Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2021, Vol. 47 ›› Issue (2): 197-209.doi: 10.3724/SP.J.1006.2021.02034


Effect of OsPAL2;3 in regulation of rice allopathic inhibition on barnyardgrass (Echinochloa crusgalli L.)

LI Lan-Lan(), MU Dan, YAN Xue, YANG Lu-Ke, LIN Wen-Xiong*(), FANG Chang-Xun*()   

  1. Institute of Agroecology, School of Life Sciences, Fujian Agriculture and Forestry University / Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Fuzhou 350002, Fujian, China
  • Received:2020-05-14 Accepted:2020-08-19 Online:2021-02-12 Published:2020-11-19
  • Contact: LIN Wen-Xiong,FANG Chang-Xun E-mail:1244311185@qq.com;lwx@fafu.edu.cn;changfangxingyx@163.com
  • Supported by:
    National Natural Science Foundation of China(31871556);Outstanding Youth Scientific Fund of Fujian Agriculture and Forestry University(xjq201805);Science and Technology Innovation of Fujian Agriculture and Forestry University(CXZX2018042)


Phenylalanine ammonia-lyase (PAL, EC is the key enzyme in regulation of the synthesis of phenolic acid allelochemicals. PAL gene in rice belongs to a multigene family. In allelopathic accession rice PI312777 and non-allelopathic rice accession Lemont, the promoter sequences of the same PAL gene member were different, and there was the largest difference in OsPAL2;3 and OsPAL2;4 gene promoter sequence. Gene promoter of OsPAL2;3 from PI3127777 showed higher activity than the corresponding promoter from Lemont. Overexpression of OsPAL2;3 in PI312777 and Lemont resulted in increasing allelopathic inhibition on barnyardgrass (Echinochloa crusgalli L.), and the inhibitory ratios was increased by 11.11% in PI312777 and 5.56% in Lemont. Gene expression level of OsPAL2;3, OsC4H, OsCCA, OsCOL, and OsOMT was up-regulated in the OsPAL2;3-overexpressed transgenic rice compared with that of wild-type rice, and the contents of protocatechuic acid and vanillic acid were also increased. The results from Co-IP combined with mass spectrometry showed that transketolase, carbonic anhydrase, fructose-bisphospate aldolase isozyme, ATP synthase subunit alpha and ATP synthase subunit beta were interacted with OsPAL2;3 protein, resulting in regulating the phenylalanine pathway in rice. Our study indicated that the transcriptional activity of OsPAL2;3 contributed to the alleloapthic activity between PI312777 and Lemont, OsPAL2;3 was interacted with a couple of proteins to jointly regulate the synthesis of phenolic acids, and OsPAL2;3 could be considered as a candidate gene to improve the allelopathy of rice in breeding.

Key words: rice, allelopathy, PAL gene, promoter, phenolic acid, protein interaction

Table 1

Primers used in this study"

Gene name
Forward primer (5'-3')
Reverse primer (5'-3')
Promoter cloning
Gene overexpression vector
PCR identification of transgenic rice line
Bimolecular fluorescent complimentary vector
ATP synthase subunit alpha atggcgcgccactagtATGGCAACCCTTCG AGTCGACGA cacctcctccactagtAAGGGAAAACCGTTC GAGTTGTTCC
ATP synthase subunit beta atggcgcgccactagtATGGCGACTCGCCG GGCCCTCT cacctcctccactagtTGAAGCCGACTCCTTG GCGATC
Transketolase atggcgcgccactatATGGCCGCGCACTCC GTCG cacctcctccactagtCAGGCTCTTTGCTGTT GCGAT
Carbonic anhydrase atggcgcgccactagtATGTCGACCGCCGC CGCCGC cacctcctccactagtGGGCTCCCATAAGTCC AAGTTG

Fig. 1

Agarose gel electrophoresis determination and partially different sequence on the gene promoters of PAL gene members from PI312777 and Lemont (a) Agarose gel electrophoresis determination on the fragment of PAL gene promoter; (b) Different sequence of OsPAL2;3 or OsPAL2;4 gene promoters from PI312777 and Lemont, respectively."

