Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2019, Vol. 45 ›› Issue (8): 1137-1145.doi: 10.3724/SP.J.1006.2019.84159


Flowering genes in oilseed rape: identification, characterization, evolutionary and expression analysis

WANG Yan-Hua1,2,XIE Ling1,2,YANG Bo1,2,CAO Yan-Ru1,2,LI Jia-Na1,2,*()   

  1. 1 College of Agronomy and Biotechnology, Southwest University/Chongqing Engineering Research Center for Rapeseed, Chongqing 400715, China
    2 Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
  • Received:2018-11-16 Accepted:2019-04-15 Online:2019-08-12 Published:2019-07-16
  • Contact: Jia-Na LI E-mail:ljn1950@swu.edu.cn
  • Supported by:
    This study was supported by the Special Project of Chongqing People’s Livelihood Project(cstc2016shms-ztzx80020);the Project of Intellectual Base for Discipline Innovation in Colleges and Universities (“111” Project)(B12006)


Flowering is a prerequisite for successful sexual reproduction. Controlling of flowering time is important for crop production in different geographical regions. However, few information regarding flowering genes or their evolution at genome-wide level in Brassica napus has been reported. In this study, identification, characterization, evolutionary and expression analysis of flowering genes in oilseed rape were performed. In total, 1173 flowering-related genes classified into nine types and distributed unevenly on the chromosomes were identified at the genome level of Brassica napus. Compared with Brassica rapa (AA, 2n = 20) and Brassica oleraca (CC, 2n = 18), B. napus (AACC, 2n = 38) showed significantly enlarge number of flowering-related genes due to natural hybridization and chromosome doubling. Selective pressure analysis showed that the autonomous pathway genes had less selection pressure than the genes involved in sugar metabolic pathway, suggesting that some key flowering-related genes are relatively conserved between B. napus and Arabidopsis thaliana. The present study provides more information on the B. napus flowering pathways and sheds light on the evolutionary relationship of flowering-related genes between B. napus and A. thaliana.

Key words: Brassica napus, flowering genes, evolution, regulatory pathway, expression analysis

Fig. 1

Identification and classification of flowering-related genes in B. napus Ag: aging pathway; At: ambient temperature; Au: autonomous pathway; Cp: clock and photoperiod, pathway; Fd: flower development and apical meristem response pathway; Ft: flowering time integrator; Ho: hormones pathway; Su: sugar signal; Ve: vernalization."

Fig. 2

Distribution of flowering genes on B. napus chromosomes"

Fig. 3

Diverse flowering genes sets in Arabidopsis thaliana, Brassica napus, Brassica oleracea, and Brassica rapa 缩写同图1。Abbreviation are the same as those given in Fig. 1."

Fig. 4

Direction and magnitude of natural selection acting on different flowering gene sets 缩写同图1。Abbreviations are the same as those given in Fig. 1."

Fig. 5

Heatmap of B. napus flowering gene expression profiles 缩写同图1。Abbreviations are the same as those given in Fig. 1."

