Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2020, Vol. 46 ›› Issue (6): 950-959.doi: 10.3724/SP.J.1006.2020.94121

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Effect of variety and growth period on NDVI estimation of nitrogen concentration in potato plants

YANG Hai-Bo,ZHANG Jia-Kang,YANG Liu,JIA Yu-Ze, ,LI Fei()   

  1. Inner Mongolia Key Laboratory of Soil Quality and Nutrient Resource / College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010018, Inner Mongolia, China
  • Received:2019-08-17 Accepted:2019-12-26 Online:2020-06-12 Published:2020-01-14
  • Contact: Fei LI E-mail:feili72@163.com
  • Supported by:
    “Youth Science and Technology Talents Support Program” (NJYT-18-A08) of Colleges and Universities of Inner Mongolia Autonomous Region in 2018(NJYT-18-A08);National Natural Science Foundation of China(41361079)

Abstract:

The normalized difference vegetation index (NDVI) is an important parameter to reflect relative chlorophyll content and nitrogen level of crops, but NDVI’s ability to estimate nitrogen nutrition is affected by varieties and growth period. The field experiments using several varieties were conducted in the main potato producing areas at the north foot of Yinshan mountain, Inner Mongolia. From early July to mid-august in 2014 to 2016, the canopy spectral index NDVI was measured by using the pocket active crop sensor GreenSeeker during potato critical growth period. The effects of cultivars and growth stages on NDVI estimation of nitrogen concentration in potato plants were compared. The linear correlation between NDVI and plant nitrogen concentration (PNC) was poor in tuber initiation, but increased in process of growth period. The combination of tuber bulking period and starch accumulation period significantly improved the linear modeling effect of NDVI and PNC. Variety combination reduced the sensitivity of NDVI and increased the discreteness of data, which could be offset by NDVI time series normalization (TNDVI), especially the fitting coefficient of determination (R 2) of TNDVI and PNC increased from 0.13 to 0.47 in the tuber bulking period. The R 2of linear estimation model of TNDVI for the combination of tuber initiation, tuber bulking and starch accumulation period was 0.76, which was significantly higher than that of NDVI. Plant-expanded varieties had a more linear fitting trend during tuber bulking and starch accumulation. The growth period and potato varieties had significant effects on NDVI estimation of PNC, and growth period had a greater effect. The established TNDVI spectral index overcame the data differentiation and saturation phenomenon during tuber bulking and starch accumulation caused by variety difference, which provides a theoretical basis and method for the application of NDVI in the diagnosis of nitrogen concentration in potato plants.

Key words: potato, varieties, growth stage, active crop sensor, NDVI, PNC

Fig. 1

Location of test site and distribution of test plot T1-T7 represents the treatment of nitrogen fertilizer from low to high; a, b, c, and d are four replicated. "

Table 1

Correlation between NDVI and nitrogen concentration in potato plants (R2) "

时间
Year
品种
Species
函数类型
Function types
块茎形成期
Tuber
initiation (A)
块茎膨大期
Tuber
bulking (B)
淀粉积累期
Starch
accumulation (C)
A+B B+C A+B+C
2014 克新1号
Kexin 1
线性函数 LF 0.04 0.83** 0.44** 0.38** 0.52** 0.52**
二次函数 QF 0.09 0.87** 0.44** 0.48** 0.52** 0.59**
幂函数 PF 0.04 0.85** 0.44** 0.45** 0.52** 0.55**
指数函数 EF 0.04 0.83** 0.44** 0.38** 0.52** 0.52**
2015 夏坡蒂Xiapodi 线性函数 LF 0.04 0.37** 0.36** 0.04 0.85** 0.52**
二次函数 QF 0.05 0.48** 0.40** 0.10 0.85** 0.67**
幂函数 PF 0.04 0.41** 0.35** 0.03 0.83** 0.58**
指数函数 EF 0.04 0.38** 0.35** 0.04 0.85** 0.53**
2016 荷兰14号
Holland 14
线性函数 LF 0.07 0.44** 0.52** 0.01 0.72** 0.52**
二次函数 QF 0.08 0.56** 0.64** 0.15 0.76** 0.74**
幂函数 PF 0.07 0.45** 0.55** 0.01 0.74** 0.58**
指数函数 EF 0.08 0.44** 0.52** 0.01 0.72** 0.52**
全部All 线性函数 LF 0.03 0.07* 0.50** 0 0.48** 0.28**
二次函数 QF 0.06 0.13* 0.57** 0 0.58** 0.42**
幂函数 PF 0.03 0.08* 0.52** 0 0.50** 0.32**
指数函数 EF 0.03 0.07* 0.49** 0 0.48** 0.28**

