Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2020, Vol. 46 ›› Issue (12): 1884-1893.doi: 10.3724/SP.J.1006.2020.02011

• CROP GENETICS & BREEDING?GERMPLASM RESOURCES?MOLECULAR GENETICS • Previous Articles     Next Articles

Analysis on the structures of polygalacturonase-inhibiting proteins and the expression profile of its encoding genes in rice

CHEN Xi-Jun1,2,*(), TANG Tao1, LI Li-Li1, CHEN Chen1, CHEN Yu-Wen1, ZHANG Ya-Fang2, ZUO Shi-Min2   

  1. 1Horticultrue and Plant Protection College, Yangzhou University, Yangzhou 225009, Jiangsu, China
    2Key Laboratory of Crop Genetics and Physiology of Jiangsu Province / Key Laboratory of Plant Functional Genomics of the Ministry of Education / College of Agriculture, Yangzhou University, Yangzhou 225009, Jiangsu, China
  • Received:2020-02-16 Accepted:2020-07-02 Online:2020-12-12 Published:2020-07-17
  • Contact: CHEN Xi-Jun E-mail:xjchen@yzu.edu.cn
  • Supported by:
    National Key Research and Development Program of China(2018YFD0300800);National Major Project for Developing New GM Crops(2016ZX08001002)

Abstract:

Polygalacturonase-inhibiting protein, the extracellular leucine-rich repeat protein, specially recognizing and inhibiting polygalacturonase (PG) from pathogenic organism, can improve the resistance of plant against the pathogen. In order to clarify the structures of OsPGIPs and the expression profile of its encoding genes in rice, seven OsPGIP (polygalacturonase-inhibiting protein) genes were amplified from rice cDNA by PCR. Bioinformatics analysis and structural prediction of OsPGIPs were performed and expression profile of its encoding genes under biotic and abiotic stresses was determined after these genes being cloned and sequenced. The results showed that PGIPs from the same or similar species had high similarity. Through multi-sequence alignment and phylogenetic analysis, it was found that most OsPGIPs had closer genetic relationship, but all of them could not be grouped in one group. All OsPGIPs had a signal peptide and 9 to11 LRR fragments included the typical PGIP’s motif of xxLxLxx. Secondary structure prediction indicated that all OsPGIPs consist of ɑ-helix (H), extended strand (ES) and random coil (RC), which construct repeated RC-H-RC-ES- and form a typical concave coinciding with the right-hand helix rule. The concave might be responsible for the interaction between OsPGIPs and PGs from different agents. Most of the seven OsPGIPs were stable, and they all were hydrophobic proteins, good lipid solubility, with transmembrane structure, extrcellular localization, one or more N-glycosylation sites, and basically insoluble after expression in E. coli. After being treated with biotic and abiotic stress factors, the expression levels of different OsPGIP genes in rice were significantly up-regulated or down-regulated, but the total expression levels were significantly up-regulated, which indicated that rice could improve its own ability against stresses by regulating the expression levels of OsPGIP genes under stress conditions.

Key words: expression profile, protein structure, analysis, PGIP, rice

Table 1

Primers used to amplify OsPGIP genes"

基因
Gene
正向引物
Forward primer (5′-3′)
反向引物
Reverse primer (5′-3′)
OsPGIP1 TGACTCGCTATTGCATGCG TGGGAGCTTAATTGCAGGGA
OsPGIP2 ATACACGGCATTGCATGCAC CTTACACTCGTTCTCCGTAC
OsPGIP3 TAGAAGAGAGGAAGCACGCA TTGGTGGCCTGAGATAGGT
OsPGIP4 TGTCGTGCACTTGTGTTCAA GCATTAGCTGGTTGCTTC
OsFOR1 TTCAGGTAGATACAATGGCG ATGGATGGATGGATGCTC
OsPGIP6 GAGCCGAGACGAGACGA ATATGTACCCAAGCCCAAA
OsPGIP7 TCCTGCACGGATTTGAGC TAACAACAGCCAGTCAGCAAT

Fig. 1

Phylogenetic relationship among OsPGIPs and PGIPs from other plant species OsPGIPs is the abbreviations of polygalacturonase-inhibiting protein from Oryza sativa, the others are the NCBI accession numbers of the corresponding sequences. A: phylogenetic tree; B: subtree."