Fig. 2

Comparative determination on GFP fluorescence transcriptionally regulated by OsPAL2;3 and OsPAL2;4 gene promoters from PI312777 and Lemont"

Fig. 3

Detection of the protein expression level of eYFP and eYFP fluorescent intensity on OsPAL2;3 overexpressed transgenic rice (a) Western-blotting detection of the protein expression level of eYFP; (b) Laser scanning confocal microscope detection of the eYFP fluorescent intensity. WT: wild type."

Fig. 4

Expression level of OsPAL, OsOMT, OsC4H, OsCOL, and OsCAD from OsPAL2;3-OX transgenic rice line and its wild type"

Table 2

Contents of phenolic acids in the OsPAL2;3-OX transgenic rice lines and its wild type"

Rice lines
酚酸含量Contents of phenolic acid (μg g-1)
原儿茶酸Protocatechuic acid 对羟基苯甲酸
p-hydroxybenzoic acid
Vanillic acid
Syringic acid
4-coumaric acid
Ferulic acid
Salicylic acid
Cinnamic acid
Wild type of PI312777
161.78±32.74 2.18±0.14 6.98±1.68 3.19±0.71 25.26±1.65 19.65±0.57 15.34±2.43 8.19±0.62
transgenic PI312777
165.11±2.41 1.74±0.41 10.05±0.97 4.77±2.40 31.42±2.30 15.56±0.60 10.64±0.92 8.07±0.20
Wild type of Lemont
18.19±1.38 2.04±0.47 5.47±0.40 6.64±0.35 11.31±0.15 21.07±1.89 15.03±0.13 1.60±0.13
transgenic Lemont
26.29±1.81 1.83±0.14 6.45±0.65 3.61±0.37 9.01±4.28 17.64±1.74 17.06±5.61 0.85±0.56

Fig. 5

Phenotype of barnyardgrass growth in the solution with root exudates from OsPAL2;3-OX transgenic rice and the wild type"

Table 3

Root length, plant height and dry weigh of barnyardgrass growth in the solution with root exudates from OsPAL2;3-OX transgenic rice and the wild type"

Root length (cm)
IR of root length (%)
Plant height (cm)
IR of plant height (%)
Dry weight
IR of dry weight (g)
Barnyardgrass cultured in the solution with PI31277 root exudates
9.20±1.43 b 18.73 27.84±3.77 b 14.69 0.12±0.02 b 33.33
Barnyardgrass cultured in the solution with OsPAL2;3-OX PI31277 root exudates
6.87±2.00 c 39.31 27.57±2.87 b 15.61 0.10±0.02 b 44.44
Control group of barnyardgrass
11.32±2.11 a 32.67±3.18 a 0.18±0.01 a
Barnyardgrass cultured in the solution with Lemont root exudates
9.94±1.20 b 12.19 28.89±3.19 b 11.57 0.14±0.02 b 22.22
Barnyardgrass cultured in the solution with OsPAL2;3-OX Lemont root exudates
10.36±1.28 b 8.48 27.32±3.33 b 16.38 0.13±0.01 b 27.78

Fig. 6

OsPAL2;3 interacted proteins from the OsPAL2;3-OX transgenic rice"

Table 4

Identification of the proteins interaction with OsPAL2;3"