[1] Srikanth A, Schmid M . Regulation of flowering time: all roads lead to Rome. Cell Mol Life Sci, 2011,68:2013-2037.
doi: 10.1007/s00018-011-0673-y
[2] Koornneef M, Alonso B C, Peeters A J M, Soppe W . Genetic control of flowering time in Arabidopsis. Annu Rev Plant Physiol Plant Mol Biol, 1998,49:345-370.
doi: 10.1146/annurev.arplant.49.1.345
[3] Bouche F, Lobet G, Tocquin P, Perilleux C . FLOR-ID: an interactive database of flowering-time gene networks in Arabidopsis thaliana. Nucl Acids Res, 2016,44:1167-1171.
[4] Blumel M, Dally N, Jung C . Flowering time regulation in crops-what did we learn from Arabidopsis?. Curr Opin Biotechnol, 2015,32:121-129.
doi: 10.1016/j.copbio.2014.11.023
[5] Fornara F, de Montaigu A, Coupland G . SnapShot: control of flowering in Arabidopsis. Cell, 2010,141:550-550.
doi: 10.1016/j.cell.2010.04.024
[6] Peng F Y, Hu Z, Yang R C . Genome-wide comparative analysis of flowering-related genes in Arabidopsis, wheat, and barley. Int J Plant Genomics, 2015,15:1-17.
[7] Raman H, Raman R, Coombes N, Song J, Prangnell R, Bandaranayake C, Tahira R, Sundaramoorthi V, Killian A, Meng J, Dennis E S, Balasubramanian S . Genome-wide association analyses reveal complex genetic architecture underlying natural variation for flowering time in canola. Plant Cell Environ, 2016,39:1228-1239.
doi: 10.1111/pce.12644
[8] Xu L, Hu K, Zhang Z, Guan C, Chen S, Hua W, Li J, Wen J, Yi B, Shen J, Ma C, Tu J, Fu T . Genome-wide association study reveals the genetic architecture of flowering time in rapeseed (Brassica napus L.). DNA Res, 2016,23:43-52.
[9] Wang J, Qiu Y, Cheng F, Chen X, Zhang X, Wang H, Song J, Duan M, Yang H, Li X . Genome-wide identification, characterization, and evolutionary analysis of flowering genes in radish (Raphanus sativus L.). BMC Genomics, 2017,18:981, doi: 10.1186/s12864-017-4377-z.
[10] Yang Z . PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol, 2007,24:1586-1591.
doi: 10.1093/molbev/msm088
[11] Liang Y, Wan N, Cheng Z, Mo Y, Liu B, Liu H, Raboanatahiry N, Yin Y, Li M . Whole-genome identification and expression pattern of the vicinal oxygen chelate family in rapeseed (Brassica napus L.). Front Plant Sci, 2017,8:745, doi: 10.3389/fpls.2017.00745.
[12] Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley D R, Pimentel H, Salzberg S L, Rinn J L, Pachter L . Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc, 2012,7:562-578.
doi: 10.1038/nprot.2012.016
[13] Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg S L . TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol, 2013,14:R36.
doi: 10.1186/gb-2013-14-4-r36
[14] Song Y H, Ito S, Imaizumi T . Flowering time regulation: photoperiod- and temperature-sensing in leaves. Trends Plant Sci, 2013,18:575-583.
doi: 10.1016/j.tplants.2013.05.003
[15] Wenkel S, Turck F, Singer K, Gissot L, Le Gourrierec J, Samach A, Coupland G . CONSTANS and the CCAAT box binding complex share a functionally important domain and interact to regulate flowering of Arabidopsis. Plant Cell, 2006,18:2971-2984.
doi: 10.1105/tpc.106.043299
[16] Dong M A, Farre E M, Thomashow M F . Circadian clock-associated 1 and late elongated hypocotyl regulate expression of the C-repeat binding factor (CBF) pathway in Arabidopsis. Proc Natl Acad Sci USA, 2011,108:7241-7246.
doi: 10.1073/pnas.1103741108