Table 2

Secondary structure of OsPGIPs predicted by HNN method"

蛋白
Protein
α-螺旋
α-helix
延伸链
Extended strand
随机卷曲
Random coil
半胱氨酸数
Number of cysteine
二硫键位置
Position of disulfide bond
OsPGIP1 36.25 10.68 53.07 8 56-63, 278-298, 300-308
OsPGIP2 46.20 10.23 43.57 9 34-64, 65-72, 310-323, 331-339
OsPGIP3 32.74 13.86 53.39 10 17-27, 56-64, 322-328, 330-337
OsPGIP4 44.70 9.74 45.56 9 33-63, 64-71, 333-339, 341-348
OsFOR1 30.12 10.24 59.64 10 27-58, 59-66, 312-320
OsPGIP6 49.21 4.47 46.32 10 64-73, 114-137, 348-370, 372-379
OsPGIP7 27.19 10.82 61.99 13 16-65, 25-34, 66-73, 322-328, 330-337

Fig. 2

Primary structure of OsPGIPs"

Fig. 3

3D structure of OsPGIPs Red, yellow, and green in the cartoon figures mean α-helix, β-sheet, and random coil, respectively. A: 3D structure of OsPGIPs with typical spatial structure of PGIP. B: 3D structures of OsPGIP6 and OsPGIP7 constructed with homologous modeling methods of SWISS-MODEL, CPH model and SCRATCH. C: Protein docking of OsPGIP7 and RsPG2. Mesh and cartoon figures mean OsPGIP7 and RsPG2, respectively."

Table 3

Functions and Characterics of OsPGIPs predicted by online software"

蛋白
Protein
染色体
位置Location
分子量
Molecular weight
(kD)
等电点
pI
不稳定
指数
Instability index
脂溶性
指数
Aliphatic
index
总平均
亲水性
Grand average of hydropathicity
跨膜域
Trans-
membrane
亚细胞定位
Subcellular localization
N-糖基化
位点数
Number of N-glycosylation sites
大肠杆菌中表达的溶解性
Chance of
solubility
expressed in
E. coli (%)
OsPGIP1 Chr. 5 32.75 6.98 31.82 98.58 0.183 Yes Extracellular 4 0
OsPGIP2 Chr. 5 36.97 4.73 40.16 103.33 0.080 Yes Extracellular 8 0
OsPGIP3 Chr. 5 36.14 5.94 34.36 95.63 0.181 Yes Extracellular 5 0
OsPGIP4 Chr. 5 37.22 8.37 33.98 101.58 0.203 Yes Extracellular 4 0
OsFOR1 Chr. 8 35.46 7.09 36.08 99.94 0.041 Yes Extracellular 1 0
OsPGIP6 Chr. 8 38.79 5.86 35.69 106.42 0.286 Yes Extracellular 1 0
OsPGIP7 Chr. 9 35.88 5.90 33.26 101.87 0.265 Yes Extracellular 3 0.7

Fig. 4

Expression levels of OsPGIP genes in rice cultivars with different resistance to sheath blight at different growth stages A: seedling stage; B: adult-plant stage; C: spike stage."

Fig. 5

Expression levels of OsPGIP genes in rice cultivars with different resistance to sheath blight under different stress condition. A: low temperature; B: dark; C: inoculation."

