Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2019, Vol. 45 ›› Issue (10): 1586-1594.doi: 10.3724/SP.J.1006.2019.84177

• RESEARCH NOTES • Previous Articles     Next Articles

Expression profiles of FAD2 genes and their responses to cold stress in peanut

XUE Xiao-Meng1,LI Jian-Guo1,BAI Dong-Mei2,YAN Li-Ying1,WAN Li-Yun1,KANG Yan-Ping1,HUAI Dong-Xin1,*(),LEI Yong1,LIAO Bo-Shou1,*()   

  1. 1Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture / Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, Hubei, China
    2Industrial Crops Research Institute, Shanxi Academy of Agricultural Sciences, Fenyang 032200, Shanxi, China
  • Received:2018-12-27 Accepted:2019-05-12 Online:2019-10-12 Published:2019-09-10
  • Contact: Dong-Xin HUAI,Bo-Shou LIAO E-mail:dxhuai@caas.cn;lboshou@hotmail.com
  • Supported by:
    This study was supported by the Hubei Provincial Natural Science Foundation of China(2017CFB161);the National Natural Science Foundation of China(31671734);the National Natural Science Foundation of China(31871662);the National Key R&D Program of China.(2018YFD1000901)


To explore the roles of FAD2s in response to cold stress in peanut, we cloned seven AhFAD2 genes from normal oleate peanut ZH16 and high oleate peanut ZH413, respectively. The results of qRT-PCR showed that the expression patterns of FAD2 genes were similar in ZH16 and ZH413. AhFAD2-1A/B was highly expressed in flower and developing seed, AhFAD2-3A/B was mainly expressed in leaf and stem, and AhFAD2-4A/B was expressed specifically in root and flower, indicating that AhFAD2 genes played their respective roles in different developmental stages and tissues of peanut. At 6 days after inducing under 15℃, the germination rate of ZH16 was significantly decreased while that of ZH413 was not significantly affected. The expression of both AhFAD2-1A/B and AhFAD2-4A/B were induced by cold stress. The expression of AhFAD2-1A/B was significantly up-regulated at 6 DAI in ZH16, while at 1 DAI in ZH413, suggesting that AhFAD2-1A/B was induced by cold more quickly in high oleate peanut. Furthermore, the expression of AhFAD2-4A/B was significantly up-regulated at 3 DAI in ZH16 and then decreased, while it was increased immediately and maintained at high level for six days in ZH413. Based on these results, we speculate that up-regulation of AhFAD2-4A/B may compensate the function of AhFAD2-1A/B that is deactivated under cold stress in high oleate peanut, and the deactivation of AhFAD2-1A/B is not the most important factors affecting peanut cold tolerance. This study provides a theoretical basis in breeding of high oleate peanut with high tolerance to cold stress, and the theoretical support for extension of high oleate peanut in both high latitude and high altitude regions.

Key words: fatty acid desaturase 2 (FAD2), gene cloning, cold stress, expression profile

Table 1

Sequences of primers for cloning of AhFAD2"

Accession No.
Forward primer (5°-3°)
Reverse primer (5°-3°)

Table 2

Sequences of primers for real-time PCR"

Primer name
Primer sequence (5°-3°)

Table 3

Information of FAD2 family genes in peanut"

Accession No.
ORF (bp)
Len (aa)
Molecular weight (kDa)
AhFAD2-1A Aradu.G1YNF A09 1140 379 43.65 8.90
AhFAD2-1B Araip.S3GXY B09 1140 379 43.65 8.90
AhFAD2-2 Araip.65EGG B09 453 150 17.20 8.30
AhFAD2-3A Aradu.10027244 A06 1050 349 39.70 8.85
AhFAD2-3B Araip.D6HPL B06 1152 383 43.80 8.80
AhFAD2-4A Aradu.7W39T A09 1164 387 45.00 8.96
AhFAD2-4B Araip.Wi51C B09 1164 387 45.00 9.04