Protein accession number
Protein name
Peptide count
Unique peptide count
Molecular weight (kD)
Isoelectric point
LOC_Os02g41670.1 Phenylalanine ammonia-lyase 31 26 36.19 76.58 5.84
LOC_Os10g21268.1 Ribulose bisphosphate carboxylase large chain precursor 29 16 30.99 53.71 6.58
LOC_Os04g16740.1 ATP synthase subunit alpha 15 15 27.22 55.66 5.95
LOC_Os01g45274.3 Carbonic anhydrase, chloroplast precursor 25 14 42.37 28.04 6.99
LOC_Os02g41650.3 Phenylalanine ammonia-lyase 15 13 17.69 77.75 6.04
LOC_Os10g21266.1 ATP synthase subunit beta 14 13 29.92 53.98 5.38
LOC_Os11g07020.1 Fructose-bisphospate aldolase isozyme 11 11 27.06 42.00 6.39
LOC_Os12g10580.1 Ribulose bisphosphate carboxylase large chain precursor 18 10 18.94 56.06 9.04
LOC_Os04g38600.2 Glyceraldehyde-3-phosphate
12 10 24.94 43.01 7.61
LOC_Os04g43800.1 Phenylalanine ammonia-lyase 11 10 13.59 76.93 5.93
LOC_Os06g04270.1 Transketolase, chloroplast precursor 11 10 14.67 80.02 6.12
LOC_Os05g41640.2 Phosphoglycerate kinase protein 10 10 21.28 50.13 6.29
LOC_Os12g37260.1 Lipoxygenase 2.1, chloroplast precursor 10 10 9.00 10.46 5.87

Fig. 7

BiFC determination of the interaction between OsPAL2;3 and the interacted proteins"