[1] Copper R M, Wood R K S . Regulation of synthesis of cell wall degrading enzymes by Verticillium albo-atrum and Fusarium oxysporum f. sp. lycopersici. Plant Pathol, 1975,5:135-156.
doi: 10.1111/ppa.1956.5.issue-4
[2] Protsenko M A, Buza N L, Krinitsyna A A, Bulantseva E A Korableva N P . Polygalacturonase-inhibiting protein is a structural component of plant cell wall. Biochemistry, 2008,73:1053-1062.
doi: 10.1134/s0006297908100015 pmid: 18991551
[3] Spinelli F, Mariotti L, Mattei B, Salvi G, Cervone F, Caprari C . Three aspartic acid residues of polygalacturonase-inhibiting protein (PGIP) from Phaseolus vulgaris are critical for inhibition of Fusarium phyllophilum PG. Plant Biol, 2009,11:738-743.
doi: 10.1111/j.1438-8677.2008.00175.x pmid: 19689781
[4] Osorio S, Castillejo C, Quesada M A, Medina-Escobar N, Brownsey G J, Suau R, Heredia A, Botella M A, Valpuesta V . Partial demethylation of oligogalacturonides by pectin methyl esterase 1 is required for eliciting defence responses in wild strawberry ( Fragaria vesca). Plant J, 2008,54:43-55.
doi: 10.1111/j.1365-313X.2007.03398.x pmid: 18088306
[5] Ferrari S, Savatin D V, Sicilia F, Gramegna G, Cervone F, De Lorenzo G . Oligogalacturonides: plant damage-associated molecular patterns and regulators of growth and development. Front Plant Sci, 2013,4:30-38.
doi: 10.3389/fpls.2013.00030 pmid: 23440336
[6] Davidsson P, Brogerg M, Kariola T, Sipari N, Pirhonen M, Palva E T . Short oligogalacturonides induce pathogen resistance- associated gene expression in Arabidopsis thaliana. BMC Plant Biol, 2017,17:19.
doi: 10.1186/s12870-016-0959-1 pmid: 28103793
[7] Doares S H, Syrovets T, Weiler E W, Ryan C A . Oligogalacturonides and chitosan activate plant defensive genes through the octadecanoid pathway. Proc Natl Acad Sci USA, 1995,92:4095-4098.
doi: 10.1073/pnas.92.10.4095 pmid: 11607534
[8] De Lorenzo G, D’Ovidio R, Cervone F . The role of polygalacturonase-inhibiting proteins (PGIPs) in defence against pathogenic fungi. Annu Rev Phytopathol, 2001,39:313-335.
doi: 10.1146/annurev.phyto.39.1.313 pmid: 11701868
[9] Machinandiarena M F, Olivieri F P, Daleo G R, Oliva C R . Isolation and characterization of a polygalacturonase-inhibiting protein from potato leaves. Accumulation in response to salicylic acid, wounding and infection. Plant Physiol Bioch, 2001,39:129-136.
doi: 10.1016/S0981-9428(00)01228-6
[10] Liu N N, Zhang X Y, Sun Y, Wang P, Li X C, Pei Y K, Li F G, Hou Y X . Molecular evidence for the involvement of a polygalactruonase-inhibiting protein, GhPGIP1, in enhanced resistance to Verticillium and Fusarium wilt in cotton. Sci Rep, 2017,7:39840.
doi: 10.1038/srep39840 pmid: 28079053
[11] Kalunke R M, Tundo S, Benedetti M, Cervone F, De Lorenzo G , D Ovidio R. An update on polygalacturonase-inhibiting protein (PGIP), a leucine-rich repeat protein that protects crop plants against pathogens. Front Plant Sci, 2015,6:146.
doi: 10.3389/fpls.2015.00146 pmid: 25852708
[12] Chen X J, Chen Y W, Zhang L N, He Z, Huang B L, Chen C, Zhang Q X, Zuo S M . Amino acid substitutions in a polygalacturonase inhibiting protein (OsPGIP2) increase sheath blight resistance in rice. Rice, 2019,12:56.