Fig. 1

Expression levels of AhFAD2 genes in 15 peanut tissues A: 15 peanut tissues involved in this study. I: radicle after 6 days of sowing; II: hypocotyl after 6 days of sowing; III: cotyledon after 6 days of sowing; IV: true leaves after 6 days of sowing; V: root after 60 days of sowing; VI: peg after 60 days of sowing; VII: stem after 60 days of sowing; VIII: yong leaves after 60 days of sowing; IX: mature leaves after 60 days of sowing; X: flowers after 60 days of sowing; XI: white and flat developing seeds; XII: white and drop-shaped developing seeds; XIII: white and torpedo-shaped developing seeds; XIV: light pink and round developing seeds; XV: dark pink and mature seeds. B: expression analysis of AhFAD2 genes in 15 tissues of peanut. The white column indicates normal oleate peanut ZH16, the gray column indicates high oleate peanut ZH413. Differences reached a significant level by one-way analysis of variance. * P < 0.05, ** P < 0.01, *** P < 0.001. C: expression analysis of AhFAD2 genes in developing seeds. Bars superscripted by different lowercase letters are significantly different at P < 0.05 by one-way ANOVA and least significant difference (LSD) test."

Table 4

Seed germination rates of normal oleate ZH16 and high oleate ZH413 under different temperatures"

Germination rate of ZH16 (%)
Germination rate of
ZH413 (%)
25 91.33±5.25 bc 94.66±3.77 b
15 45.00±7.34 c 98.67±0.94 a

Fig. 2

Seed germination test of normal oleate ZH16 and high oleate ZH413 under different temperatures"

Fig. 3

Expression analysis of AhFAD2 genes in ZH16 and ZH413 under different temperature a: expression pattern of AhFAD2-1A/B in ZH16 under different temperature treatment conditions; b: expression pattern of AhFAD2-3A/B in ZH16 under different temperature treatment conditions; c: expression pattern of AhFAD2-4A/B in ZH16 under different temperature treatment conditions; d: expression pattern of AhFAD2-1A/B in ZH413 under different temperature treatment conditions; e: expression pattern of AhFAD2-3A/B in ZH413 under different temperature treatment conditions; f: expression pattern of AhFAD2-4A/B in ZH413 under different temperature treatment conditions. Significant differences are determined by one-way analysis of variance. * P < 0.05, ** P < 0.01, *** P < 0.001."