Fig. 2

Estimation model of NDVI and plant nitrogen concentration during potato tuber initiation stage, tuber bulking stage and starch accumulation stage"

Fig. 3

Estimation model of NDVI and plant nitrogen concentration during combined growth stages of potato A, B, and C represent potato tuber initiation stage, tuber bulking stage and starch accumulation stage respectively. "

Fig. 4

Estimation model of NDVI and plant nitrogen concentration under potato variety combination A, B, and C represent potato tuber initiation stage, tuber bulking stage and starch accumulation stage respectively. "

Fig. 5

Estimation model of TNDVI and plant nitrogen concentration under potato variety combination during tuber bulking stage and starch accumulation stage"

Fig. 6

Estimation model of TNDVI and plant nitrogen concentration under potato variety combination during combined growth stage"

Fig. 7

Noise equivalent of pant nitrogen concentration estimation by NDVI and TNDVI A, B, and C represent potato tuber initiation stage, tuber bulking stage and starch accumulation stage, respectively. "

[1] 张晗, 赵小敏, 郭熙, 张佳佳, 叶春, 叶英聪, 李小毛 . 基于冠层高光谱信息的水稻生长监测应用研究进展. 江苏农业科学, 2018,46(12):1-9.
Zhang H, Zhao X M, Guo X, Zhang J J, Ye C, Ye Y C, Li X M . Advances in application of rice growth monitoring based on canopy layer spectral information, Jiangsu Agric Sci, 2018,46(12):1-9 (in Chinese).
[2] 张卫峰, 马林, 黄高强, 武良, 陈新平, 张福锁 . 中国氮肥发展贡献和挑战. 中国农业科学, 2013,46:3161-3171.
Zhang W F, Ma L, Huang G Q, Wu L, Chen X P, Zhang F S . The development and contribution of nitrogenous fertilizer in China and challenges faced by the country. Sci Agric Sin, 2013,46:3161-3171 (in Chinese with English abstract).
[3] 魏全全, 李岚涛, 任涛, 王振, 王少华, 李小坤, 鲁剑巍 . 基于数字图像技术的冬油菜氮素营养诊断. 中国农业科学, 2015,48:3877-3886.
Wei Q Q, Li F T, Ren T, Wang Z, Wang S H, Li X K, Lu J W . Diagnosing nitrogen nutrition status of winter rapeseed via digital Image processing technique. Sci Agric Sin, 2015,48:3877-3886 (in Chinese with English abstract).
[4] Nigon T J, Mulla D J, Rosen C J, Cohen Y, Alchanatis V, Rud R . Evaluation of the nitrogen sufficiency index for use with high resolution, broadband aerial imagery in a commercial potato field. Precision Agric, 2014,15:202-226.
doi: 10.1007/s11119-013-9333-6
[5] Wei W, Xia Y, Tian Y C, Liu X J, Jun N I, Cao W X, Yan Z H . Common spectral bands and optimum vegetation indices for monitoring leaf nitrogen accumulation in rice and wheat. J Integr Agric, 2012,11:2001-2012.
doi: 10.1016/S2095-3119(12)60457-2
[6] 卢艳丽, 白由路, 杨俐苹, 王磊 . N利用GreenSeeker法诊断春玉米氮素营养状况的研究. 玉米科学, 2008,16(1):111-115.
Lu Y L, Bai Y L, Yang L P, Wang L . Diagnos is on nitrogen status using GreenSeeker in spring maize. J Maize Sci, 2008,16(1):111-115 (in Chinese with English abstract).