doi: 10.1186/s12284-019-0318-6 pmid: 31359264
[13] Joubert D A, De Lorenzo G, Vivier M A . Regulation of the grapevine polygalacturonase-inhibiting protein encoding gene: expression pattern, induction profile and promoter analysis. J Plant Res, 2013,126:267-281.
doi: 10.1007/s10265-012-0515-5
[14] Kalunke R M, Cenci A, Volpi C, O’Sullivan D M, Sella L, Favaron F, Cervone F, De Lorenzo G, D’Ovidio R . The pgip family in soybean and three other legume species: evidence for a birth-and-death model of evolution. BMC Plant Biol, 2014,14:189.
doi: 10.1186/s12870-014-0189-3 pmid: 25034494
[15] Li R G, Rimmer R, Yu M, Sharpe A G, Seguin-Swartz G, Lydiate D, Hegedus D D . Two Brassica napus polygalacturonase inhibitory protein genes are expressed at different levels in response to biotic and abiotic stresses. Plant, 2003,217:299-308.
[16] Kalunke R M, Janni M, Sella L, David P, Geffroy V, Favaron F, D’Ovidio R . Transcript analysis of the bean polygalacturonase inhibiting protein gene family reveals that PvPGIP2 is expressed in the whole plant and is strongly induced by pathogen infection. J Plant Pathol, 2011,93:141-148.
[17] Devoto A, Leckie F, Lupotto E, Cervone F, De Lorenzo G . The promoter of a gene encoding a polygalacturonase-inhibiting protein of Phaseolus vulgaris L. is activated by wounding but not by elicitors or pathogen infection. Planta, 1998,205:165-174.
doi: 10.1007/s004250050308 pmid: 9637069
[18] D’Ovidio R, Raiola A, Capodicasa C, Devoto A, Pontiggia D, Roberti S, Galletti R, Conti E, O’Sullivan D, De Lorenzo G . Characterization of the complex locus of bean encoding polygalacturonase-inhibiting proteins reveals subfunctionalization for defense against fungi and insects. Plant Physiol, 2004,135:2424-2435.
doi: 10.1104/pp.104.044644 pmid: 15299124
[19] Lu L X, Zhou F, Zhou Y, Fan X L, Ye S F, Wang L, Chen H, Lin Y J . Expression profile analysis of the polygalacturonase-inhibiting protein genes in rice and their responses to phytohormones and fungal infection. Plant Cell Rep, 2012,31:1173-1187.
doi: 10.1007/s00299-012-1239-7
[20] Jang S H, Lee B H, Kim C H, Kim S J, Yim J U, Han J J, Lee S Y, Kim S R, An G H . The OsFOR1 gene encodes a polygalacturonase-inhibiting protein (PGIP) that regulates floral organ number in rice. Plant Mol Biol, 2003,53:357-369.
doi: 10.1023/B:PLAN.0000006940.89955.f1
[21] Janni M, Di Giovanni M, Roberti S, Capodicasa C, D Ovidio R . Characterization of expressed Pgip genes in rice and wheat reveals similar extent of sequence variation to dicot PGIPs and identifies an active PGIP lacking an entire LRR repeat. Theor Appl Genet, 2006,113:1233-1245.
doi: 10.1007/s00122-006-0378-z
[22] Khanuja S P S, Shasany A K, Darokar M P, Kumar S . Rapid isolation of DNA from dry and fresh samples of plants producing large amounts of secondary metabolites and essential oils. Plant Mol Biol Rep, 1999,17:1-7.
doi: 10.1023/A:1017213630972
