J]. Acta Agronomica Sinica, 2022, 48(6): 1451-1462.
[3] YAN Jia-Qian, GU Yi-Biao, XUE Zhang-Yi, ZHOU Tian-Yang, GE Qian-Qian, ZHANG Hao, LIU Li-Jun, WANG Zhi-Qin, GU Jun-Fei, YANG Jian-Chang, ZHOU Zhen-Ling, XU Da-Yong. Different responses of rice cultivars to salt stress and the underlying mechanisms [J]. Acta Agronomica Sinica, 2022, 48(6): 1463-1475.
[4] YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487.
[5] CHEN Jing, REN Bai-Zhao, ZHAO Bin, LIU Peng, ZHANG Ji-Wang. Regulation of leaf-spraying glycine betaine on yield formation and antioxidation of summer maize sowed in different dates [J]. Acta Agronomica Sinica, 2022, 48(6): 1502-1515.
[6] LI Yi-Jun, LYU Hou-Quan. Effect of agricultural meteorological disasters on the production corn in the Northeast China [J]. Acta Agronomica Sinica, 2022, 48(6): 1537-1545.
[7] SHI Yan-Yan, MA Zhi-Hua, WU Chun-Hua, ZHOU Yong-Jin, LI Rong. Effects of ridge tillage with film mulching in furrow on photosynthetic characteristics of potato and yield formation in dryland farming [J]. Acta Agronomica Sinica, 2022, 48(5): 1288-1297.
[8] YAN Xiao-Yu, GUO Wen-Jun, QIN Du-Lin, WANG Shuang-Lei, NIE Jun-Jun, ZHAO Na, QI Jie, SONG Xian-Liang, MAO Li-Li, SUN Xue-Zhen. Effects of cotton stubble return and subsoiling on dry matter accumulation, nutrient uptake, and yield of cotton in coastal saline-alkali soil [J]. Acta Agronomica Sinica, 2022, 48(5): 1235-1247.
[9] KE Jian, CHEN Ting-Ting, WU Zhou, ZHU Tie-Zhong, SUN Jie, HE Hai-Bing, YOU Cui-Cui, ZHU De-Quan, WU Li-Quan. Suitable varieties and high-yielding population characteristics of late season rice in the northern margin area of double-cropping rice along the Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(4): 1005-1016.
[10] LI Rui-Dong, YIN Yang-Yang, SONG Wen-Wen, WU Ting-Ting, SUN Shi, HAN Tian-Fu, XU Cai-Long, WU Cun-Xiang, HU Shui-Xiu. Effects of close planting densities on assimilate accumulation and yield of soybean with different plant branching types [J]. Acta Agronomica Sinica, 2022, 48(4): 942-951.
[11] WANG Lyu, CUI Yue-Zhen, WU Yu-Hong, HAO Xing-Shun, ZHANG Chun-Hui, WANG Jun-Yi, LIU Yi-Xin, LI Xiao-Gang, QIN Yu-Hang. Effects of rice stalks mulching combined with green manure (Astragalus smicus L.) incorporated into soil and reducing nitrogen fertilizer rate on rice yield and soil fertility [J]. Acta Agronomica Sinica, 2022, 48(4): 952-961.
[12] ZHENG Shu-Feng, LIU Xiao-Ling, WANG Wei, XU Dao-Qing, KAN Hua-Chun, CHEN Min, LI Shu-Ying. On the green and light-simplified and mechanized cultivation of cotton in a cotton-based double cropping system [J]. Acta Agronomica Sinica, 2022, 48(3): 541-552.
[13] DU Hao, CHENG Yu-Han, LI Tai, HOU Zhi-Hong, LI Yong-Li, NAN Hai-Yang, DONG Li-Dong, LIU Bao-Hui, CHENG Qun. Improving seed number per pod of soybean by molecular breeding based on Ln locus [J]. Acta Agronomica Sinica, 2022, 48(3): 565-571.
[14] CHEN Yun, LI Si-Yu, ZHU An, LIU Kun, ZHANG Ya-Jun, ZHANG Hao, GU Jun-Fei, ZHANG Wei-Yang, LIU Li-Jun, YANG Jian-Chang. Effects of seeding rates and panicle nitrogen fertilizer rates on grain yield and quality in good taste rice cultivars under direct sowing [J]. Acta Agronomica Sinica, 2022, 48(3): 656-666.
[15] YUAN Jia-Qi, LIU Yan-Yang, XU Ke, LI Guo-Hui, CHEN Tian-Ye, ZHOU Hu-Yi, GUO Bao-Wei, HUO Zhong-Yang, DAI Qi-Gen, ZHANG Hong-Cheng. Nitrogen and density treatment to improve resource utilization and yield in late sowing japonica rice [J]. Acta Agronomica Sinica, 2022, 48(3): 667-681.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!