[1] Chi X Y, Zhang Z M, Chen N, Zhang X W, Chen M G, Wang T, Pan L J, Chen J, Yang Z, Guan X Y, Yu S L . Isolation and characterization of fatty acid desaturase genes from peanut ( Arachis hypogaea L.). Plant Cell Rep, 2011,30:1393-1404.
[2] 门爱军, 庞兴国, 胡东青, 陆福军, 李少骞 . 中国花生出口面临的困境及应对措施安徽农业科学, 2016,44:257-258.
Men A J, Pang X G, Hu D Q, Lu F J, Li S Q . Difficulties and countermeasures for China’s peanut export. J Anhui Agric Sci, 2016,44:257-258 (in Chinese without English abstract).
[3] 刘娟, 汤丰收, 张俊, 臧秀旺, 董文召, 易明林, 郝西 . 国内花生生产技术现状及发展趋势研究. 中国农学通报, 2017,33(22):13-18.
Liu J, Tang F S, Zhang J, Zang X W, Dong W Z, Yi M L, Hao X . Current status and development trends of peanut production technology in China. Chin Agric Sci Bull, 2017,33(22):13-18 (in Chinese with English abstract).
[4] Moore K M, Knauft D A . The inheritance of high oleic acid in peanut. Heredity, 1989,80:8-10.
[5] 王传堂, 张建成, 唐月异, 于树涛, 王强, 刘峰, 李秋 . 中国高油酸花生育种现状与展望. 山东农业科学, 2018,50(6):171-176.
Wang C T, Zhang J C, Tang Y Y, Yu S T, Wang Q, Liu F, Li Q . Current situation and future directions of high oleic peanut breeding in China. Shandong Agric Sci, 2018,50(6):171-176 (in Chinese with English abstract).
[6] 迟晓元, 郝翠翠, 陈明娜, 潘丽娟, 陈娜, 王通, 王冕, 杨珍, 梁成伟, 禹山林 . 花生AhFAD2-1基因与油酸/亚油酸比值的关系. 花生学报, 2016,45(4):20-24.
Chi X Y, Hao C C, Chen M N, Pan L J, Chen N, Wang T, Wang M, Yang Z, Liang C W, Yu S L . Correlation between AhFAD2-1 and oleic acid/linoleic acid ratio in different peanut varieties. J Peanut Sci, 2016,45(4):20-24 (in Chinese with English abstract).
[7] Matos A R, Hourton-Cabassa C, Cicek D, Arrabaca J D, Zachowski A, Moreau F . Alternative oxidase involvement in cold stress response of Arabidopsis thaliana fad2 and fad3+ cell suspensions altered in membrane lipid composition. Plant Cell Physiol, 2007,48:856-865.
[8] Miquel M, James D, Dooner H, Browse A J . Arabidopsis requires polyunsaturated lipids for low-temperature survival. Proc Natl Acad Sci USA, 1993,90:6208-6212.
[9] Watanabe K, Oura T, Sakai H, Kajiwara S . Yeast Δ12 fatty acid desaturase: gene cloning, expression, and function. Biosci Biotechnol Biochem, 2004,68:721-727.
[10] Kargiotidou A, Deli D, Galanopoulou D, Tsaftaris A, Farmaki T . Low temperature and light regulate delta 12 fatty acid desaturases (FAD2) at a transcriptional level in cotton ( Gossypium hirsutum). J Exp Bot, 2008,59:2043-2056.
[11] 阮建, 单雷, 李新国, 郭峰, 孟静静, 万书波, 彭振英 . 花生FAD基因家族的全基因组鉴定与表达模式分析. 山东农业科学, 2018,50(6):1-9.
Ruan J, Shan L, Li X G, Guo F, Meng J J, Wan S B, Peng Z Y . Genome-wide identification and expression pattern analysis of peanut FAD gene family. Shandong Agric Sci, 2018,50(6):1-9 (in Chinese with English abstract).
[12] Singh S C, Sinha R P, HaÈder D P . Role of lipids and fatty acids in stress tolerance in cyanobacteria. Acta Protozoo, 2002,41:297-308.
[13] 张建军, 闫世江, 王浩, 司龙亭, 马志国, 杨佳明 . 黄瓜种子脂肪酸含量与耐低温性关系的研究. 安徽农业科学, 2008,36:4859-4861.
Zhang J J, Yan S J, Wang H, Si L T, Ma Z G, Yang J M . Study on the relationship between the contents of fatty acids and low temperature tolerance in cucumber seeds. J Anhui Agric Sci, 2008,36:4859-4861 (in Chinese with English abstract).