[17] Sawa M, Kay S A . GIGANTEA directly activates flowering locus T in Arabidopsis thaliana. Proc Natl Acad Sci USA, 2011,108:11698-11703.
[18] Nagel D H, Doherty C J, Pruneda P J L, Schmitz R J, Ecker J R, Kay S A . Genome-wide identification of CCA1 targets uncovers an expanded clock network in Arabidopsis. Proc Natl Acad Sci USA, 2015,112:4802-4810.
doi: 10.1073/pnas.1513609112
[19] Baudry A, Ito S, Song Y H, Strait A A, Kiba T, Lu S, Henriques R, Pruneda P J L, Chua N H, Tobin E M, Kay S A, Imaizumi T . F-box proteins FKF1 and LKP2 act in concert with ZEITLUPE to control Arabidopsis clock progression. Plant Cell, 2010,22:606-622.
doi: 10.1105/tpc.109.072843
[20] Lou P, Wu J, Cheng F, Cressman L G, Wang X , McClung C R. Preferential retention of circadian clock genes during diploidization following whole genome triplication in Brassica rapa. Plant Cell, 2012,24:2415-2426.
[21] Johanson U, West J, Lister C, Michaels S, Amasino R, Dean C . Molecular analysis of FRIGIDA, a major determinant of natural variation in Arabidopsis flowering time. Science, 2000,290:344-347.
doi: 10.1126/science.290.5490.344
[22] Noh B, Lee S H, Kim H J, Yi G, Shin E A, Lee M, Jung K J, Doyle M R, Amasino R M, Noh Y S . Divergent roles of a pair of homologous jumonji/zinc-finger-class transcription factor proteins in the regulation of Arabidopsis flowering time. Plant Cell, 2004,16:2601-2613.
doi: 10.1105/tpc.104.025353
[23] Simpson G G . The autonomous pathway: epigenetic and post- transcriptional gene regulation in the control of Arabidopsis flowering time. Curr Opin Plant Biol, 2004,7:570-574.
doi: 10.1016/j.pbi.2004.07.002
[24] Parcy F . Flowering: a time for integration. Int J Dev Biol, 2005,49:585-593.
doi: 10.1387/ijdb.041930fp
[25] Kim S, Soltis P S, Wall K, Soltis D E . Phylogeny and domain evolution in the APETALA2-like gene family. Mol Biol Evol, 2006,23:107-120.
doi: 10.1093/molbev/msj014
[26] Mitchum M G, Yamaguchi S, Hanada A, Kuwahara A, Yoshioka Y, Kato T, Tabata S, Kamiya Y, Sun T P . Distinct and overlapping roles of two gibberellin 3-oxidases in Arabidopsis development. Plant J, 2006,45:804-818.
doi: 10.1111/tpj.2006.45.issue-5
[27] Ariizumi T, Murase K, Sun T P, Steber C M . Proteolysis- independent downregulation of DELLA repression in Arabidopsis by the gibberellin receptor GIBBERELLIN INSENSITIVE DWARF1. Plant Cell, 2008,20:2447-2459.
doi: 10.1105/tpc.108.058487
[28] Achard P, Vriezen W H, Van D S D, Harberd N P . Ethylene regulates arabidopsis development via the modulation of DELLA protein growth repressor function. Plant Cell, 2003,15:2816-2825.
doi: 10.1105/tpc.015685
[29] Samach A, Wigge P A . Ambient temperature perception in plants. Curr Opin Plant Biol, 2005,8:483-486.
doi: 10.1016/j.pbi.2005.07.011
[30] Thines B C, Youn Y, Duarte M I, Harmon F G . The time of day effects of warm temperature on flowering time involve PIF4 and PIF5. J Exp Bot, 2014,65:1141-1151.
doi: 10.1093/jxb/ert487
[31] Lee J H, Yoo S J, Park S H, Hwang I, Lee J S, Ahn J H . Role of SVP in the control of flowering time by ambient temperature in Arabidopsis. Genes Dev, 2007,21:397-402.
doi: 10.1101/gad.1518407
[32] Yan Y, Shen L, Chen Y, Bao S, Thong Z, Yu H . A MYB-domain protein EFM mediates flowering responses to environmental cues in Arabidopsis. Dev Cell, 2014,30:437-448.
