Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2018, Vol. 44 ›› Issue (6): 897-908.doi: 10.3724/SP.J.1006.2018.00897

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Proteomic Analysis of the Effect of 2,4-Epibrassinolide on Rice Seedlings Response to Cold Stress

Dao-Ping WANG1,2,Jiang XU2,Yong-Ying MU2,3,Wen-Xiu YAN2,3,Meng-Jie ZHAO3,Bo MA3,Qun LI1,*(),Li-Na ZHANG2,3,Ying-Hong PAN2,3,*()   

  1. 1 College of Life Science and Technology, Xinjiang University, Urumqi 830046, Xinjiang, China
    2 Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
    3 National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing 100081, China
  • Received:2017-08-29 Accepted:2018-03-18 Online:2018-06-12 Published:2018-03-19
  • Contact: Qun LI,Ying-Hong PAN E-mail:214800653@qq.com;panyinghong@caas.cn
  • Supported by:
    This study was supported by the National Natural Science Foundation of China(31571589);the National Basic Research Program of China (973 Program)(2015CB150401);the Agricultural Science and Technology Innovation Program(作物分子标记技术及其应用创新团队)

Abstract:

As a plant growth regulator which functionally resembles a kind of plant hormone Brassinosteroids (BRs), 2,4-Epibrassinolide (EBR) has been widely studied and applied in different aspects. EBR can enhance plant’s cold tolerance effectively, but the proteomic characteristics of the effect of EBR on rice seedings response to cold stress are still unclear. In this study, the germinating seeds of rice Nipponbare were treated with 0.1 mg L -1 EBR and distilled water before they were cultivated at 4°C or 26°C, and then the total protein of each group of seedlings was extracted. Finally, proteomes of rice seedings were analyzed by label-free quantitative mass spectrometry, and some important proteins were verified by parallel reaction monitoring technique (PRM). A total of 5778 protein groups were identified by qualitative method and 4834 protein groups were accurately quantitated. Among them, 401 up-regulated and 220 down-regulated proteins were related to the effect of EBR on rice seedings response to cold stress. The up-regulated proteins were mainly related to molecular function of RNA binding and hydrolase activity, and mainly enriched in the pathways of carbon metabolism, folic acid synthesis and amino acid biosynthesis. The down-regulated proteins were mainly related to catalytic activity and oxidoreductase activity, and mainly enriched in the pathways of porphyrin and chlorophyll metabolism and other metabolic pathways. PRM validation and literature analysis showed that NADP-malic acidase, peroxidase, 3-phosphoglycerate dehydrogenase, enolase, glyceraldehyde-3-phosphate dehydrogenase and pyruvate kinase, which are distributed in the pathways of carbon metabolism and phenylpropanol metabolism and others, take part in the regulation of EBR on rice seedlings response to cold stress, suggesting that BRs can affect rice seedlings response to cold stress through a variety of pathways.

Key words: 2, 4-Epibrassinolide, cold stress, proteomics, rice

Fig. 1

Phenotypes under cold stress and of chlorophyll content in rice A: four groups of sample phenotype; B: comparison of chlorophyll a and chlorophyll b contents in four groups of samples; C: comparison of whole plant weight in four groups of samples, randomly selected 10 seedlings and weighed which was repeated three times and calculate the average value as the whole plant fresh weight of a group. 4B: samples treated with EBR then cultured at 4°C, 4: samples cultured at 4°C, 26B: samples treated with EBR then cultured at 26°C, 26: samples cultured at 26°C. Values within a group followed by a different small letter are significantly different at the 0.05 probability level in B and C."

Fig. 2

Qualitative and quantitative analysis of samples by mass spectrometry A: qualitatively identified proteins and common proteins between samples; B: Pearson correlation analysis between samples; C: signal intensity distribution of quantitative identified proteins."

Fig. 3

Comparison of quantitative protein A: proteins with intensity difference between every two samples; B: Venn diagram shows the 401 up-regulated proteins related to the effect of EBR on rice seedings response to cold stress; C: Venn diagram shows the 220 down-regulated proteins related to the effect of EBR on rice seeding response to cold stress. H means up regulated and L means down regulated."

Fig. 4

Gene ontology analysis of proteins related to the effect of EBR on rice seeding response to cold stress A: gene ontology analysis of 401 up-regulated proteins; B: gene ontology analysis of 220 down-regulated proteins."

