Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2022, Vol. 48 ›› Issue (6): 1325-1332.doi: 10.3724/SP.J.1006.2022.14072

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Allelic variation and geographical distribution of TT8 for seed color in Brassica juncea Czern. et Coss.

ZHANG Yu-Kun1,2(), LU Ying1,2, CUI Kan3, XIA Shi-Tou3, LIU Zhong-Song1,2,*()   

  1. 1Crop Gene Engineering Key Laboratory of Hunan Province / College of Agronomy, Hunan Agricultural University, Changsha 410128, Hunan, China
    2Hunan Branch of National Oilseed Crops Improvement Center, Changsha 410128, Hunan, China
    3College of Bioscience and Biotechnology of Hunan Agricultural University, Changsha 410128, Hunan, China
  • Received:2021-04-24 Accepted:2021-09-09 Online:2022-06-12 Published:2021-10-21
  • Contact: LIU Zhong-Song E-mail:530611402@qq.com;zsliu48@hunau.net
  • Supported by:
    National Natural Science Foundation of China(U20A2029)

Abstract:

The gene TT8 regulates seed color in Brassica species. Two TT8 copies, designated as BjuA09.TT8 and BjuB08.TT8, were cloned from the chromosomes A09 and B08 of the allotetraploid B. juncea, which had 7 and 6 alleles in worldwide 749 B. juncea accessions, respectively. Compared with the wild type, BjuA09.TT8.a1-a5 and BjuB08.TT8.b1-b4 alleles carried large insertions, while BjuA09.TT8.a6 and BjuB08.TT8.b5 had a deletion and a base substitution at exon 7, respectively. Comparison of the allele sequences with the annotated library of swede rapeseed (B. napus) using the software Repeatmasker revealed that BjuA09.TT8.a1-a4 and BjuB08.TT8.b1-b4 alleles contained class I transposons, a few class II transposons, and Helitron-like transposon insertions. The haplotype analysis showed that BjuA09.TT8.a4-BjuB08.TT8.b5 was the major yellow seed haplotype, accounting for 89.49% (247/276) of the yellow seed accessions detected, followed by the haplotype BjuA09.TT8.a4- BjuB08.TT8.b3, amounting for 6.52%. Analysis of geographical origin of yellow seed accessions revealed that there were had a higher frequency of yellow seed mutation especially in Xinjiang region, China, than the other parts of the world, suggesting possible origin of yellow seed mustard in Xinjiang, China together with historical records. This study provides a basis for the selection of superior genetic resources for breeding yellow seed rapeseed.

Key words: Brassica juncea, yellow seed, TT8, allelic variation, transposable elements, genetic resources, geographical distribution

Table 1

Primers used for amplification of Bju.TT8"

引物名称
Primer name
引物序列
Primer sequence (5'-3')
预期区间
Predicted interval
ANF CCAATCAGTGGATGACACGG 扩增BjuA09.TT8全长序列
The amplification of the BjuA09.TT8 full-length sequence
BNF ACCTGCAGGATACATCTCAC 扩增BjuB08.TT8全长序列
The amplification of the BjuB08.TT8 full-length sequence
4R CTGATAATGTAGCATAGACGACGCTA 扩增Bju.TT8等位基因共用的R端
The reverse primer sequence commonly used for the amplification of Bju.TT8 alleles
18T ANF acccggggatcctctagaga CCAATCAGTGGATGACACGG BjuA09.TT8全长克隆 Full-length cloning of BjuA09.TT8
18T BNF acccggggatcctctagaga ACCTGCAGGATACATCTCAC BjuB08.TT8全长克隆 Full-length cloning of BjuB08.TT8
18T 4R catgcctgcaggtcgacgat CTGATAATGTAGCATAGACGACGCTA Bju.TT8全长克隆共用的R端
The reverse primer sequence common to full-length cloning of two Bju.TT8 copies

Fig. 1

TT8 alleles in Brassica juncea A: BjuA09.TT8 alleles on chromosome A09; B: BjuA09.TT8 electrophoretogram; C: BjuB08.TT8 alleles on chromosome B08; D: the SNP mutation of BjuB.TT8.b5 allele; E: BjuB08.TT8 electrophoretogram; M: 1 kb DNA ladder; YS: yellow seed; BS: brown/black seed."