[1] Rice E L. Allelopathy, 2nd edn. Orlando: Academic Press, 1984. pp 1-50.
[2] Lin W X, Fang C X, Chen T, Lin R Y, Xiong J, Wang H B. Rice allelopathy and its properties of molecular ecology. Front Biol, 2010,5:255-262.
[3] Weston L A, Duke S O. Weed and crop allelopathy. Crit Rev Plant Sci, 2003,22:367-389.
[4] 王海斌, 俞振明, 何海斌, 郭徐魁, 黄锦文, 周阳, 徐志斌, 林文雄. 不同化感潜力水稻化感效应与产量的关系. 中国生态农业学报, 2012,20:75-79.
Wang H B, Yu Z M, He H B, Guo X K, Huang J W, Zhou Y, Xu Z B, Lin W X. Relationship between allelopathic potential and grain yield of different allelopathic rice accessions Chin[J] Eco-Agric, 2012,20:75-79 (in Chinese with English abstract).
[5] 徐正浩, 谢国雄, 周宇杰, 高屾. 三种栽植方式下不同株型和化感特性水稻对无芒稗的干扰控制作用. 作物学报, 2013,39:537-548.
doi: 10.3724/SP.J.1006.2013.00537
Xu Z H, Xie G X, Zhou Y J, Gao S. Interference of rice with different morphological types and allelopathy on barnyardgrass under three planting patterns. Acta Agron Sin, 2013,39:537-548 (in Chinese with English abstract).
[6] Ye C Y, Tang W, Wu D, Jia L, Qiu J, Chen M, Mao L, Lin F, Xu H, Yu X, Lu Y, Wang Y, Olsen K M, Timko M P, Fan L. Genomic evidence of human selection on Vavilovian mimicry. Nat Ecol Evol, 2019,3:1474-1482.
pmid: 31527731
[7] Li L L, Zhao H H, Kong C H. (-)-Loliolide, the most ubiquitous lactone, is involved in barnyardgrass-induced rice allelopathy. J Exp Bot, 2020,71:1540-1550.
doi: 10.1093/jxb/erz497 pmid: 31677347
[8] Kato-Noguchi H, Peters R J. The role of momilactones in rice allelopathy. J Chem Ecol, 2013,39:175-185.
pmid: 23385366
[9] Kong C H, Zhao H, Xu X H, Wang P, Gu Y. Activity and allelopathy of soil of flavone O-glycosides from rice. J Agric Food Chem, 2007,55:6007-6012.
doi: 10.1021/jf0703912 pmid: 17602647
[10] Rimando A M, Duke S O. Studies on rice allelochemicals. In: Smith C W, Dilday R H, eds. Rice: Origin, History, Technology and Production. New York: Wiley, 2003. pp 221-244.
[11] Zhang Q, Li L, Li J Y, Wang H B, Fang C X, Yang X Y, He H B. Increasing rice allelopathy by induction of barnyardgrass (Echinochloa crus-galli) root exudates. J Plant Growth Regul, 2018,37:745-754.
[12] Fang C X, Li Y Z, Li C X, Li B L, Ren Y J, Zheng H P, Zeng X M, Shen L H, Lin W X. Identification and comparative analysis of microRNAs in barnyardgrass (Echinochloa crus-galli) in response to rice allelopathy. Plant Cell Environ, 2015,38:1368-1381.
doi: 10.1111/pce.12492 pmid: 25438645
[13] Fang C X, Yu Y, Chen W S, Jian X, Wang Q S, Zheng H P, Lin W X. Role of allene oxide cyclase in the regulation of rice phenolic acids synthesis and allelopathic inhibition on barnyardgrass. Plant Growth Regul, 2016,79:265-273.
doi: 10.1007/s10725-015-0131-1
[14] He H B, Wang H B, Fang C X, Lin Z H, Yu Z M, Lin W X. Separation of allelopathy from resource competition using rice/barnyardgrass mixed-cultures. PLoS One, 2012,7:e37201.
doi: 10.1371/journal.pone.0037201 pmid: 22590655
[15] He H B, Wang H B, Fang CX, Wu H W, Guo X K, Lin C H, Lin Z H, Lin W X. Barnyardgrass stress up regulates the biosynthesis of phenolic compounds in allelopathic rice. J Plant Physiol, 2012,169:1747-1753.
pmid: 22939271
[16] Seal A N, Haig T, Pratley J E. Evaluation of putative allelochemicals in rice roots exudates for their role in the suppression of arrowhead root growth. J Chem Ecol, 2004,30:1663-1678.
doi: 10.1023/b:joec.0000042075.96379.71 pmid: 15537166
[17] Seal A N, Pratley J E, Haig T, An M. Identification and quantitation of compounds in a series of allelopathic and non-allelopathic rice root exudates. J Chem Ecol, 2004,30:1647-1662.