Fig. 5

Analysis of KEGG pathways A: KEGG pathways analysis of 401 up-regulated proteins; B: KEGG pathways analysis of 220 down-regulated proteins."

Table 1

Important pathways and enriched proteins related to the effect of EBR on rice seedings response to cold stress"

通路和蛋白
Pathway name and protein IDs
注解
Annotation
信号强度Intensity
26 26B 4 4B
碳代谢 Carbon metabolism
LOC_Os01g54030.1 Nadp-dependent malic enzyme 0.00E+00 0.00E+00 0.00E+00 1.78E+07
LOC_Os02g38200.1 Dehydrogenase 3.97E+08 1.78E+08 9.81E+07 2.64E+08
LOC_Os03g15050.2 Phosphoenolpyruvate carboxykinase 1.22E+08 5.70E+07 4.21E+07 1.26E+08
LOC_Os04g24140.1 Ribose-5-phosphate isomerase a 1.10E+08 8.97E+06 1.79E+07 7.07E+07
LOC_Os06g04510.1 Enolase 5.68E+07 1.08E+07 0.00E+00 2.00E+07
LOC_Os06g05700.1 Cysteine synthase 0.00E+00 0.00E+00 0.00E+00 8.73E+06
LOC_Os06g45590.1 Glyceraldehyde-3-phosphate dehydrogenase 0.00E+00 0.00E+00 0.00E+00 3.28E+07
LOC_Os07g09890.1 Hexokinase 2.82E+07 0.00E+00 0.00E+00 2.09E+07
LOC_Os08g02700.1 Fructose-bisphospate aldolase isozyme 3.73E+07 0.00E+00 0.00E+00 8.83E+06
LOC_Os09g24910.2 Phosphofructokinase 0.00E+00 0.00E+00 0.00E+00 2.38E+07
LOC_Os11g10980.1 Pyruvate kinase 0.00E+00 0.00E+00 0.00E+00 1.06E+07
LOC_Os11g41160.3 Phosphoserine phosphatase 2.13E+07 1.00E+07 0.00E+00 2.83E+07
LOC_Os12g05110.1 Pyruvate kinase 2.37E+08 1.29E+08 5.51E+07 2.95E+08
LOC_Os06g35540.1 Aminotransferase 5.93E+07 1.63E+08 1.61E+08 7.89E+07
LOC_Os06g44460.1 D-3-phosphoglycerate dehydrogenase 9.76E+06 7.49E+07 2.85E+07 3.37E+07
LOC_Os05g49760.1 Dehydrogenase 0.00E+00 1.20E+08 1.00E+08 3.93E+07
苯丙素生物合成 Phenylpropanoid biosynthesis
LOC_Os10g17650.1 Os10bglu34—beta-glucosidase homologue 1.02E+08 0.00E+00 7.90E+07 4.76E+08
LOC_Os01g32364.1 Os1bglu1—beta-mannosidase/glucosidase homologue 0.00E+00 0.00E+00 0.00E+00 8.51E+06
LOC_Os01g73200.1 Peroxidase 0.00E+00 0.00E+00 0.00E+00 2.12E+07
LOC_Os02g41680.1 Phenylalanine ammonia-lyase 7.94E+06 0.00E+00 0.00E+00 6.33E+06
LOC_Os04g56180.1 Peroxidase 1.25E+08 2.86E+07 5.14E+07 7.05E+07
LOC_Os03g11420.1
Os3bglu6—beta-glucosidase/beta-fucosidase/beta-galactosidase 0.00E+00
