Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2021, Vol. 47 ›› Issue (6): 1124-1137.doi: 10.3724/SP.J.1006.2021.04150

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Expression pattern analysis of genes related to lipid synthesis in peanut

XU Jing1(), PAN Li-Juan1, LI Hao-Yuan2, WANG Tong1, CHEN Na1, CHEN Ming-Na1, WANG Mian1, YU Shan-Lin1, HOU Yan-Hua2,*(), CHI Xiao-Yuan1,*()   

  1. 1Shandong Peanut Research Institute, Qingdao 266100, Shandong, China
    2School of Marine and Technology, Harbin Institute of Technology, Weihai 264209, Shandong, China
  • Received:2020-07-10 Accepted:2020-11-13 Online:2021-06-12 Published:2020-12-23
  • Contact: HOU Yan-Hua,CHI Xiao-Yuan E-mail:xu_jing_cool@yeah.net;houyanhua2006@163.com;chi000@126.com
  • Supported by:
    The China Agriculture Research System(CARS-13);The Qingdao People’s livelihood Science and Technology Program(20-3-4-26-nsh);The Agricultural Scientific and Technological Innovation Project of Shandong Academy of Agricultural Sciences(CXGC2016B02);The Agricultural Scientific and Technological Innovation Project of Shandong Academy of Agricultural Sciences(CXGC2018E21);The Breeding Project from Department Science & Technology of Shandong Province(2019JZZY010702);The Key-Area Research and Development Program of Guangdong Province(2020B020219003);The Improved Variety Engineering Project of Shandong Province(2017LZGC003);The Key Research and Development Program of Linyi(2019YD009);The National Natural Science Foundation of China(31701464)

Abstract:

In order to survey the regulation patterns of genes expression in the synthesis of oil at different developmental stages in peanut seed, F18 (high-oleic medium oil peanut variety) and ‘Luhua 6’ (low-oleic acid low oil variety) were used as research materials. The expression pattern analysis of genes was performed for peanut seeds on the 10, 30, 40, and 60 DAP, respectively. The results indicated that 130, 3556, and 2783 genes were significantly differentially expressed in the two varieties (lines) on the 30, 40, and 60 DAP, respectively. GO annotation and KEGG enrichment showed that DEGs were mainly enriched in the fatty acid synthesis and photosynthetic pathways, such as FAB2, FAD2, WRI1 genes, which were involved in the accumulation of oleic acid. All the genes involved in photosynthesis pathway were photochlorophyll binding proteins and all of them were up-regulated. KEGG pathway indicated that all the genes involved in fatty acid biosynthesis pathway on the 40 DAP and 60 DAP were up-regulated. In summary, these results provide a theoretical basis for molecular study of fatty acid synthesis in the development stage of peanut seeds and offer some candidate genes as gene resources of quality improvement in peanut breeding.

Key words: peanut, microarray, differentially expressed genes, genes involved in lipid synthesis

Table 1

Primers for RT-PCR in this study"

基因编号
Gene ID
正向引物
Forward primer (5°-3°)
反向引物
Reverse primer (5°-3°)
AHTC1032413 ACGAAGGTTATGGAAGTAG AGGAAGGTAGTGAAGGAA
AHTC1030930 AGGTGAAGAATCTGTTAGTC CTTATCTTGTGAATTACTTGTCT
AHTC1005724 GATAAGTGGAGCAGTAGC CAAGAAGACGATGATATAAGC
AHTC1030772 TCAATCAGATTCGTAACATTC ACTCAATAACTCTATCCACTAG
AHTC1020107 CTACTACTCATCATTCATTGTC CTTAACTCACCCACACAT
AHTC1012845 TCCTCTTCTTCATCTTCATC CCTGGTTACTCCTCTGTA
AHTC1014100 ACTCCTTCTCCTCTTCAT ATATTAGGCAGCAGATACC
AHTC1001812 AATGGCAGGAGGTTATTG TTCTTCTTCATCATAATCTTAGC
AHTC1001844 GTGACTTGGCAGAGATTA AATTGATTGATTGACGGATG
AHTC1001749 TCTTGGAGTTCCTTGTTG GCTATGCGACTTCTTCAT
AHTC1005424 GAGTGATGTAGTTGAGATAGA CTCTTCCGATGACTTGAT
AHTC1000715 TGGTTAAGAGGAGCATTG ATGAGGCATTGTTGAGAA
AHTC1002482 GTTGCTCTGATGACTCTC TATGGCTAACCGTTGATG
AHTC1027178 TCTCACTCACTCTCATCA CCACCACCATCTTAGAAG
Actin11 TTGGAATGGGTCAGAAGGATGC AGTGGTGCCTCAGTAAGAAGC

Table 2

Oil and fatty acid content at different developmental stages in F18 and Luhua 6"

样品名称
Name
发育时期
Development stage
含油量
Oil content (%)
油酸含量
Oleic content (%)
亚油酸含量
Linoleic content (%)
油亚比
O/L
F18 10 DAP 13.86 58.91 15.39 3.83
30 DAP 35.21 74.01 5.61 13.19
40 DAP 46.82 76.06 2.43 31.30
60 DAP 50.81 70.75 1.55 45.65
鲁花6号
Luhua 6
10 DAP 19.67 31.63 37.14 0.85
30 DAP 36.95 34.96 41.28 0.85
40 DAP 44.44 37.67 39.39 0.96
60 DAP 45.44 43.98 34.28 1.28

Fig. 1

Volcano plot of differential expression genes at the different developmental stages between F18 and Luhua 6 A: different expression genes of 10 DAP; B: different expression genes of 30 DAP; C: different expression genes of 40 DAP; D: different expression genes of 60 DAP. Red blots represent the different expression genes of F18 compared with ‘Luhua 6’."