doi: 10.1023/b:joec.0000042074.96036.14 pmid: 15537165
[18] Kim K W, Kim K U. Searching for rice allelochemicals. In: Kim K U, Shin D H, eds. Rice Allelopathy. Korea: Kyungpook National University, 2000. pp 83-95.
[19] Mattice J, Lavy T, Skulman B, Dilday R. Searching for Allelochemicals in Rice that Control Ducksalad. Manila: International Rice Research Institute, 1998. pp 81-98.
[20] Chou C H, Chiou S J. Autointoxication mechanism of Oryza sativa: II. Effects of culture treatments on the chemical nature of paddy soil and on rice productivity. J Chem Ecol, 1979,5:839-859.
[21] Chou C H, Lin H J. Autointoxication mechanism of Oryza sativa: I. Phytotoxic effects of decomposing rice residues in soil. J Chem Ecol, 1976,2:353-367.
[22] Kuwatsuka S, Shindo H. Behavior of phenolic substances in the decaying process of plants: I. Identification and quantitative determination of phenolic acids in rice straw and its decayed product by gas chromatography. Soil Sci Plant Nutr, 1973,19:219-227.
doi: 10.1080/00380768.1973.10432591
[23] Zheng X, Chen S, Li Q, Lin R, Lin W. Determination of phenolic acids in root exudates of allelopathic rice by solid phase extraction-ion chromatography with conductivity detection. Anal Lett, 2014,47:2156-2164.
doi: 10.1080/00032719.2014.900778
[24] Li J Y, Zhang Q, Yang X Y, Wu H M, Lin R L, He H B. A reappraisal of the content and the differences of phenolic acids between allelopathic and non-allelopathic rice accessions. Allelopathy J, 2017,40:35-46.
[25] Bi H H, Zeng R S, Su L M, An M, Luo S M. Rice allelopathy induced by methyl jasmonate and methyl salicylate. J Chem Ecol, 2007,33:1089-1103.
doi: 10.1007/s10886-007-9286-1 pmid: 17415624
[26] Song B Q, Xiong J, Fang C X, Qiu L, Lin R Y, Liang Y Y, Lin W X. Allelopathic enhancement and differential gene expression in rice under low nitrogen treatment. J Chem Ecol, 2008,34:688-695.
doi: 10.1007/s10886-008-9455-x pmid: 18392895
[27] Fang C X, He H B, Wang Q S, Qiu L, Wang H B, Zhuang Y E, Xiong J, Lin W X. Genomic analysis of allelopathic response to low nitrogen and barnyardgrass competition in rice (Oryza sativa L.). Plant Growth Regul, 2010,61:277-286.
[28] Fang C X, Xiong J, Qiu L, Wang H B, Song B Q, He H B, Lin R Y, Lin W X. Analysis of gene expressions associated with increased allelopathy in rice induced by exogenous salicylic acid. Plant Growth Regul, 2009,57:163-172.
[29] 方长旬, 王清水, 余彦, 罗美蓉, 黄力坤, 熊君, 沈荔花, 林文雄. 不同胁迫条件下化感与非化感水稻PAL多基因家族的差异表达. 生态学报, 2011,31:4760-4767.
Fang C X, Wang Q S, Yu Y, Luo M R, Huang L K, Xiong J, Shen L H, Lin W X. Differential expression of PAL multigene family in allelopathic rice and its counterpart exposed to stressful conditions. Acta Ecol Sin, 2011,31:4760-4767 (in Chinese with English abstract).
[30] Ayoubi T A, Van De Ven W J. Regulation of gene expression by alternative promoters. FASEB J, 1996,10:453-460.
pmid: 8647344
[31] Yoo S D, Cho Y H, Sheen J. Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat Protoc, 2007,2:1565-1572.
[32] Zhang Y, Su J, Duan S, Ao Y, Dai J R, Liu J, Wang P, Li Y G, Liu B, Feng D R, Wang J F, Wang H B. A highly efficient rice green tissue protoplast system for transient gene expression and studying light/chloroplast-related processes. Plant Methods, 2011,7:30.
doi: 10.1186/1746-4811-7-30 pmid: 21961694
[33] 陈秋红, 陈太钰, 林拥军, 陈浩. 根癌农杆菌介导的粳稻遗传转化. 见: 袁猛, 都浩, 李香花主编. 水稻实验手册. 北京: Bio-protocol, 2018. pp 245-254. Bio-101: e1010174. doi: 10.21769/BioProtoc.1010174.