2.25E+07
3.03E+07
6.87E+06
LOC_Os01g22249.1 Peroxidase 1.24E+07 5.91E+07 2.05E+08 0.00E+00
LOC_Os05g04500.1 Peroxidase 8.07E+06 1.92E+08 5.61E+07 0.00E+00
LOC_Os07g01410.1 Peroxidase 2.01E+07 5.70E+06 8.45E+07 0.00E+00
LOC_Os08g34280.1 Cinnamoyl-coa reductase 0.00E+00 6.70E+06 6.25E+07 0.00E+00
LOC_Os09g33680.1 Os9bglu31—beta-glucosidase, dhurrinase 0.00E+00 4.08E+07 1.92E+07 1.48E+07
卟啉和叶绿素代谢 Porphyrin and chlorophyll metabolism
LOC_Os03g22780.1 DVR 8.72E+07 0.00E+00 4.27E+07 9.48E+07
LOC_Os01g16520.1 Glutamyl-tRNA synthetase 0.00E+00 1.59E+07 1.40E+07 0.00E+00
LOC_Os01g57460.1 Frataxin, putative, expressed 4.04E+07 9.91E+07 1.15E+08 0.00E+00
LOC_Os10g37210.1
FAD dependent oxidoreductase domain containing
Protein
2.01E+07
3.51E+06
5.45E+07
0.00E+00
LOC_Os04g41260.1 Amine oxidase 0.00E+00 2.87E+06 1.70E+07 0.00E+00
叶酸生物合成 Folate biosynthesis
LOC_Os11g29390.1
Bifunctional dihydrofolate reductase-thymidylate
synthase
4.47E+06
1.31E+07
3.66E+06
0.00E+00
LOC_Os09g38759.1 Dihydroneopterin aldolase 2.42E+07 0.00E+00 5.66E+06 2.25E+07
LOC_Os04g38950.1 Class I glutamine amidotransferase 6.99E+07 0.00E+00 2.89E+07 2.37E+07
LOC_Os03g02030.2 Folylpolyglutamate synthase 0.00E+00 0.00E+00 0.00E+00 2.04E+07
LOC_Os02g35200.1 Vp15 0.00E+00 0.00E+00 0.00E+00 7.22E+06
通路和蛋白
Pathway name and protein IDs
注解
Annotation
信号强度Intensity
26 26B 4 4B
不饱和脂肪酸生物合成 Biosynthesis of unsaturated fatty acids
LOC_Os01g65830.1 Acyl-desaturase 6.12E+07 0.00E+00 0.00E+00 8.06E+06
LOC_Os02g48560.6 Fatty acid desaturase 4.69E+08 7.57E+07 8.14E+07 3.83E+08
LOC_Os08g10010.1 Acyl-desaturase 1.38E+08 2.72E+07 4.92E+07 6.52E+07
LOC_Os11g39220.2 Acyl-coenzyme A oxidase 0.00E+00 4.07E+07 3.18E+07 0.00E+00
脂肪酸生物合成 Fatty acid biosynthesis
LOC_Os01g65830.1 Acyl-desaturase 6.12E+07 0.00E+00 0.00E+00 8.06E+06
LOC_Os08g10010.1 Acyl-desaturase 1.38E+08 2.72E+07 4.92E+07 6.52E+07
LOC_Os03g28420.1 3-oxoacyl-synthase 8.02E+07 3.53E+07 0.00E+00 1.01E+08
LOC_Os01g48910.2 Long-chain acyl-coa synthetase 3.27E+07 2.61E+07 4.38E+06 5.34E+07
LOC_Os12g04990.3 Long-chain acyl-coa synthetase 1.80E+07 2.67E+07 6.15E+07 9.72E+06