[23] Chen X J, Chen Y, Zhang L N, Xu B, Zhang J H, Chen Z X, Tong Y H, Zuo S M, Xu J Y . Overexpression of OsPGIP1 enhances rice resistance to sheath blight. Plant Dis, 2016,100:388-395.
doi: 10.1094/PDIS-03-15-0305-RE pmid: 30694142
[24] Feng C S, Zhang X, Wu T, Yuan B, Ding X H, Yao F Y, Chu Z H . The polygalacturonase-inhibiting protein 4 ( OsPGIP4), a potential component of the qBlsr5a locus, confers resistance to bacterial leaf streak in rice. Planta, 2016,243:1297-1308.
doi: 10.1007/s00425-016-2480-z pmid: 26945855
[25] 陈夕军, 刘晓维, 左示敏, 童蕴慧, 潘学彪, 徐敬友 . 水稻抗感纹枯病品种Ospgip1基因的表达特征. 中国水稻科学, 2012,26:629-632.
doi: 10.3969/j.issn.10017216.2012.05.018
Chen X J, Liu X W, Zuo S M, Tong Y H, Pan X B, Xu J Y . Expression characteristics of the Ospgip1 gene in rice cultivars with resistance or susceptibility to sheath blight. Chin J Rice Sci, 2012,26:629-632 (in Chinese with English abstract).
[26] Ferrari S, Vairo D, Ausubel F M, Cervone F, De Lorenzo G . Tandemly duplicated Arabidopsis genes that encode polygalacturonase-inhibiting proteins are regulated coordinately by different signal transduction pathways in response to fungal infection. Plant Cell, 2003,15:93-106.
doi: 10.1105/tpc.005165 pmid: 12509524
[27] Hegedus D D, Li R, Buchwaldt L, Parkin I, Whitwill S, Coutu C, Bekkaoui D, Rimmer S R . Brassica napus possesses an expanded set of polygalacturonase inhibitor protein genes that are differentially regulated in response to Sclerotinia sclerotiorum infection, wounding and defense hormone treatment. Planta, 2008, 228:241-253.
doi: 10.1007/s00425-008-0733-1
[28] Di Giovanni M, Cenci A, Janni M, D’Ovidio R . A LTR copia retrotransposon and Mutator transposons interrupt Pgip genes in cultivated and wild wheats. Theor Appl Genet, 2008,116:859-867.
doi: 10.1007/s00122-008-0719-1
[29] De Caroli M, Lenucci M S, Manualdi F, Dalessandro G, De Lorenzo G, Piro G . Molecular dissection of Phaseolus vulgaris polygalacturonase-inhibiting protein 2 reveals the presence of hold/release domains affecting protein trafficking toward the cell wall. Front Plant Sci, 2015,6:660.
doi: 10.3389/fpls.2015.00660 pmid: 26379688
[30] Mettei B, Bernalda M S, Federici L, Roepstorff P, Cervone F, Boffi A . Secondary structure and post-translational modifications of the leucine-rich repeat protein PGIP (polygalacturonase- inhibiting protein) from Phaseolus vulgaris. Biochemistry, 2001,40:569-576.
doi: 10.1021/bi0017632 pmid: 11148052
[31] Benedetti M, Andreani F, Leggio C, Galantini L, Di Matteo A, Pavel N V, De Lorenzo G, Cervone F, Federici L, Sicilia F . A single amino-acid substitution allows endo-polygalacturonase of Fusarium verticillioides to acquire recognition by PGIP2 from Phaseolus vulgaris. PLoS One, 2013,8:e80610.
doi: 10.1371/journal.pone.0080610 pmid: 24260434
[32] Benedetti M, Bastianelli E, Salvi G, De Lorenzo G, Caprari C . Artificial evolution corrects are pulsive amino acid in polygalacturonase inhibiting proteins (PGIPs). J Plant Pathol, 2011, 93:89-95.
[33] D’Ovidio R, Mattei B, Roberti S, Bellincampi D . Polygalacturonase, polygalacturonase-inhibiting proteins and pectin oligomers in plant-pathogen interactions. BBA-Proteins Proteom, 2004,1696:237-244.