[14] Ishizaki-nishizawa O, Fujii T, Ohtani T, Toguri T . Low- temperature resistance of higher plants is significantly enhanced by a nonspecific cyanobacterial desaturase. Nat Biotechnol, 1996,14:1003-1006.
[15] 黄锐之, 刘智宏, 郎春秀, 胡张华, 陈锦清 . 植物中多不饱和脂肪酸生物合成的基因工程. 植物生理学通讯, 2001,37:547-550.
Huang R Z, Liu Z H, Lang C X, Hu Z H, Chen J Q . Genetic engineering of polyunsaturated fatty acid biosynthesis in plants. Plant Physiol Commun, 2001,37:547-550 (in Chinese with English abstract).
[16] 陈儒钢, 巩振辉, 逯明辉, 李大伟, 黄炜 . 植物抗寒基因工程研究进展. 西北植物学报, 2008,28:1274-1280.
Chen R G, Gong Z H, Lu M H, Li D W, Huang W . Research advance in the cold-resistance genetic engineering in plants. Acta Bot Boreali-Occident Sin, 2008,28:1274-1280 (in Chinese with English abstract).
[17] 王洪春 . 植物抗逆性与生物膜结构功能研究的进展. 植物生理学通讯, 1985, ( 1):60-66.
Wang H C . Advances in studies on plant stress resistance and biofilm structure. Plant Physiol Commun, 1985, ( 1):60-66 (in Chinese with English abstract).
[18] 杨玉珍, 罗青, 彭方仁 . 不同种源香椿叶片脂肪酸组分含量与抗寒性关系. 林业科技开发, 2011,25(5):21-25.
Yang Y Z, Luo Q, Peng F R . A relationship between cold resistance and content of fatty acid composition in leaves of Toona sinensis from different provenances. China For Sci Technol, 2011,25(5):22-25 (in Chinese with English abstract).
[19] 戴晓峰, 肖玲, 武玉花, 吴刚, 卢长明 . 植物脂肪酸去饱和酶及其编码基因研究进展. 植物学通报, 2007,24:105-113.
Dai X F, Xiao L, Wu Y H, Wu G, Lu C M . An overview of plant fatty acid desaturases and the coding genes. Chin Bull Bot, 2007,24:105-113 (in Chinese with English abstract).
[20] Yang Q, Fan C, Guo Z, Qin J, Wu J, Li Q, Fu T, Zhou Y . Identification of FAD2 and FAD3 genes in Brassica napus genome and development of allele-specific markers for high oleic and low linolenic acid contents. Theor Appl Genet, 2012,125:715-729.
[21] Cao S J, Zhou X R, Wood C C, Green G A, Singh S P, Liu L X, Liu Q . A large and functionally diverse family of Fad2 genes in safflower( Carthamus tinctorius L.). BMC Plant Biol, 2013,13:5. doi: 10.1186/1471-2229-13-5.
[22] 张照华, 王志慧, 淮东欣, 谭家壮, 陈剑洪, 晏立英, 王晓军, 万丽云, 陈傲, 康彦平, 姜慧芳, 雷永, 廖伯寿 . 利用回交和标记辅助选择快速培育高油酸花生品种及其评价. 中国农业科学, 2018,51:1641-1652.
Zhang Z H, Wang Z H, Huai D X, Tan J Z, Chen J H, Yan L Y, Wang X J, Wan L Y, Chen A, Kang Y P, Jiang H F, Lei Y, Liao B S . Fast development of high oleate peanut cultivars by using maker-assisted backcrossing and their evaluation. Sci Agric Sin, 2018,51:1641-1652 (in Chinese with English abstract).
[23] Jung S, Swift D, Sengoku E, Patel M, Teule F, Powell G, Moore K, Abbott A . The high oleate trait in the cultivated peanut ( Arachis hypogaea L.). Isolation and characterization of two genes encoding microsomal oleoyl-PC desaturases. Mol Gen Genet, 2000,263:796-805.
[24] Wang Y, Zhang X G, Zhao Y L, Prakash C S, He G H, Yin D M. Insights into the novel members of the FAD2 gene family involved in high-oleate fluxes in peanut. NRC Res Press, 2015,58:1-9.