Fig. 6

Targeted PRM quantification of some proteins with intensity difference A: 3-phosphoglycerate dehydrogenase; B: enolase; C: NADP-dependent malic enzyme; D: glyceraldehyde-3-phosphate dehydrogenase; E: pyruvate kinase; F: peroxidase."

[1] Liu Q, Zhang Y C, Wang C Y, Luo Y C, Huang Q J, Chen S Y, Zhou H, Qu L H, Chen Y Q . Expression analysis of phytohormone-regulated microRNAs in rice, implying their regulation roles in plant hormone signaling. FEBS Lett, 2009,583:723-728
doi: 10.1016/j.febslet.2009.01.020 pmid: 19167382
[2] Peleg Z, Blumwald E . Hormone balance and abiotic stress tolerance in crop plants. Curr Opin Plant Biol, 2011,14:290-295
doi: 10.1016/j.pbi.2011.02.001
[3] Zhang G, Song X G, Guo H Y, Wu Y, Chen X Y, Fang R X . A small G protein as a novel component of the rice brassinosteroid signal transduction. Mol Plant, 2016,9:1260-1271
doi: 10.1016/j.molp.2016.06.010 pmid: 27375203
[4] De Bruyne L, Hofte M, De Vleesschauwer D . Connecting growth and defense: the emerging roles of brassinosteroids and gibberellins in plant innate immunity. Mol Plant, 2014,7:943-959
doi: 10.1093/mp/ssu050
[5] Zhang C, Bai M Y, Chong K . Brassinosteroid-mediated regulation of agronomic traits in rice. Plant Cell Rep, 2014,33:683-696
doi: 10.1007/s00299-014-1578-7
[6] Krishna P, Prasad B D, Rahman T . Brassinosteroid action in plant abiotic stress tolerance. Methods Mol Biol, 2017,1564:193-202
doi: 10.1007/978-1-4939-6813-8
[7] Kagale S, Divi U K, Krochko J E, Keller W A, Krishna P . Brassinosteroid confers tolerance in Arabidopsis thaliana and Brassica napus to a range of abiotic stresses. Planta, 2007,225:353-364
[8] Divi U K, Krishna P . Overexpression of the Brassinosteroid biosynthetic gene AtDWF4 in Arabidopsis seeds overcomes abscisic acid-induced inhibition of germination and increases cold tolerance in transgenic seedlings. J Plant Growth Regul, 2010,29:385-393
[9] 黄玉辉, 罗海玲, 陈小凤 . 油菜素内酯对苦瓜幼苗抗冷性的影响. 南方农业学报, 2011,42:488-491
doi: 10.3969/j.issn.2095-1191.2011.05.007
Huang Y H, Luo H L, Chen X F . Effects of Brassinolide on cold resistance of Momordica charantia L. seedlings. Southern Agric J, 2011,42:488-491 (in Chinese with English abstract)
doi: 10.3969/j.issn.2095-1191.2011.05.007
[10] Singh I, Kumar U, Singh S K, Gupta C, Singh M, Kushwaha S R . Physiological and biochemical effect of 2,4-epibrassinoslide on cold tolerance in maize seedlings. Physiol Mol Biol Plants, 2012,18:229-236
doi: 10.1007/s12298-012-0122-x pmid: 3550514
[11] Shu S, Tang Y Y, Yuan Y H, Sun J, Zhong M, Guo S R . The role of 24-epibrassinolide in the regulation of photosynthetic characteristics and nitrogen metabolism of tomato seedlings under a combined low temperature and weak light stress. Plant Physiol Bioch, 2016, 107:344-353
doi: 10.1016/j.plaphy.2016.06.021 pmid: 27362298
[12] 李杰 . 油菜素内酯调控辣椒低温耐受性的作用机理. 甘肃农业大学博士学位论文, 甘肃兰州, 2016
Li J . Mechanism of Brassinolide Controlling Low Temperature Tolerance of Pepper. PhD Dissertation of Gansu Agricultural University, Lanzhou, Gansu, China, 2016 ( in Chinese with English abstract)
[13] Huang B, Chu C H, Chen S L, Juan H F, Chen Y M . A proteomics study of the mung bean epicotyl regulated by brassinosteroids under conditions of chilling stress. Cell Mol Biol Lett, 2006,11:264-278
[14] Ji L, Zhou P, Zhu Y, Liu F, Li R B, Qiu Y F . Proteomic analysis of rice seedlings under cold stress. Prot J, 2017,36:299-307
doi: 10.1007/s10930-017-9721-2
[15] Yang P F, Li X J, Liang Y, Jing Y X, Shen S H, Kuang T Y . Proteomic analysis of the response of Liangyoupeijiu (super high-yield hybrid rice) seedlings to cold stress. J Integr Plant Biol, 2006,48:945-951