doi: 10.1016/j.bbapap.2003.08.012
[34] Sicillia F, Fernandez-Recio J, Caprari C, De Lorenzo G, Tsernoglou D, Cervone F, Federici L . The polygalacturonase-inhibit- ing protein PGIP2 of Phaseolus vulgaris has evolved a mixed mode of inhibition of endopolygalacturonase PG1 of Botrytis cinerea. Plant Physiol, 2005,139:1380-1388.
doi: 10.1104/pp.105.067546 pmid: 16244152
[35] Spinelli F, Mariotti L, Mattei B, Salvi G, Cervone F, Caprari C . Three aspartic acid residues of polygalacturonase-inhibiting protein (PGIP) from Phaseolus vulgaris are critical for inhibition of Fusarium phyllophilum PG. Plant Biol, 2009,11:738-743.
doi: 10.1111/j.1438-8677.2008.00175.x pmid: 19689781
[36] Gutierrez-Sanchez G, King D, Kemp G, Bergmann C . SPR and differential proteolysis/MS provide further insight into the interaction between PGIP2 and EPGs. Fungal Biol, 2012,116:737-746.
doi: 10.1016/j.funbio.2012.04.010 pmid: 22749160
[37] Benedetti M, Leggio C, Federici L, De Lorenzo G, Pavel N V, Cervone F . Structural resolution of the complex between a fungal polygalacturonase and a plant polygalacturonase-inhibiting protein by small-angle X-ray scattering. Plant Physiol, 2011,157:599-607.
doi: 10.1104/pp.111.181057
[38] Devoto A, Clark A J, Nuss L, Cervone F, De Lorenzo G . Developmental and pathogen-induced accumulation of transcripts of polygalacturonase-inhibiting protein in Phaseolus vulgaris L. Planta, 1997,202:284-292.
doi: 10.1007/s004250050130
[39] Nuss L, Mahe A, Clark A J, Grisvard J, Dron M, Cervone F, De Lorenzo G . Differential accumulation of PGIP (polygalacturonase inhibiting protein) mRNA in two near-isogenic lines of Phaseolus vulgaris L. upon infection with Colletotrichum lindemuthianum. Physiol Mol Plant Pathol, 1996,48:83-89.
doi: 10.1006/pmpp.1996.0008
[40] 潘学彪, 陈宗祥, 徐敬友, 童蕴慧, 王子斌, 潘兴元 . 不同接种方法对抗水稻纹枯病遗传研究的影响. 江苏农学院学报, 1997,18(3):27-32.
Pan X B, Chen Z X, Xu J Y, Tong Y H, Wang Z B, Pan X Y . The effects of different methods of inoculation and investigation on genetic research of resistance to rice sheath blight. J Jiangsu Agric Coll, 1997,18(3):27-32 (in Chinese with English abstract).
[1] CHEN Song-Yu, DING Yi-Juan, SUN Jun-Ming, HUANG Deng-Wen, YANG Nan, DAI Yu-Han, WAN Hua-Fang, QIAN Wei. Genome-wide identification of BnCNGC and the gene expression analysis in Brassica napus challenged with Sclerotinia sclerotiorum and PEG-simulated drought [J]. Acta Agronomica Sinica, 2022, 48(6): 1357-1371.
[2] TIAN Tian, CHEN Li-Juan, HE Hua-Qin. Identification of rice blast resistance candidate genes based on integrating Meta-QTL and RNA-seq analysis [J]. Acta Agronomica Sinica, 2022, 48(6): 1372-1388.
[3] ZHENG Chong-Ke, ZHOU Guan-Hua, NIU Shu-Lin, HE Ya-Nan, SUN wei, XIE Xian-Zhi. Phenotypic characterization and gene mapping of an early senescence leaf H5(esl-H5) mutant in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1389-1400.
[4] ZHOU Wen-Qi, QIANG Xiao-Xia, WANG Sen, JIANG Jing-Wen, WEI Wan-Rong. Mechanism of drought and salt tolerance of OsLPL2/PIR gene in rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1401-1415.