doi: 10.1016/j.devcel.2014.07.004
[33] Paul M J, Primavesi L F, Jhurreea D, Zhang Y . Trehalose metabolism and signaling. Annu Rev Plant Biol, 2008,59:417-441.
doi: 10.1146/annurev.arplant.59.032607.092945
[34] Dalchau N, Baek S J, Briggs H M, Robertson F C, Dodd A N, Gardner M J, Stancombe M A, Haydon M J, Stan G B, Goncalves J M, Webb A A . The circadian oscillator gene GIGANTEA mediates a long-term response of the Arabidopsis thaliana circadian clock to sucrose. Proc Natl Acad Sci USA, 2011,108:5104-5109.
[35] Wahl V, Ponnu J, Schlereth A, Arrivault S, Langenecker T, Franke A, Feil R, Lunn J E, Stitt M, Schmid M . Regulation of flowering by trehalose-6-phosphate signaling in Arabidopsis thaliana. Science, 2013,339:704-707.
[36] Seo P J, Ryu J, Kang S K, Park C M . Modulation of sugar metabolism by an INDETERMINATE DOMAIN transcription factor contributes to photoperiodic flowering in Arabidopsis. Plant J, 2011,65:418-429.
doi: 10.1111/tpj.2011.65.issue-3
[37] Jung J H, Seo Y H, Seo P J, Reyes J L, Yun J, Chua N H, Park C M . The GIGANTEA-regulated microRNA172 mediates photoperiodic flowering independent of CONSTANS in Arabidopsis. Plant Cell, 2007,19:2736-2748.
doi: 10.1105/tpc.107.054528
[38] Mathieu J, Yant L J, Murdter F, Kuttner F, Schmid M . Repression of flowering by the miR172 target SMZ. PLoS Biol, 2009,7:e1000148.
doi: 10.1371/journal.pbio.1000148
[39] Wang J W, Czech B , Weigel D. miR156-regulated SPL transcription factors define an endogenous flowering pathway in Arabidopsis thaliana. Cell, 2009,138:738-749.
doi: 10.1016/j.cell.2009.06.014
[40] Matsoukas I G, Massiah A J, Thomas B . Starch metabolism and antiflorigenic signals modulate the juvenile-to-adult phase transition in Arabidopsis. Plant Cell Environ, 2013,36:1802-1811.
doi: 10.1111/pce.2013.36.issue-10
[41] Wang X, Wang H, Wang J, Sun R, Wu J, Liu S, Bai Y, Mun J H, Bancroft I, Cheng F, Huang S, Li X, Hua W, Wang J, Wang X, Freeling M, Pires J C, Paterson A H, Chalhoub B, Wang B, Hayward A, Sharpe A G, Park B S, Weisshaar B, Liu B, Li B, Liu B, Tong C, Song C, Duran C, Peng C, Geng C, Koh C, Lin C, Edwards D, Mu D, Shen D, Soumpourou E, Li F, Fraser F, Conant G, Lassalle G, King G J, Bonnema G, Tang H, Wang H, Belcram H, Zhou H, Hirakawa H, Abe H, Guo H, Wang H, Jin H, Parkin I A, Batley J, Kim J S, Just J, Li J, Xu J, Deng J, Kim J A, Li J, Yu J, Meng J, Wang J, Min J, Poulain J, Wang J, Hatakeyama K, Wu K, Wang L, Fang L, Trick M, Links M G, Zhao M, Jin M, Ramchiary N, Drou N, Berkman P J, Cai Q, Huang Q, Li R, Tabata S, Cheng S, Zhang S, Zhang S, Huang S, Sato S, Sun S, Kwon S J, Choi S R, Lee T H, Fan W, Zhao X, Tan X, Xu X, Wang Y, Qiu Y, Yin Y, Li Y, Du Y, Liao Y, Lim Y, Narusaka Y, Wang Y, Wang Z, Li Z, Wang Z, Xiong Z, Zhang Z , Brassica rapa Genome Sequencing Project C. The genome of the mesopolyploid crop species Brassica rapa. Nat Genet, 2011,43:1035-1039.