[7] 郭建华, 王秀, 孟志军, 赵春江, 宇振荣, 陈立平 . 主动遥感光谱仪 Greenseeker与 SPAD 对玉米氮素营养诊断的研究. 植物营养与肥料学报, 2008,14(1):43-47.
doi: 10.11674/zwyf.2008.0107
Guo J H, Wang X, Meng Z J, Zhao C J, Yu Z R, Chen L P . Study on diagnosing nitrogen nutrition status of corn using GreenSeeker and SPAD meter. Plant Nutr Fert Sci, 2008,14(1):43-47 (in Chinese with English abstract).
doi: 10.11674/zwyf.2008.0107
[8] 张俊华, 张佳宝, 李立平 . 基于冬小麦植被指数的氮肥调控技术研究. 土壤学报, 2007,44:550-555.
Zhang J H, Zhang J B, Li L P . Nitrogen regulation technology based on canopy spectral property of winter wheat. Acta Pedol Sin, 2007,44:550-555 (in Chinese with English abstract).
[9] Raun W R, Solie J B, Johnson G V, Stone M L, Lukina E V, Thomason W E, Schepers J S . In-season prediction of potential grain yield in winter wheat using canopy reflectance. Agron J, 2001,93:131-138.
[10] Franzen D W. Nitrogen management in sugar beet using remote sensing and GIS. In: Francis J P, David C, eds. GIS Applications in Agriculture. New York: Taylor and Francis Group, 2007. pp 35-39.
[11] Li F, Gnyp M L, Jia L L, Miao Y X, Yu Z H, Koppe W, Chen X P, Zhang F S . Estimating N status of winter wheat using a handheld spectrometer in the North China Plain. Field Crops Res, 2008,106:77-85.
[12] Gnyp M L, Miao Y X, Yuan F, Ustin S L, Yu K, Yao Y K, Bareth G . Hyperspectral canopy sensing ofpaddy rice aboveground biomass at different growth stages. Field Crops Res, 2014,155:42-55.
[13] Xia T T, Miao Y X, Wu D L, Shao H . Active optical sensing of spring maize for in-season diagnosis of nitrogen status based on nitrogen nutrition index. Remote Sensing, 2016,8:605.
doi: 10.3390/rs8070605
[14] Yao Y K, Miao Y X, Cao Q, Wang H Y . In-season estimation of rice nitrogen status with an active crop canopy sensor. IEEE J Selected Top Appl Earth Observ Remote Sensing, 2014,7:4403-4413.
[15] 于静, 李斐, 秦永林, 樊明寿 . 应用主动作物冠层传感器对马铃薯氮素营养诊断. 光谱学与光谱分析, 2013,33:3092-3097.
Yu J, Li F, Qin Y L, Fan M S . Active crop canopy sensor-based nitrogen diagnosis for potato. Spectroscopy Spectral Anal, 2013,33:3092-3097 (in Chinese with English abstract).
[16] 高兴, 李斐, 杨海波, 黄绍福, 张加康, 苗杰, 黄伟杰 . 基于红边位置的马铃薯植株氮浓度估测方法研究. 植物营养与肥料学报, 2019,25:296-310.
Gao X, Li F, Yang H B, Huang S F, Zhang J K, Miao J, Huang W J . Appropriate calculation method for the use of red edge position to estimate potato nitrogen concentration. Plant Nutr Fert Sci, 2019,25:296-310 (in Chinese with English abstract).
[17] Wang W, Yao X, Yao X F, Tian Y C, Liu X J, Ni J, Cao W X, Zhu Y . Estimating leaf nitrogen concentration with three-band vegetation indices in rice and wheat. Field Crops Res, 2012,129:90-98.
[18] Mistele B, Schmidhalter U . Spectral measurements of the total aerial N and biomass dry weight in maize using a quadrilateral-view optic. Field Crops Res, 2008,106:94-103.