doi: 10.1111/jipb.2006.48.issue-8
[16] Chen J H, Tian L, Xu H F, Tian D G, Luo Y M, Ren C M, Yang L M, Shi J S . Cold-induced changes of protein and phosphoprotein expression patterns from rice roots as revealed by multiplex proteomic analysis. Plant Omics, 2012,5:194-199
[17] Cui S X, Huang F, Wang J, Ma X, Cheng Y S, Liu J Y . A proteomic analysis of cold stress responses in rice seedlings. Proteomics, 2005,5:3162-3172
doi: 10.1002/(ISSN)1615-9861
[18] Hashimoto M, Komatsu S . Proteomic analysis of rice seedlings during cold stress. Proteomics, 2007,7:1293-1302
doi: 10.1002/(ISSN)1615-9861
[19] Neilson K A, Mariani M, Haynes P A . Quantitative proteomic analysis of cold-responsive proteins in rice. Proteomics, 2011,11:1696-1706
doi: 10.1002/pmic.201000727
[20] Ruelland E, Vaultier M N, Zachowski A, Hurry V . Cold signalling and cold acclimation in plants. Adv Bot Res, 2009,49:35-150
doi: 10.1016/S0065-2296(08)00602-2
[21] Eremina M, Rozhon W, Poppenberger B . Hormonal control of cold stress responses in plants. Cell Mol Life Sci, 2016,73:797-810
doi: 10.1007/s00018-015-2089-6
[22] Shi K, Fu L J, Zhang S, Li X , Liao Y W K, Xia X J, Zhou Y H, Wang R Q, Chen Z X, Yu J Q. Flexible change and cooperation between mitochondrial electron transport and cytosolic glycolysis as the basis for chilling tolerance in tomato plants. Planta, 2013,237:589-601
doi: 10.1007/s00425-012-1799-3 pmid: 23229059
[23] Duque P, Barreiro M G, Arrabaca J D . Respiratory metabolism during cold storage of apple fruit. I. Sucrose metabolism and glycolysis. Physiol Plant, 1999,107:14-23
doi: 10.1034/j.1399-3054.1999.100103.x
[24] Vogt T . Phenylpropanoid biosynthesis. Mol Plant, 2010,3:2-20
doi: 10.1093/mp/ssp106
[25] Kawasaki T, Koita H, Nakatsubo T, Hasegawa K, Wakabayashi K, Takahashi H, Urnemura K, Urnezawa T, Shimamoto K . Cinnamoyl-CoA reductase, a key enzyme in lignin biosynthesis, is an effector of small GTPase Rac in defense signaling in rice. Proc Natl Acad Sci USA, 2006,103:230-235
doi: 10.1073/pnas.0509875103 pmid: 16380417
[26] 王平荣, 邓晓建 . 高等植物叶绿素生物合成的联乙烯还原酶及编码基因研究进展. 西北植物学报, 2013,33:843-849
Wang P R, Deng X J . Advances in studies on vulcan reductase and coding genes of chlorophyll biosynthesis in higher plants. Acta Bot Boreali-Occident Sin, 2013,33:843-849 (in Chinese with English abstract)
[27] Wang P R, Gao J X, Wan C M, Zhang F T, Xu Z J, Huang X Q, Sun X Q, Deng X J . Divinyl chlorophyll(ide) a can be converted to monovinyl chlorophyll(ide) a by a divinyl reductase in rice. Plant Physiol, 2010,153:994-1003
doi: 10.1104/pp.110.158477 pmid: 20484022
[28] Bekaert S, Storozhenko S, Mehrshah P, Bennett M J, Lambert W, Gregory J F, Schubert K, Hugenholtz J , Van Der Straeten D, Hanson A D. Folate biofortification in food plants. Trends Plant Sci, 2008,13:28-35
[29] Sha L, Ling J, Chongying W, Chunyi Z . Research advances in the functions of plant folates. Chin Bull Bot, 2013,47:525-533
doi: 10.3724/SP.J.1259.2012.00525
[30] Gambonnet B, Jabrin S, Ravanel S, Karan M, Douce R, Rebeille F . Folate distribution during higher plant development. J Sci Food Agric, 2001,81:835-841
doi: 10.1002/jsfa.v81:9
[31] Webb M E, Smith A G . Chlorophyll and folate: intimate link revealed by drug treatment. New Phytol, 2009,182:3-5
doi: 10.1111/j.1469-8137.2009.02790.x
[32] Storozhenko S, De Brouwer V, Volckaert M, Navarrete O, Blancquaert D, Zhang G F, Lambert W , Van Der Straeten D. Folate fortification of rice by metabolic engineering. Nat Biotechnol, 2007,25:1277-1279
doi: 10.1038/nbt1351