Table 2

Frequency statistics of different haplotype combinations of TT8 gene in Brassica juncea"

BjuA09.TT8
allele
BjuB08.TT8
allele
种皮颜色
Seed color
代表性材料
Representative accession
品种总数量
Number of accessions
中国所占数量
Number of Chinese accessions
A B BS 紫叶芥 Purple-leaf mustard 369 164
A b1 BS 黔西马尾油菜Qianxiyoucai 3 2
A b2 BS BOJ18-19 1 1
A b4 BS PI 347618 2 0
A b5 BS 普安苦油菜 Pu'ankuyoucai 46 16
a2 B BS CR 2729 7 1
a4 B BS PBR 97 42 13
a6 B BS CR 2493 3 2
a1 b5 YS PI 458929 2 1
a2 b5 YS PI 531271 4 2
a3 b5 YS 玉溪马桥高株 Yuximaqiao tall 2 1
a4 b5 YS 四川黄籽 Sichuan yellow 247 132
a4 b3 YS 和田油菜 Hetianyoucai 18 11
a5 b5 YS 会理高足黄油菜 Huili tall yellow 3 2

Fig. 2

Cluster analysis of TT8 genes in Brassica species and Arabidopis thaliana Sequences were aligned using the Muscle program in Mega-X, where Gap Open was set to -6600.00. The phylogenetic tree was constructed using Neighbor-Joining method under the default parameters. bootstrap values less than 50 are not shown. NCBI gene name and serial number are AthTT8 (NC 003075.7), BraA.TT8 (NC 024803.2), BnaA.TT8 (027765.2), BnaC.TT8 (NC 027775.2), and BolC.TT8 (NC 027756.1), respectively."

Table 3

Transposable elements in TT8 alleles of Brassica juncea"

Bju.TT8
allele
基因长度Gene length (bp) SNP/插入缺失位置
Location of SNP/insertion or deletion
插入删除长度Length of insertion or deletion (bp) 转座子种类/家族
TEs class/family
重复序列数目
Number of
repeats
涉及序列长度
Occupied
(bp)
序列比例Percentage of sequence (%)
A 3551
a1 9203 +2551 bp Exon6 +5652 LINE/L1 2 4718 51.27
a2 7320 +1246 bp Intron 4 +3769 LTR;
LTR/Cppia;
LTR/Gypsy;
RC/Helitron
2
2
1
1
109
2495
11
560
1.49
34.08
0.15
7.65
a3 5667 +1246 bp Intron4/
+3047 bp Exon 7
+849
+1267
DNA/CMC-Enspm;
LTR/Copia
1
1
927
1263
16.36
22.29
a4 4818 +3047 bp Exon7 +1267 LTR/copia 1 1263 26.21
Bju.TT8
allele
基因长度Gene length (bp) SNP/插入缺失位置
Location of SNP/insertion or deletion
插入删除长度Length of insertion or deletion (bp) 转座子种类/家族
TEs class/family
重复序列数目
Number of
repeats
涉及序列长度
Occupied
(bp)
序列比例Percentage of sequence (%)
a5 3859 +3090 bp Exon7 +308
a6 2970 +455 bp Exon2 -581
B 2768
b1 9416 +803 bp Intron2 +6648 LINE/L1
DNA/Maverick
4
1
4756
138
50.51
1.47
b2 4457 +1388 bp Intron5 +1689 SINE/tRNA
DNA/hAT-Ac
LINE/L1
RC/Helitron
1
2
1
1
27
1562
97
113
0.61
35.05
2.18
2.54
b3 4076 +1958 bp Exon6 +1308 LINE/L1 1 112 2.75
b4 2985 +2390 bp Exon7 +217 LINE/L1 1 253 8.48
b5 2768 +2742 bp Exon7 C/T

Fig. 3

Geographic distributions of different TT8 haplotpyes in Brassica juncea Accessions with different haplotypes are counted by country or by province within China. The different colors in the pie chart represent 14 different haplographs, each representing the proportion of different haplots in the area. The size of pie stands for the number of accessions detected, and the larger the pie, the more accessions detected. The pies at the bottom summarizes the distribution of the different haplotypes on different continents, and the numbers in brackets indicate the number of accessions detected. AS: Asia; EU: Europe; NA: North America; OA: Oceania; AF: Africa; SA: South America."