[42] Chalhoub B, Denoeud F, Liu S, Parkin I A, Tang H, Wang X, Chiquet J, Belcram H, Tong C, Samans B, Correa M, Da S C, Just J, Falentin C, Koh C S, Le C I, Bernard M, Bento P, Noel B, Labadie K, Alberti A, Charles M, Arnaud D, Guo H, Daviaud C, Alamery S, Jabbari K, Zhao M, Edger P P, Chelaifa H, Tack D, Lassalle G, Mestiri I, Schnel N, Le P M C, Fan G, Renault V, Bayer P E, Golicz A A, Manoli S, Lee T H, Thi V H, Chalabi S, Hu Q, Fan C, Tollenaere R, Lu Y, Battail C, Shen J, Sidebottom C H, Wang X, Canaguier A, Chauveau A, Berard A, Deniot G, Guan M, Liu Z, Sun F, Lim Y P, Lyons E, Town C D, Bancroft I, Wang X, Meng J, Ma J, Pires J C, King G J, Brunel D, Delourme R, Renard M, Aury J M, Adams K L, Batley J, Snowdon R J, Tost J, Edwards D, Zhou Y, Hua W, Sharpe A G, Paterson A H, Guan C, Wincker P . Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science, 2014,345:950-953.
[43] Liu S, Liu Y, Yang X, Tong C, Edwards D, Parkin I A, Zhao M, Ma J, Yu J, Huang S, Wang X, Wang J, Lu K, Fang Z, Bancroft I, Yang T J, Hu Q, Wang X, Yue Z, Li H, Yang L, Wu J, Zhou Q, Wang W, King G J, Pires J C, Lu C, Wu Z, Sampath P, Wang Z, Guo H, Pan S, Yang L, Min J, Zhang D, Jin D, Li W, Belcram H, Tu J, Guan M, Qi C, Du D, Li J, Jiang L, Batley J, Sharpe A G, Park B S, Ruperao P, Cheng F, Waminal N E, Huang Y, Dong C, Wang L, Li J, Hu Z, Zhuang M, Huang Y, Huang J, Shi J, Mei D, Liu J, Lee T H, Wang J, Jin H, Li Z, Li X, Zhang J, Xiao L, Zhou Y, Liu Z, Liu X, Qin R, Tang X, Liu W, Wang Y, Zhang Y, Lee J, Kim H H, Denoeud F, Xu X, Liang X, Hua W, Wang X, Wang J, Chalhoub B, Paterson A H . The Brassica oleracea genome reveals the asymmetrical evolution of polyploid genomes. Nat Commun, 2014,5:3930, doi: 10.1038/ncomms4930.
[44] Fujiwara S, Oda A, Yoshida R, Niinuma K, Miyata K, Tomozoe Y, Tajima T, Nakagawa M, Hayashi K, Coupland G, Mizoguchi T . Circadian clock proteins LHY and CCA1 regulate SVP protein accumulation to control flowering in Arabidopsis. Plant Cell, 2008,20:2960-2971.
doi: 10.1105/tpc.108.061531
[45] Ding Z, Millar A J, Davis A M, Davis S J . TIME FOR COFFEE encodes a nuclear regulator in the Arabidopsis thaliana circadian clock. Plant Cell, 2007,19:1522-1536.
[46] Tao Z, Shen L, Liu C, Liu L, Yan Y, Yu H . Genome-wide identification of SOC1 and SVP targets during the floral transition in Arabidopsis. Plant J, 2012,70:549-561.
doi: 10.1111/tpj.2012.70.issue-4
[47] Wigge P A, Kim M C, Jaeger K E, Busch W, Schmid M, Lohmann J U, Weigel D . Integration of spatial and temporal information during floral induction in Arabidopsis. Science, 2005,309:1056-1059.
doi: 10.1126/science.1114358
[48] Lee H, Suh S S, Park E, Cho E, Ahn J H, Kim S G, Lee J S, Kwon Y M, Lee I . The AGAMOUS-LIKE 20 MADS domain protein integrates floral inductive pathways in Arabidopsis. Genes Dev, 2000,14:2366-2376.
doi: 10.1101/gad.813600
[49] Liu C, Xi W, Shen L, Tan C, Yu H . Regulation of floral patterning by flowering time genes. Dev Cell, 2009,16:711-722.
doi: 10.1016/j.devcel.2009.03.011
[1] CHEN Song-Yu, DING Yi-Juan, SUN Jun-Ming, HUANG Deng-Wen, YANG Nan, DAI Yu-Han, WAN Hua-Fang, QIAN Wei. Genome-wide identification of BnCNGC and the gene expression analysis in Brassica napus challenged with Sclerotinia sclerotiorum and PEG-simulated drought [J]. Acta Agronomica Sinica, 2022, 48(6): 1357-1371.
[2] JIN Min-Shan, QU Rui-Fang, LI Hong-Ying, HAN Yan-Qing, MA Fang-Fang, HAN Yuan-Huai, XING Guo-Fang. Identification of sugar transporter gene family SiSTPs in foxtail millet and its participation in stress response [J]. Acta Agronomica Sinica, 2022, 48(4): 825-839.