[33] Garwin J L, Klages A L , Cronan J E Jr. Beta-ketoacyl-acyl carrier protein synthase II of Escherichia coli. Evidence for function in the thermal regulation of fatty acid synthesis. J Biol Chem, 1980,255:3263-3265
[34] Zhu S Q, Yu C M, Liu X Y, Ji B H, Jiao D M . Changes in unsaturated levels of fatty acids in thylakoid PSII membrane lipids during chilling-induced resistance in rice. J Integr Plant Biol, 2007,49:463-471
doi: 10.1111/j.1744-7909.2007.00438.x
[35] Ho C L, Noji M, Saito M, Saito K . Regulation of serine biosynthesis in Arabidopsis. J Biol Chem, 1999,274:397-402
[36] Kosova K, Vitamvas P, Prasil I T, Renaut J . Plant proteome changes under abiotic stress-contribution of proteomics studies to understanding plant stress response. J Proteomics, 2011,74:1301-1322
doi: 10.1016/j.jprot.2011.02.006 pmid: 21329772
[37] Lee H, Guo Y, Ohta M, Xiong L, Stevenson B, Zhu J K . LOS2, a genetic locus required for cold-responsive gene transcription encodes a bi-functional enolase. EMBO J, 2002,21:2692-2702
doi: 10.1093/emboj/21.11.2692
[38] Liu D C, He L G, Wang H L, Xu M, Sun Z H . Expression profiles of PtrLOS2 encoding an enolase required for cold-responsive gene transcription from trifoliate orange. Biol Plant, 2011,55:35-42
doi: 10.1007/s10535-011-0005-y
[39] 姚雪倩, 陈丹, 岳川, 杨国一, 王鹏杰, 陈桂信, 叶乃兴 . 茶树烯醇酶基因CsENO的克隆及其在非生物胁迫中的表达分析. 园艺学报, 2017,44:537-546
doi: 10.16420/j.issn.0513-353x.2016-0731
Yao X Q, Chen D, Yue C, Yang G Y, Wang P J, Chen G X, Ye N X . Cloning of chrysanthemum enzyme gene CsENO and its expression in abiotic stress. Acta Hortic Sin, 2017,44:537-546 (in Chinese with English abstract)
doi: 10.16420/j.issn.0513-353x.2016-0731
[40] Sharma P, Ganeshan S, Fowler D B, Chibbar R N . Characterisation of two wheat enolase cDNA showing distinct patterns of expression in leaf and crown tissues of plants exposed to low temperature. Ann Appl Biol, 2013,162:271-283
doi: 10.1111/aab.12019
[41] Wedding R T . Malic enzymes of higher plants: characteristics, regulation, and physiological function. Plant Physiol, 1989,90:367-371
doi: 10.1104/pp.90.2.367
[42] Edwards G E, Andreo C S . NADP-malic enzyme from plants. Phytochemistry, 1992,31:1845-1857
doi: 10.1016/0031-9422(92)80322-6 pmid: 1368216
[43] Fu Z Y, Zhang Z B, Hu X J, Shao H B, Ping X . Cloning, identification, expression analysis and phylogenetic relevance of two NADP-dependent malic enzyme genes from hexaploid wheat. C R Biol, 2009,332:591-602
doi: 10.1016/j.crvi.2009.03.002 pmid: 19523599
[44] Zeng Li F, Deng R, Guo Z P, Yang S S, Deng X P . Genome-wide identification and characterization of glyceraldehyde-3-phosphate dehydrogenase genes family in wheat ( Triticum aestivum). BMC Genomics, 2016,17:240
doi: 10.1186/s12864-016-2527-3 pmid: 4793594
[45] Kim B H, Kim S Y, Nam K H . Genes encoding plant-specific class III peroxidases are responsible for increased cold tolerance of the brassinosteroid-insensitive 1 mutant. Mol Cells, 2012,34:539-548
doi: 10.1007/s10059-012-0230-z pmid: 3887832
[46] Zhang Z, Zhang Q, Wu J, Zheng X, Zheng S, Sun X, Qiu Q, Lu T. Gene knockout study reveals that cytosolic ascorbate peroxidase 2(OsAPX2) plays a critical role in growth and reproduction in rice under drought, salt and cold stresses. PLoS One , 2013, 8: e57472
doi: 10.1371/journal.pone.0057472 pmid: 23468992
[1] TIAN Tian, CHEN Li-Juan, HE Hua-Qin. Identification of rice blast resistance candidate genes based on integrating Meta-QTL and RNA-seq analysis [J]. Acta Agronomica Sinica, 2022, 48(6): 1372-1388.
[2] ZHENG Chong-Ke, ZHOU Guan-Hua, NIU Shu-Lin, HE Ya-Nan, SUN wei, XIE Xian-Zhi. Phenotypic characterization and gene mapping of an early senescence leaf H5(esl-H5) mutant in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1389-1400.