[1] Niu Y, Wu L M, Li Y H, Huang H L, Qian M C, Sun W, Zhu H, Xu Y F, Fan Y H, Mahmood U, Xu B B, Zhang K, Qu C M, Li J N, Lu K. Deciphering the transcriptional regulatory networks that control size, color, and oil content in Brassica rapa seeds. Biotechnol Biofuels, 2020, 13: 90.
doi: 10.1186/s13068-020-01728-6
[2] Zhang Y, Li X, Ma C Z, Shen J X, Chen B Y, Tu J X, Fu T D. The inheritance of seed color in a resynthesized Brassica napus line No. 2127-17 including a new epistatic locus. Genes Genomics, 2009, 31: 413-419.
doi: 10.1007/BF03191854
[3] Liu Z W, Fu T D, Tu J X, Chen B Y. Inheritance of seed colour and identification of RAPD and AFLP markers linked to the seed colour gene in rapeseed (Brassica napus L.). Theor Appl Genet, 2005, 110: 303-310.
doi: 10.1007/s00122-004-1835-1
[4] Rahman M, Li G Y, Schroeder D, McVetty P B E. Inheritance of seed coat color genes in Brassica napus (L.) and tagging the genes using SRAP, SCAR and SNP molecular markers. Mol Breed, 2010, 26: 439-453.
doi: 10.1007/s11032-009-9384-6
[5] Rahman M, Mcvetty P. A review of Brassica seed color. Can J Plant Sci, 2011, 91: 437-446.
doi: 10.4141/cjps10124
[6] Rahman M. Production of yellow-seeded Brassica napus through interspecific crosses. Plant Breed, 2001, 120: 463-472.
doi: 10.1046/j.1439-0523.2001.00640.x
[7] Xiao S, Xu J, Li Y, Zhang L, Shi S, Shi S, Wu J, Liu K. Generation and mapping of SCAR and CAPS markers linked to the seed coat color gene in Brassica napus using a genome-walking technique. Genome, 2007, 50: 611-618.
doi: 10.1139/G07-044
[8] Fu F Y, Liu L Z, Chai Y R, Chen L, Yang T, Jin M Y, Ma A F, Yan X Y, Zhang Z S, Li J N. Localization of QTLs for seed color using recombinant inbred lines of Brassica napus in different environments. Genome, 2007, 50: 840-854.
pmid: 17893725
[9] Badani A G, Snowdon R J, Wittkop B, Lipsa F D, Baetzel R, Horn R, De Haro A, Font R, Lühs W, Friedt W. Colocalization of a partially dominant gene for yellow seed colour with a major QTL influencing acid detergent fibre (ADF) content in different crosses of oilseed rape (Brassica napus). Genome, 2006, 49: 1499-1509.
doi: 10.1139/g06-091
[10] Li X, Chen L, Hong M, Zhang Y, Zu F, Wen J, Yi B, Ma C, Shen J, Tu J, Fu T. A large insertion in bHLH transcription factor BrTT8 resulting in yellow seed coat in Brassica rapa. PLoS One, 2012, 7: e44145.
doi: 10.1371/journal.pone.0044145
[11] Wang Y H, Xiao L, Dun X L, Liu K D, Du D Z. Characterization of the BrTT1 gene responsible for seed coat color formation in Dahuang (Brassica rapa L. landrace). Mol Breed, 2017, 37: 137.
doi: 10.1007/s11032-017-0736-3
[12] Wang Y, Xiao L, Guo S, An F, Du D. Fine mapping and whole-genome resequencing identify the seed coat color gene in Brassica rapa. PLoS One, 2016, 11: e0166464.
doi: 10.1371/journal.pone.0166464
[13] Ren Y, He Q, Ma X, Zhang L. Characteristics of color development in seeds of brown- and yellow-seeded heading Chinese cabbage and molecular analysis of Brsc, the candidate gene controlling seed coat color. Front Plant Sci, 2017, 8: 1410.
doi: 10.3389/fpls.2017.01410
[14] Zhang Y, Sun Y, Sun J, Feng H, Wang Y. Identification and validation of major and minor QTLs controlling seed coat color in Brassica rapa L. Breed Sci, 2019, 69: 47-54.
doi: 10.1270/jsbbs.18108
[15] 刘显军. 芥菜型油菜黄籽基因克隆和黄籽形成机制分析. 湖南农业大学博士学位论文, 湖南长沙 2013.