周丽侠, 唐桂英, 陈高, 毕玉平, 单雷 . 花生AhFAD2基因的多态性及其与籽粒油酸/亚油酸比值间的相关性. 作物学报, 2011,37:415-423.
Zhou L Y, Tang G Y, Chen G, Bi Y P, Shan L . Correlation between AhFAD2 polymorphism and oleic acid/linoleic acid ratio in peanut seeds. Acta Agron Sin, 2011,37:415-423 (in Chinese with English abstract).
[25] D’Angeli S, Falasca G, Matteucci M M, Altamura M M . Cold perception and gene expression differ in Olea europaea seed coat and embryo during drupe cold acclimation. New Phytol, 2013,197:123-138.
[26] 唐桂英, 王芳, 徐平丽, 单雷 . 花生AhFAD2-2基因的克隆与表达分析. 山东农业科学, 2018,50(6):27-34.
Tang G Y, Wang F, Xu P L, Shan L . Cloning and expression analysis of AhFAD2-2 gene in peanut. Shandong Agric Sci, 2018,50(6):27-34 (in Chinese with English abstract).
[27] Heppard E P, Kinney A J, Stecca K L, Miao G H . Developmental and growth temperature regulation of two different microsomal ω-6 desaturase genes in soybeans. Plant Physiol, 1996,110:311-319.
[28] Jung S, Powell G, Moore K, Abbott A . The high oleate trait in the cultivated peanut ( Arachis hypogaea L.): II. Molecular basis and genetics of the trait. Mol Gen Genet, 2000,263:806-811.
[29] Okuley J, Lightner J, Feldmann K, Yadav N, Lark E, Browse J . Arabidopsis FAD2 gene encodes the enzyme that is essential for polyunsaturated lipid synthesis. Plant Cell, 1994,6:147-158.
[30] 李金金, 张晶晶, 年洪娟 . Δ 12-脂肪酸去饱和酶FAD2的基本特性及其在胁迫中的功能 . 生命科学研究, 2013,17:174-178.
Li J J, Zhang J J, Nian H J . Characteristics of Δ 12-fatty acid desaturase FAD2 and its functions under stress. Life Sci Res, 2013,17:174-178 (in Chinese with English abstract).
[31] 年洪娟, 陈丽梅 . 不饱和脂肪酸在逆境胁迫中的作用. 中国微生态学杂志, 2012,24:760-762.
Nian H J, Chen L M . The role of unsaturated fatty acid in various environmental stresses. Chin J Microecol, 2012,24:760-762 (in Chinese with English abstract).
[32] Orvar B L, Sangwan V, Omann F, Dhindsa R S . Early steps in cold sensing by plant cells: the role of actin cytoskeleton and membrane fluidity. Plant J, 2000,23:785-794.
[1] CUI Lian-Hua, ZHAN Wei-Min, YANG Lu-Hao, WANG Shao-Ci, MA Wen-Qi, JIANG Liang-Liang, ZHANG Yan-Pei, YANG Jian-Ping, YANG Qing-Hua. Molecular cloning of two maize (Zea mays) ZmCOP1 genes and their transcription abundances in response to different light treatments [J]. Acta Agronomica Sinica, 2022, 48(6): 1312-1324.
[2] ZHOU Hui-Wen, QIU Li-Hang, HUANG Xing, LI Qiang, CHEN Rong-Fa, FAN Ye-Geng, LUO Han-Min, YAN Hai-Feng, WENG Meng-Ling, ZHOU Zhong-Feng, WU Jian-Ming. Cloning and functional analysis of ScGA20ox1 gibberellin oxidase gene in sugarcane [J]. Acta Agronomica Sinica, 2022, 48(4): 1017-1026.
[3] XIE Qin-Qin, ZUO Tong-Hong, HU Deng-Ke, LIU Qian-Ying, ZHANG Yi-Zhong, ZHANG He-Cui, ZENG Wen-Yi, YUAN Chong-Mo, ZHU Li-Quan. Molecular cloning and expression analysis of BoPUB9 in self-incompatibility Brassica oleracea [J]. Acta Agronomica Sinica, 2022, 48(1): 108-120.
[4] SHI Lei, MIAO Li-Juan, HUANG Bing-Yan, GAO Wei, ZHANG Zong-Xin, QI Fei-Yan, LIU Juan, DONG Wen-Zhao, ZHANG Xin-You. Characterization of the promoter and 5'-UTR intron in AhFAD2-1 genes from peanut and their responses to cold stress [J]. Acta Agronomica Sinica, 2021, 47(9): 1703-1711.