[3] YUAN Da-Shuang, DENG Wan-Yu, WANG Zhen, PENG Qian, ZHANG Xiao-Li, YAO Meng-Nan, MIAO Wen-Jie, ZHU Dong-Ming, LI Jia-Na, LIANG Ying. Cloning and functional analysis of BnMAPK2 gene in Brassica napus [J]. Acta Agronomica Sinica, 2022, 48(4): 840-850.
[4] HUANG Cheng, LIANG Xiao-Mei, DAI Cheng, WEN Jing, YI Bin, TU Jin-Xing, SHEN Jin-Xiong, FU Ting-Dong, MA Chao-Zhi. Genome wide analysis of BnAPs gene family in Brassica napus [J]. Acta Agronomica Sinica, 2022, 48(3): 597-607.
[5] JIN Rong, JIANG Wei, LIU Ming, ZHAO Peng, ZHANG Qiang-Qiang, LI Tie-Xin, WANG Dan-Feng, FAN Wen-Jing, ZHANG Ai-Jun, TANG Zhong-Hou. Genome-wide characterization and expression analysis of Dof family genes in sweetpotato [J]. Acta Agronomica Sinica, 2022, 48(3): 608-623.
[6] WANG Rui, CHEN Xue, GUO Qing-Qing, ZHOU Rong, CHEN Lei, LI Jia-Na. Development of linkage InDel markers of the white petal gene based on whole-genome re-sequencing data in Brassica napus L. [J]. Acta Agronomica Sinica, 2022, 48(3): 759-769.
[7] WANG Yan-Hua, LIU Jing-Sen, LI Jia-Na. Integrating GWAS and WGCNA to screen and identify candidate genes for biological yield in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(8): 1491-1510.
[8] YIN Ming, YANG Da-Wei, TANG Hui-Juan, PAN Gen, LI De-Fang, ZHAO Li-Ning, HUANG Si-Qi. Genome-wide identification of GRAS transcription factor and expression analysis in response to cadmium stresses in hemp (Cannabis sativa L.) [J]. Acta Agronomica Sinica, 2021, 47(6): 1054-1069.
[9] LI Jie-Hua, DUAN Qun, SHI Ming-Tao, WU Lu-Mei, LIU Han, LIN Yong-Jun, WU Gao-Bing, FAN Chu-Chuan, ZHOU Yong-Ming. Development and identification of transgenic rapeseed with a novel gene for glyphosate resistance [J]. Acta Agronomica Sinica, 2021, 47(5): 789-798.
[10] TANG Xin, LI Yuan-Yuan, LU Jun-Xing, ZHANG Tao. Morphological characteristics and cytological study of anther abortion of temperature-sensitive nuclear male sterile line 160S in Brassica napus [J]. Acta Agronomica Sinica, 2021, 47(5): 983-990.
[11] ZHOU Xin-Tong, GUO Qing-Qing, CHEN Xue, LI Jia-Na, WANG Rui. Construction of a high-density genetic map using genotyping by sequencing (GBS) for quantitative trait loci (QTL) analysis of pink petal trait in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(4): 587-598.
[12] LI Shu-Yu, HUANG Yang, XIONG Jie, DING Ge, CHEN Lun-Lin, SONG Lai-Qiang. QTL mapping and candidate genes screening of earliness traits in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(4): 626-637.
[13] JIA Xiao-Ping, LI Jian-Feng, ZHANG Bo, QUAN Jian-Zhang, WANG Yong-Fang, ZHAO Yuan, ZHANG Xiao-Mei, WANG Zhen-Shan, SANG Lu-Man, DONG Zhi-Ping. Responsive features of SiPRR37 to photoperiod and temperature, abiotic stress and identification of its favourable allelic variations in foxtail millet (Setaria italica L.) [J]. Acta Agronomica Sinica, 2021, 47(4): 638-649.
[14] ZHAO Jia-Jia, QIAO Ling, WU Bang-Bang, GE Chuan, QIAO Lin-Yi, ZHANG Shu-Wei, YAN Su-Xian, ZHENG Xing-Wei, ZHENG Jun. Seedling root characteristics and drought resistance of wheat in Shanxi province [J]. Acta Agronomica Sinica, 2021, 47(4): 714-727.
[15] TANG Jing-Quan, WANG Nan, GAO Jie, LIU Ting-Ting, WEN Jing, YI Bin, TU Jin-Xing, FU Ting-Dong, SHEN Jin-Xiong. Bioinformatics analysis of SnRK gene family and its relation with seed oil content of Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(3): 416-426.
Full text



No Suggested Reading articles found!