Chen Q H, Chen T Y, Lin Y J, Chen H. Agrobacterium-mediated genetic transformation of japonica rice. In: Yuan M, Du H, Li X H, eds. Rice Protocol eBook. Beijing: Bio-protocol, 2018. pp 245-254. Bio-101: e1010174. doi: 10.21769/BioProtoc.1010174.
[34] 刘瑜, 凌飞, 林拥军, 陈浩. 农杆菌介导的籼稻遗传转化. 见: 袁猛, 都浩, 李香花主编. 水稻实验手册. 北京: Bio-protocol, 2018. pp 255-264. Bio-101: e1010175. doi: 10.21769/BioProtoc. 1010175.
Liu Y, Ling F, Lin Y J, Chen H. Agrobacterium-mediated transformation of indica rice. In: Yuan M, Du H, Li X H, eds. Rice Protocol eBook. Beijing: Bio-protocol, 2018. pp 255-264. Bio-101: e1010175. doi: 10.21769/BioProtoc.1010175. (in Chinese)
[35] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method . Methods, 2001,25:402-408.
doi: 10.1006/meth.2001.1262 pmid: 11846609
[36] Fang C X, Yang L K, Chen W X, Li L L, Zhang P L, Li Y Z, He H B, Lin W X. MYB57 transcriptionally regulates MAPK11 to interact with PAL2;3 and modulate rice allelopathy. J Exp Bot, 2020,71:2127-2141.
pmid: 31811717
[37] Fang C X, Zhuang Y E, Xu T C, Lin Y Z, Li Y, Lin W X. Changes in rice allelopathy and rhizosphere microflora by inhibiting rice phenylalanine ammonia-lyase gene expression. J Chem Ecol, 2013,39:204-212.
doi: 10.1007/s10886-013-0249-4 pmid: 23385369
[38] Zhou X G, Liao H C, Chern M, Yin J J, Chen Y F, Wang J P, Zhu X B, Chen Z X, Yuan C, Zhao W, Wang J, Li W T, He M, Ma B T, Wang J C, Qin P, Chen W L, Wang Y P, Liu J L, Qian Y W, Wang W M, Wu X J, Li P, Zhu L H, Li S G, Ronald P C, Chen X W. Loss of function of a rice TPR-domain RNA-binding protein confers broad-spectrum disease resistance. Proc Natl Acad Sci USA, 2018,115:3174-3179.
pmid: 29432165
[39] Van Dam N M, Bouwmeester H J. Metabolomics in the rhizosphere: tapping into belowground chemical communication. Trends Plant Sci, 2016,21:256-265.
pmid: 26832948
[40] Bertin C, Yang X, Weston L A. The role of root exudates and allelochemicals in the rhizosphere. Plant Soil, 2003,256:67-83.
[41] Lin R Y, Wang H B, Guo X K, Ye C Y, He H B, Zhou Y, Lin W X. Impact of applied phenolic acids on the microbes, enzymes and available nutrients in paddy soils. Allelopathy J, 2011,28:225-236.
[42] MacDonald M J, D’Cunha G B. Amodern view of phenylalanine ammonia lyase. Biochem Cell Biol, 2007,85:273-282.
doi: 10.1139/o07-018 pmid: 17612622
[43] Junge W, Lill H, Engelbrecht S. ATP synthase: an electrochemical transducer with rotatory mechanics. Trends Biochem Sci, 1997,22:420-423.
pmid: 9397682
[44] Henkes S, Sonnewald U, Badur R, Flachmann R, Stittet M. A small decrease of plastid transketolase activity in antisense tobacco transformants has dramatic effects on photosynthesis and phenylpropanoid metabolism. Plant Cell, 2001,13:535-551.
doi: 10.1105/tpc.13.3.535 pmid: 11251095
[45] Sasaki H, Hirose T, Watanabe Y, Ohsugi R. Carbonic anhydrase activity and CO2-transfer resistance in Zn-deficient rice leaves. Plant Physiol, 1998,118:929-934.
doi: 10.1104/pp.118.3.929 pmid: 9808737
[1] TIAN Tian, CHEN Li-Juan, HE Hua-Qin. Identification of rice blast resistance candidate genes based on integrating Meta-QTL and RNA-seq analysis [J]. Acta Agronomica Sinica, 2022, 48(6): 1372-1388.
[2] ZHENG Chong-Ke, ZHOU Guan-Hua, NIU Shu-Lin, HE Ya-Nan, SUN wei, XIE Xian-Zhi. Phenotypic characterization and gene mapping of an early senescence leaf H5(esl-H5) mutant in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1389-1400.
[3] ZHOU Wen-Qi, QIANG Xiao-Xia, WANG Sen, JIANG Jing-Wen, WEI Wan-Rong. Mechanism of drought and salt tolerance of OsLPL2/PIR gene in rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1401-1415.