[5] XUE Xiao-Meng, WU JIE, WANG Xin, BAI Dong-Mei, HU Mei-Ling, YAN Li-Ying, CHEN Yu-Ning, KANG Yan-Ping, WANG Zhi-Hui, HUAI Dong-Xin, LEI Yong, LIAO Bo-Shou. Effects of cold stress on germination in peanut cultivars with normal and high content of oleic acid [J]. Acta Agronomica Sinica, 2021, 47(9): 1768-1778.
[6] TANG Rui-Min, JIA Xiao-Yun, ZHU Wen-Jiao, YIN Jing-Ming, YANG Qing. Cloning of potato heat shock transcription factor StHsfA3 gene and its functional analysis in heat tolerance [J]. Acta Agronomica Sinica, 2021, 47(4): 672-683.
[7] YUE Jie-Ru, BAI Jian-Fang, ZHANG Feng-Ting, GUO Li-Ping, YUAN Shao-Hua, LI Yan-Mei, ZHANG Sheng-Quan, ZHAO Chang-Ping, ZHANG Li-Ping. Cloning and potential function analysis of ascorbic peroxidase gene of hybrid wheat in seed aging [J]. Acta Agronomica Sinica, 2021, 47(3): 405-415.
[8] YANG Qin-Li, YANG Duo-Feng, DING Lin-Yun, ZHANG Ting, ZHANG Jun, MEI Huan, HUANG Chu-Jun, GAO Yang, YE Li, GAO Meng-Tao, YAN Sun-Yi, ZHANG Tian-Zhen, HU Yan. Identification of a cotton flower organ mutant 182-9 and cloning of candidate genes [J]. Acta Agronomica Sinica, 2021, 47(10): 1854-1862.
[9] HE Xiao, LIU Xing, XIN Zheng-Qi, XIE Hai-Yan, XIN Yu-Feng, WU Neng-Biao. Molecular cloning, expression, and enzyme kinetic analysis of a phenylalanine ammonia-lyase gene in Pinellia ternate [J]. Acta Agronomica Sinica, 2021, 47(10): 1941-1952.
[10] GAO Yun, ZHANG Yu-Xue, MA Quan, SU Sheng-Nan, LI Chun-Yan, DING Jin-Feng, ZHU Min, ZHU Xin-Kai, GUO Wen-Shan. Effects of low temperature in spring on fertility of pollen and formation of grain number in wheat [J]. Acta Agronomica Sinica, 2021, 47(1): 104-115.
[11] CHEN Xi-Jun, TANG Tao, LI Li-Li, CHEN Chen, CHEN Yu-Wen, ZHANG Ya-Fang, ZUO Shi-Min. Analysis on the structures of polygalacturonase-inhibiting proteins and the expression profile of its encoding genes in rice [J]. Acta Agronomica Sinica, 2020, 46(12): 1884-1893.
[12] Tong-Hong ZUO, He-Cui ZHANG, Qian-Ying LIU, Xiao-Ping LIAN, Qin-Qin XIE, Deng-Ke HU, Yi-Zhong ZHANG, Yu-Kui WANG, Xiao-Jing BAI, Li-Quan ZHU. Molecular cloning and expression analysis of BoGSTL21 in self-incompatibility Brasscia oleracea [J]. Acta Agronomica Sinica, 2020, 46(12): 1850-1861.
[13] LI Xu-Kai,LI Ren-Jian,ZHANG Bao-Jun. Identification of rice stress-related gene co-expression modules by WGCNA [J]. Acta Agronomica Sinica, 2019, 45(9): 1349-1364.
[14] Huan TAN,Yu-Hui LIU,Li-Xia LI,Li WANG,Yuan-Ming LI,Jun-Lian ZHANG. Cloning and Functional Analysis of R2R3 MYB Genes Involved in Anthocyanin Biosynthesis in Potato Tuber [J]. Acta Agronomica Sinica, 2018, 44(7): 1021-1031.
[15] Dao-Ping WANG,Jiang XU,Yong-Ying MU,Wen-Xiu YAN,Meng-Jie ZHAO,Bo MA,Qun LI,Li-Na ZHANG,Ying-Hong PAN. Proteomic Analysis of the Effect of 2,4-Epibrassinolide on Rice Seedlings Response to Cold Stress [J]. Acta Agronomica Sinica, 2018, 44(6): 897-908.
Full text



No Suggested Reading articles found!