Liu X J. Positional Cloning of the Gene for Seed Color and Molecular Mechanism of Yellow Seed Formation in Brassica juncea. PhD Dissertation of Hunan Agricultural University, Changsha, Hunan, China, 2013 (in Chinese with English abstract).
[16] Padmaja L K, Agarwal P, Gupta V, Mukhopadhyay A, Sodhi Y S, Pental D, Pradhan A K. Natural mutations in two homoeologous TT8 genes control yellow seed coat trait in allotetraploid Brassica juncea (AABB). Theor Appl Genet, 2014, 127: 339-347.
doi: 10.1007/s00122-013-2222-6
[17] Nagaharu U. Genome analysis in Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilization. Jpn J Bot, 1935, 7: 389-452.
[18] Chen S, Wan Z J, Nelson M N, Chauhan J S, Redden R, Burton W A, Lin P, Salisbury P A, Fu T D, Cowling W A. Evidence from genome-wide simple sequence repeat markers for a polyphyletic origin and secondary centers of genetic diversity of Brassica juncea in China and India. J Heredity, 2013, 104: 416-427.
doi: 10.1093/jhered/est015
[19] 刘显军, 袁谋志, 官春云, 陈社员, 刘淑艳, 刘忠松. 芥菜型油菜黄籽性状的遗传、基因定位和起源探讨. 作物学报, 2009, 35: 839-847.
Liu X J, Yuan M Z, Guan C Y, Chen S Y, Liu S Y, Liu Z S. Inheritance, mapping, and origin of yellow-seeded trait in Braassica juncea. Acta Agron Sin, 2009, 35: 839-847 (in Chinese with English abstract).
[20] Zhai Y G, Yu K D, Cai S L, Hu L M, Amoo O, Xu L, Yang Y, Ma B Y, Jiao Y M, Zhang C F, Khan M H U, Khan S U, Fan C C, Zhou Y M. Targeted mutagenesis of BnTT8 homologs controls yellow seed coat development for effective oil production in Brassica napus L. Plant Biotechnol J, 2020, 18: 1153-1168.
doi: 10.1111/pbi.v18.5
[21] Wells J N, Feschotte C. A field guide to eukaryotic transposable elements. Annu Rev Genet, 2020, 54: 539-561.
doi: 10.1146/genet.2020.54.issue-1
[22] Quesneville H. Twenty years of transposable element analysis in the Arabidopsis thaliana genome. Mobile DNA, 2020, 11: 28.
doi: 10.1186/s13100-020-00223-x pmid: 32742313
[23] Perumal S, Koh C S, Jin L L, Buchwaldt M, Higgins E E, Zheng C F, Sankoff D, Robinson S J, Kagale S, Navabi Z K, Tang L, Horner K N, He Z S, Bancroft I, Chalhoub B, Sharpe A G, Parkin I A P. A high-contiguity Brassica nigra genome localizes active centromeres and defines the ancestral Brassica genome. Nat Plants, 2020, 6: 929-941.
doi: 10.1038/s41477-020-0735-y
[24] Yang J H, Liu D Y, Wang X W, Ji C M, Cheng F, Liu B N, Hu Z Y, Chen S, Pental D, Ju Y H, Yao P, Li X M, Xie K, Zhang J H, Wang J L, Liu F, Ma W W, Shopan J, Zheng H, Mackenzie S A, Zhang M. The genome sequence of allopolyploid Brassica juncea and analysis of differential homoeolog gene expression influencing selection. Nat Genet, 2016, 48: 1225-1232.
doi: 10.1038/ng.3657
[25] Visscher P M, Brown M A, Mccarthy M I, Yang J. Five years of GWAS discovery. Am J Human Genet, 2012, 90: 7-24.
doi: 10.1016/j.ajhg.2011.11.029
[26] 钱秀珍, 胡琼, 伍晓明. 中国芥菜型油菜的主要特性. 作物品种资源, 1991, (2):14-15.
Qian X Z, Hu Q, Wu X M. The main characteristics of Chinese mustard. Crop Variety Resour, 1991, (2):14-15 (in Chinese).
[27] 刘忠松, 游亮, 杨柳, 陈浩, 杨斌, 康雷. 芥菜的起源与驯化探索. 中国油料作物学报, 2018, 40: 649-655.
Liu Z S, You L, Yang L, Chen H, Yang B, Kang L. Origin and domestication of Brassica juncea Czern. et Coss. Chin J Oil Crop Sci, 2018, 40: 649-655 (in Chinese with English abstract).
[1] HUANG Wei, GAO Guo-Ying, WU Jin-Feng, LIU Li-Li, ZHANG Da-Wei, ZHOU Ding-Gang, CHENG Hong-Tao, ZHANG Kai-Xuan, ZHOU Mei-Liang, LI Mei, YAN Ming-Li. Regulation of flavonoid synthesis by BjA09.TT8 and BjB08.TT8 genes in Brassica juncea [J]. Acta Agronomica Sinica, 2022, 48(5): 1169-1180.