doi: 10.1016/j.fcr.2007.11.002
[19] 杨贵军, 邢著荣, 黄文江, 齐腊, 李伟国 . 不同株型冬小麦冠层结构特征多时相分析. 农业工程学报, 2010,26(7):227-234.
Yang G J, Xing Z R, Huang W J, Qi L, Li W G . Analysis of winter canopy structure for different plant types of growth period. Trans CSAE, 2010,26(7):227-234 (in Chinese with English abstract).
[20] Raun W R, Solie J B, Johnson G V, Stone M L, Lukina E V, Thomason W E, Schepers J S . In-season prediction of potential grain yield in winter wheat using canopy reflectance. Agron J, 2001,93:131-138.
[21] Sharma L K, Franzen D W . Use of corn height to improve the relationship between active optical sensor readings and yield estimates. Precision Agric, 2014,15:331-345.
[22] Walsh O S, Klatt A R, Solie J B, Godsey C B, Raun W R . Use of soil moisture data for refined GreenSeeker sensor based on nitrogen recommendations in winter wheat ( Triticum aestivum L.). Precision Agric, 2013,14:343-356.
doi: 10.1007/s11119-012-9299-9
[23] Viña A, Gitelson A A, Nguy-Robertson A L, Peng Y, . Comparison of different vegetation indices for the remote assessment of green leaf area index of crops. Remote Sensing Environ, 2011,115:3468-3478.
[24] 任建强, 陈仲新, 周清波, 唐华俊 . 基于叶面积指数反演的区域冬小麦单产遥感估测. 应用生态学报, 2010,21:2883-2888.
Ren J Q, Chen Z X, Zhou Q B, Tang J H . LAI-based regional winter wheat yield estimation by remote sensing. Chin J Appl Ecol, 2010,21:2883-2888 (in Chinese with English abstract).
[1] WANG Hai-Bo, YING Jing-Wen, HE Li, YE Wen-Xuan, TU Wei, CAI Xing-Kui, SONG Bo-Tao, LIU Jun. Identification of chromosome loss and rearrangement in potato and eggplant somatic hybrids by rDNA and telomere repeats [J]. Acta Agronomica Sinica, 2022, 48(5): 1273-1278.
[2] SHI Yan-Yan, MA Zhi-Hua, WU Chun-Hua, ZHOU Yong-Jin, LI Rong. Effects of ridge tillage with film mulching in furrow on photosynthetic characteristics of potato and yield formation in dryland farming [J]. Acta Agronomica Sinica, 2022, 48(5): 1288-1297.
[3] FENG Ya, ZHU Xi, LUO Hong-Yu, LI Shi-Gui, ZHANG Ning, SI Huai-Jun. Functional analysis of StMAPK4 in response to low temperature stress in potato [J]. Acta Agronomica Sinica, 2022, 48(4): 896-907.
[4] ZHANG Xia, YU Zhuo, JIN Xing-Hong, YU Xiao-Xia, LI Jing-Wei, LI Jia-Qi. Development and characterization analysis of potato SSR primers and the amplification research in colored potato materials [J]. Acta Agronomica Sinica, 2022, 48(4): 920-929.
[5] JIN Rong, JIANG Wei, LIU Ming, ZHAO Peng, ZHANG Qiang-Qiang, LI Tie-Xin, WANG Dan-Feng, FAN Wen-Jing, ZHANG Ai-Jun, TANG Zhong-Hou. Genome-wide characterization and expression analysis of Dof family genes in sweetpotato [J]. Acta Agronomica Sinica, 2022, 48(3): 608-623.