[3] ZHOU Wen-Qi, QIANG Xiao-Xia, WANG Sen, JIANG Jing-Wen, WEI Wan-Rong. Mechanism of drought and salt tolerance of OsLPL2/PIR gene in rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1401-1415.
[4] ZHENG Xiao-Long, ZHOU Jing-Qing, BAI Yang, SHAO Ya-Fang, ZHANG Lin-Ping, HU Pei-Song, WEI Xiang-Jin. Difference and molecular mechanism of soluble sugar metabolism and quality of different rice panicle in japonica rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1425-1436.
[5] YAN Jia-Qian, GU Yi-Biao, XUE Zhang-Yi, ZHOU Tian-Yang, GE Qian-Qian, ZHANG Hao, LIU Li-Jun, WANG Zhi-Qin, GU Jun-Fei, YANG Jian-Chang, ZHOU Zhen-Ling, XU Da-Yong. Different responses of rice cultivars to salt stress and the underlying mechanisms [J]. Acta Agronomica Sinica, 2022, 48(6): 1463-1475.
[6] YANG Jian-Chang, LI Chao-Qing, JIANG Yi. Contents and compositions of amino acids in rice grains and their regulation: a review [J]. Acta Agronomica Sinica, 2022, 48(5): 1037-1050.
[7] DENG Zhao, JIANG Nan, FU Chen-Jian, YAN Tian-Zhe, FU Xing-Xue, HU Xiao-Chun, QIN Peng, LIU Shan-Shan, WANG Kai, YANG Yuan-Zhu. Analysis of blast resistance genes in Longliangyou and Jingliangyou hybrid rice varieties [J]. Acta Agronomica Sinica, 2022, 48(5): 1071-1080.
[8] LI A-Li, FENG Ya-Nan, LI Ping, ZHANG Dong-Sheng, ZONG Yu-Zheng, LIN Wen, HAO Xing-Yu. Transcriptome analysis of leaves responses to elevated CO2 concentration, drought and interaction conditions in soybean [Glycine max (Linn.) Merr.] [J]. Acta Agronomica Sinica, 2022, 48(5): 1103-1118.
[9] YANG De-Wei, WANG Xun, ZHENG Xing-Xing, XIANG Xin-Quan, CUI Hai-Tao, LI Sheng-Ping, TANG Ding-Zhong. Functional studies of rice blast resistance related gene OsSAMS1 [J]. Acta Agronomica Sinica, 2022, 48(5): 1119-1128.
[10] ZHU Zheng, WANG Tian-Xing-Zi, CHEN Yue, LIU Yu-Qing, YAN Gao-Wei, XU Shan, MA Jin-Jiao, DOU Shi-Juan, LI Li-Yun, LIU Guo-Zhen. Rice transcription factor WRKY68 plays a positive role in Xa21-mediated resistance to Xanthomonas oryzae pv. oryzae [J]. Acta Agronomica Sinica, 2022, 48(5): 1129-1140.
[11] WANG Xiao-Lei, LI Wei-Xing, OU-YANG Lin-Juan, XU Jie, CHEN Xiao-Rong, BIAN Jian-Min, HU Li-Fang, PENG Xiao-Song, HE Xiao-Peng, FU Jun-Ru, ZHOU Da-Hu, HE Hao-Hua, SUN Xiao-Tang, ZHU Chang-Lan. QTL mapping for plant architecture in rice based on chromosome segment substitution lines [J]. Acta Agronomica Sinica, 2022, 48(5): 1141-1151.
[12] LEI Xin-Hui, WAN Chen-Xi, TAO Jin-Cai, LENG Jia-Jun, WU Yi-Xin, WANG Jia-Le, WANG Peng-Ke, YANG Qing-Hua, FENG Bai-Li, GAO Jin-Feng. Effects of soaking seeds with MT and EBR on germination and seedling growth in buckwheat under salt stress [J]. Acta Agronomica Sinica, 2022, 48(5): 1210-1221.
[13] WANG Ze, ZHOU Qin-Yang, LIU Cong, MU Yue, GUO Wei, DING Yan-Feng, NINOMIYA Seishi. Estimation and evaluation of paddy rice canopy characteristics based on images from UAV and ground camera [J]. Acta Agronomica Sinica, 2022, 48(5): 1248-1261.
[14] KE Jian, CHEN Ting-Ting, WU Zhou, ZHU Tie-Zhong, SUN Jie, HE Hai-Bing, YOU Cui-Cui, ZHU De-Quan, WU Li-Quan. Suitable varieties and high-yielding population characteristics of late season rice in the northern margin area of double-cropping rice along the Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(4): 1005-1016.
[15] CHEN Yue, SUN Ming-Zhe, JIA Bo-Wei, LENG Yue, SUN Xiao-Li. Research progress regarding the function and mechanism of rice AP2/ERF transcription factor in stress response [J]. Acta Agronomica Sinica, 2022, 48(4): 781-790.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!