[4] ZHENG Xiao-Long, ZHOU Jing-Qing, BAI Yang, SHAO Ya-Fang, ZHANG Lin-Ping, HU Pei-Song, WEI Xiang-Jin. Difference and molecular mechanism of soluble sugar metabolism and quality of different rice panicle in japonica rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1425-1436.
[5] YAN Jia-Qian, GU Yi-Biao, XUE Zhang-Yi, ZHOU Tian-Yang, GE Qian-Qian, ZHANG Hao, LIU Li-Jun, WANG Zhi-Qin, GU Jun-Fei, YANG Jian-Chang, ZHOU Zhen-Ling, XU Da-Yong. Different responses of rice cultivars to salt stress and the underlying mechanisms [J]. Acta Agronomica Sinica, 2022, 48(6): 1463-1475.
[6] YANG Jian-Chang, LI Chao-Qing, JIANG Yi. Contents and compositions of amino acids in rice grains and their regulation: a review [J]. Acta Agronomica Sinica, 2022, 48(5): 1037-1050.
[7] DENG Zhao, JIANG Nan, FU Chen-Jian, YAN Tian-Zhe, FU Xing-Xue, HU Xiao-Chun, QIN Peng, LIU Shan-Shan, WANG Kai, YANG Yuan-Zhu. Analysis of blast resistance genes in Longliangyou and Jingliangyou hybrid rice varieties [J]. Acta Agronomica Sinica, 2022, 48(5): 1071-1080.
[8] YANG De-Wei, WANG Xun, ZHENG Xing-Xing, XIANG Xin-Quan, CUI Hai-Tao, LI Sheng-Ping, TANG Ding-Zhong. Functional studies of rice blast resistance related gene OsSAMS1 [J]. Acta Agronomica Sinica, 2022, 48(5): 1119-1128.
[9] ZHU Zheng, WANG Tian-Xing-Zi, CHEN Yue, LIU Yu-Qing, YAN Gao-Wei, XU Shan, MA Jin-Jiao, DOU Shi-Juan, LI Li-Yun, LIU Guo-Zhen. Rice transcription factor WRKY68 plays a positive role in Xa21-mediated resistance to Xanthomonas oryzae pv. oryzae [J]. Acta Agronomica Sinica, 2022, 48(5): 1129-1140.
[10] WANG Xiao-Lei, LI Wei-Xing, OU-YANG Lin-Juan, XU Jie, CHEN Xiao-Rong, BIAN Jian-Min, HU Li-Fang, PENG Xiao-Song, HE Xiao-Peng, FU Jun-Ru, ZHOU Da-Hu, HE Hao-Hua, SUN Xiao-Tang, ZHU Chang-Lan. QTL mapping for plant architecture in rice based on chromosome segment substitution lines [J]. Acta Agronomica Sinica, 2022, 48(5): 1141-1151.
[11] WANG Ze, ZHOU Qin-Yang, LIU Cong, MU Yue, GUO Wei, DING Yan-Feng, NINOMIYA Seishi. Estimation and evaluation of paddy rice canopy characteristics based on images from UAV and ground camera [J]. Acta Agronomica Sinica, 2022, 48(5): 1248-1261.
[12] KE Jian, CHEN Ting-Ting, WU Zhou, ZHU Tie-Zhong, SUN Jie, HE Hai-Bing, YOU Cui-Cui, ZHU De-Quan, WU Li-Quan. Suitable varieties and high-yielding population characteristics of late season rice in the northern margin area of double-cropping rice along the Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(4): 1005-1016.
[13] CHEN Yue, SUN Ming-Zhe, JIA Bo-Wei, LENG Yue, SUN Xiao-Li. Research progress regarding the function and mechanism of rice AP2/ERF transcription factor in stress response [J]. Acta Agronomica Sinica, 2022, 48(4): 781-790.
[14] WANG Lyu, CUI Yue-Zhen, WU Yu-Hong, HAO Xing-Shun, ZHANG Chun-Hui, WANG Jun-Yi, LIU Yi-Xin, LI Xiao-Gang, QIN Yu-Hang. Effects of rice stalks mulching combined with green manure (Astragalus smicus L.) incorporated into soil and reducing nitrogen fertilizer rate on rice yield and soil fertility [J]. Acta Agronomica Sinica, 2022, 48(4): 952-961.
[15] QIN Qin, TAO You-Feng, HUANG Bang-Chao, LI Hui, GAO Yun-Tian, ZHONG Xiao-Yuan, ZHOU Zhong-Lin, ZHU Li, LEI Xiao-Long, FENG Sheng-Qiang, WANG Xu, REN Wan-Jun. Characteristics of panicle stem growth and flowering period of the parents of hybrid rice in machine-transplanted seed production [J]. Acta Agronomica Sinica, 2022, 48(4): 988-1004.
Full text



No Suggested Reading articles found!