[6] TAN Xue-Lian, GUO Tian-Wen, HU Xin-Yuan, ZHANG Ping-Liang, ZENG Jun, LIU Xiao-Wei. Characteristics of microbial community in the rhizosphere soil of continuous potato cropping in arid regions of the Loess Plateau [J]. Acta Agronomica Sinica, 2022, 48(3): 682-694.
[7] ZHANG Hai-Yan, XIE Bei-Tao, JIANG Chang-Song, FENG Xiang-Yang, ZHANG Qiao, DONG Shun-Xu, WANG Bao-Qing, ZHANG Li-Ming, QIN Zhen, DUAN Wen-Xue. Screening of leaf physiological characteristics and drought-tolerant indexes of sweetpotato cultivars with drought resistance [J]. Acta Agronomica Sinica, 2022, 48(2): 518-528.
[8] JIAN Hong-Ju, SHANG Li-Na, JIN Zhong-Hui, DING Yi, LI Yan, WANG Ji-Chun, HU Bai-Geng, Vadim Khassanov, LYU Dian-Qiu. Genome-wide identification and characterization of PIF genes and their response to high temperature stress in potato [J]. Acta Agronomica Sinica, 2022, 48(1): 86-98.
[9] XU De-Rong, SUN Chao, BI Zhen-Zhen, QIN Tian-Yuan, WANG Yi-Hao, LI Cheng-Ju, FAN You-Fang, LIU Yin-Du, ZHANG Jun-Lian, BAI Jiang-Ping. Identification of StDRO1 gene polymorphism and association analysis with root traits in potato [J]. Acta Agronomica Sinica, 2022, 48(1): 76-85.
[10] ZHANG Si-Meng, NI Wen-Rong, LYU Zun-Fu, LIN Yan, LIN Li-Zhuo, ZHONG Zi-Yu, CUI Peng, LU Guo-Quan. Identification and index screening of soft rot resistance at harvest stage in sweetpotato [J]. Acta Agronomica Sinica, 2021, 47(8): 1450-1459.
[11] FU Hua-Ying, ZHANG Ting, PENG Wen-Jing, DUAN Yao-Yao, XU Zhe-Xin, LIN Yi-Hua, GAO San-Ji. Identification of resistance to leaf scald in newly released sugarcane varieties at seedling stage by artificial inoculation [J]. Acta Agronomica Sinica, 2021, 47(8): 1531-1539.
[12] SONG Tian-Xiao, LIU Yi, RAO Li-Ping, Soviguidi Deka Reine Judesse, ZHU Guo-Peng, YANG Xin-Sun. Identification and expression analysis of cell wall invertase IbCWIN gene family members in sweet potato [J]. Acta Agronomica Sinica, 2021, 47(7): 1297-1308.
[13] TANG Rui-Min, JIA Xiao-Yun, ZHU Wen-Jiao, YIN Jing-Ming, YANG Qing. Cloning of potato heat shock transcription factor StHsfA3 gene and its functional analysis in heat tolerance [J]. Acta Agronomica Sinica, 2021, 47(4): 672-683.
[14] LI Peng-Cheng, BI Zhen-Zhen, SUN Chao, QIN Tian-Yuan, LIANG Wen-Jun, WANG Yi-Hao, XU De-Rong, LIU Yu-Hui, ZHANG Jun-Lian, BAI Jiang-Ping. Key genes mining of DNA methylation involved in regulating drought stress response in potato [J]. Acta Agronomica Sinica, 2021, 47(4): 599-612.
[15] QIN Tian-Yuan, LIU Yu-Hui, SUN Chao, BI Zhen-Zhen, LI An-Yi, XU De-Rong, WANG Yi-Hao, ZHANG Jun-Lian, BAI Jiang-Ping. Identification of StIgt gene family and expression profile analysis of response to drought stress in potato [J]. Acta Agronomica Sinica, 2021, 47(4): 780-786.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!