[2] ZHANG Fu-Yan, CHENG Zhong-Jie, CHEN Xiao-Jie, WANG Jia-Huan, CHEN Feng, FAN Jia-Lin, ZHANG Jian-Wei, YANG Bao-An. Molecular identification and breeding application of allelic variation of grain weight gene in wheat from the Yellow-Huai-River Valley [J]. Acta Agronomica Sinica, 2021, 47(11): 2091-2098.
[3] GAO Guo-Ying, WU Xiao-Fang, HUANG Wei, ZHOU Ding-Gang, ZHANG Da-Wei, ZHOU Mei-Liang, ZHANG Kai-Xuan, YAN Ming-Li. Regulation of flavonoid pathway by BjuB.KAN4 gene in Brassica juncea [J]. Acta Agronomica Sinica, 2020, 46(9): 1322-1331.
[4] Long LI,Cheng CHENG,Xiao-Fang WU,Da-Wei ZHANG,Li-Li LIU,Jing ZHOU,Mei-Liang ZHOU,Kai-Xuan ZHANG,Ming-Li YAN. Construction of Hairy Root Induction System and Functional Analysis of TTG1 Gene in Brassica juncea [J]. Acta Agronomica Sinica, 2018, 44(10): 1468-1476.
[5] WANG Juan,DONG Cheng-Guang,LIU Li,KONG Xian-Hui,WANG Xu-Wen,YU Yu. Association Analysis and Exploration of Elite Alleles of Mechanical Harvest-Related Traits with SSR Markers in Upland Cotton Cultivars (Gossypium hirsutum L.) [J]. Acta Agron Sin, 2017, 43(07): 954-966.
[6] DONG Xue,LIU Meng,ZHAO Xian-Lin,FENG Yu-Mei,YANG Yan. Isolation and Characterization of LMW-GS Glu-A3 in Common Wheat Related Species [J]. Acta Agron Sin, 2017, 43(06): 829-838.
[7] KOU Cheng,GAO Xin,LI Li-Qun,LI Yang,WANG Zhong-Hua,LI Xue-Jun*. Composition and Selection of TaGW2-6A Alleles for Wheat Kernel Weight [J]. Acta Agron Sin, 2015, 41(11): 1640-1647.
[8] WU Gui-Fen,XU Xian-Jun,XU Jian-Tang,TAO Ai-Fen,ZHANG Li-Wu,WEI Li-Zhen,PAN Mo,FANG Ping-Ping,LIN Li-Hui,QI Jian-Min. Construction of Molecular Fingerprinting Map in Gene Pool of Jute with SRAP, ISSR and SSR Markers [J]. Acta Agron Sin, 2015, 41(03): 367-377.
[9] LI Wen,WAN Qian,LIU Feng-Zhen*,ZHANG Kun,ZHANG Xiu-Rong,LI Guang-Hui,WAN Yong-Shan. Allelic Variation of Transcription Factor Genes NAC4 in Arachis Species [J]. Acta Agron Sin, 2015, 41(01): 31-41.
[10] ZHAO Hui-Yan,XIAO Lu,ZHAO Zhi,DU De-Zhi*. Development of Molecular Markers and Map Integration for Seed Color Traits in Dahuang Rape (Brassica rapa L.) [J]. Acta Agron Sin, 2014, 40(06): 965-972.
[11] HU Wen-Ming,KAN Hai-Hua,WANG Wei,XU Chen-Wu. Statistical Genetics Approach for Functional Difference Identification of Allelic Variations and Its Application [J]. Acta Agron Sin, 2014, 40(01): 72-79.
[12] LIU Ya-Nan,XIA Xian-Chun,HE Zhong-Hu. Characterization of Dense and Erect Panicle 1 Gene (TaDep1) Located on Common Wheat Group 5 Chromosomes and Development of Allele-Specific Markers [J]. Acta Agron Sin, 2013, 39(04): 589-598.
[13] HUANG Bing-Yan,ZHANG Xin-You,MIAO Li-Juan,GAO Wei,HAN Suo-Yi,DONG Wen-Zhao,TANG Feng-Shou,LIU Zhi-Yong. Allelic Expression Variation of ahFAD2A and its Relationship with Oleic Acid Accumulation in Peanut [J]. Acta Agron Sin, 2012, 38(10): 1752-1759.
[14] LI Wei-Yu,ZHANG Bin,ZHANG Jia-Nan,CHANG Xiao-Ping,LI Run-Zhi,JING Rui-Lian. Exploring Elite Alleles for Chlorophyll Content of Flag Leaf in Natural Population of Wheat by Association Analysis [J]. Acta Agron Sin, 2012, 38(06): 962-970.
[15] WU Yong-Sheng,LI Xin-Hai,HAO Zhuan-Fang,ZHANG Shi-Huang,XIE Chuan-Xiao. Genomic DNA Sequence,Gene Structure,Conserved Domains,and Natural Alleles of Gln1-4 Gene in Maize [J]. Acta Agron Sin, 2009, 35(6): 983-991.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!