[5] ZHENG Xiao-Long, ZHOU Jing-Qing, BAI Yang, SHAO Ya-Fang, ZHANG Lin-Ping, HU Pei-Song, WEI Xiang-Jin. Difference and molecular mechanism of soluble sugar metabolism and quality of different rice panicle in japonica rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1425-1436.
[6] YAN Jia-Qian, GU Yi-Biao, XUE Zhang-Yi, ZHOU Tian-Yang, GE Qian-Qian, ZHANG Hao, LIU Li-Jun, WANG Zhi-Qin, GU Jun-Fei, YANG Jian-Chang, ZHOU Zhen-Ling, XU Da-Yong. Different responses of rice cultivars to salt stress and the underlying mechanisms [J]. Acta Agronomica Sinica, 2022, 48(6): 1463-1475.
[7] YANG Jian-Chang, LI Chao-Qing, JIANG Yi. Contents and compositions of amino acids in rice grains and their regulation: a review [J]. Acta Agronomica Sinica, 2022, 48(5): 1037-1050.
[8] DENG Zhao, JIANG Nan, FU Chen-Jian, YAN Tian-Zhe, FU Xing-Xue, HU Xiao-Chun, QIN Peng, LIU Shan-Shan, WANG Kai, YANG Yuan-Zhu. Analysis of blast resistance genes in Longliangyou and Jingliangyou hybrid rice varieties [J]. Acta Agronomica Sinica, 2022, 48(5): 1071-1080.
[9] YANG De-Wei, WANG Xun, ZHENG Xing-Xing, XIANG Xin-Quan, CUI Hai-Tao, LI Sheng-Ping, TANG Ding-Zhong. Functional studies of rice blast resistance related gene OsSAMS1 [J]. Acta Agronomica Sinica, 2022, 48(5): 1119-1128.
[10] ZHU Zheng, WANG Tian-Xing-Zi, CHEN Yue, LIU Yu-Qing, YAN Gao-Wei, XU Shan, MA Jin-Jiao, DOU Shi-Juan, LI Li-Yun, LIU Guo-Zhen. Rice transcription factor WRKY68 plays a positive role in Xa21-mediated resistance to Xanthomonas oryzae pv. oryzae [J]. Acta Agronomica Sinica, 2022, 48(5): 1129-1140.
[11] WANG Xiao-Lei, LI Wei-Xing, OU-YANG Lin-Juan, XU Jie, CHEN Xiao-Rong, BIAN Jian-Min, HU Li-Fang, PENG Xiao-Song, HE Xiao-Peng, FU Jun-Ru, ZHOU Da-Hu, HE Hao-Hua, SUN Xiao-Tang, ZHU Chang-Lan. QTL mapping for plant architecture in rice based on chromosome segment substitution lines [J]. Acta Agronomica Sinica, 2022, 48(5): 1141-1151.
[12] ZHANG Yi-Zhong, ZENG Wen-Yi, DENG Lin-Qiong, ZHANG He-Cui, LIU Qian-Ying, ZUO Tong-Hong, XIE Qin-Qin, HU Deng-Ke, YUAN Chong-Mo, LIAN Xiao-Ping, ZHU Li-Quan. Codon usage bias analysis of S-locus genes SRK, SLG, and SP11/SCR in Brassica oleracea [J]. Acta Agronomica Sinica, 2022, 48(5): 1152-1168.
[13] WANG Ze, ZHOU Qin-Yang, LIU Cong, MU Yue, GUO Wei, DING Yan-Feng, NINOMIYA Seishi. Estimation and evaluation of paddy rice canopy characteristics based on images from UAV and ground camera [J]. Acta Agronomica Sinica, 2022, 48(5): 1248-1261.
[14] KE Jian, CHEN Ting-Ting, WU Zhou, ZHU Tie-Zhong, SUN Jie, HE Hai-Bing, YOU Cui-Cui, ZHU De-Quan, WU Li-Quan. Suitable varieties and high-yielding population characteristics of late season rice in the northern margin area of double-cropping rice along the Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(4): 1005-1016.
[15] CHEN Yue, SUN Ming-Zhe, JIA Bo-Wei, LENG Yue, SUN Xiao-Li. Research progress regarding the function and mechanism of rice AP2/ERF transcription factor in stress response [J]. Acta Agronomica Sinica, 2022, 48(4): 781-790.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!