Fig. 2

Differentially expressed genes of two variations (lines) at three different developmental stages A: the up-regulated expression genes of F18 compared with ‘Luhua 6’; B: the down-regulated expression genes of F18 compared with ‘Luhua 6’."

Fig. 3

GO annotation and enrichment of differentially expressed genes"

Fig. 4

KEGG pathway annotation and enrichment of differentially expressed genes"

Fig. 5

Fatty acid biosynthesis pathway of differential expression genes on 40 DAP and 60 DAP Red represents the up-regulated expression genes of F18 compared with ‘Luhua 6’."

Table 3

Differentially expressed genes involved in the lipid metabolism on 40 DAP"

基因编号
Gene ID
基因注释
Gene annotation
GO富集
GO enrichment
调控a
Regulationa
差异表达倍数
Fold change
AHTC1031703 移酶1-酰基-sn-甘油-3-磷酸酰基转 磷脂生物合成 上调 4.19
1-acyl-sn-glycerol-3-phosphate acyltransferase-like Phospholipid biosynthetic process Up
基因编号
Gene ID
基因注释
Gene annotation
GO富集
GO enrichment
调控a
Regulationa
差异表达倍数
Fold change
AHTC1022314 3-酮脂酰-合酶 脂肪酸生物合成 上调 2.88
3-ketoacyl-synthase Fatty acid biosynthetic process Up
AHTC1029564 类3-酮脂酰-合酶10 脂肪酸生物合成 上调 2.30
3-ketoacyl-synthase 10-like Fatty acid biosynthetic process Up
AHTC1007527 3-酮脂酰-合酶11 脂肪酸生物合成 下调 3.28
3-ketoacyl-synthase 11 Fatty acid biosynthetic process Down
AHTC1008395 类3-酮脂酰-合酶11 脂肪酸生物合成 下调 2.55
3-ketoacyl-synthase 11-like Fatty acid biosynthetic process Down
AHTC1016489 3-酮脂酰-合酶21 脂质生物合成 上调 5.25
3-ketoacyl-synthase 21 Lipid biosynthetic process Up
AHTC1003640 类3-酮脂酰-合酶21 脂肪酸生物合成 上调 3.51
3-ketoacyl-synthase 21-like Fatty acid biosynthetic process Up
AHTC1003641 类3-酮脂酰-合酶21 脂肪酸生物合成 上调 6.43
3-ketoacyl-synthase 21-like Fatty acid biosynthetic process Up
AHTC1004544 3-酮脂酰-合酶6 脂肪酸生物合成 上调 2.86
3-ketoacyl-synthase 6 Fatty acid biosynthetic process Up
AHTC1019082 α-乙酰羧化酶亚基 脂肪酸生物合成; 丙二酰辅酶A生物合成 下调 2.07
Alpha-acetyl-carboxylase subunit Fatty acid biosynthetic process;
malonyl-CoA biosynthetic process
Down
AHTC1001812 β-酮酰基-ACP还原酶 脂肪酸生物合成; 氧化还原 上调 2.05
Beta-ketoacyl-acp reductase 1-2 Fatty acid biosynthetic process;
oxidation-reduction process
Up
AHTC1001844 β-酮酰基-ACP合酶 脂肪酸生物合成 上调 2.17
Beta-ketoacyl-acp synthase i-2 Fatty acid biosynthetic process Up
AHTC1005915 叶绿体ω-6 脂肪酸去饱和酶 二磷酸生物合成 上调 2.06
Chloroplast omega-6 fatty acid desaturase Diphosphate biosynthetic process Up
AHTC1032453 酰基-载体-蛋白合酶 脂肪酸生物合成 上调 2.16
Fatty acid biosynthesis 1 isoform 1 Fatty acid biosynthetic process Up
AHTC1032454 酰基-载体-蛋白合酶 脂肪酸生物合成 上调 2.57
Fatty acid biosynthesis 1 isoform 1 Fatty acid biosynthetic process Up
AHTC1020107 鞘脂Δ8 去饱和酶 脂质代谢; 氧化还原 上调 2.04
Fatty acid sphingolipid desaturase Lipid metabolic process; oxidation-
reduction process
Up
AHTC1035094 脂质转移蛋白 脂质转移 上调 14.59
Lipid transfer protein gpi-anchored Lipid transport Up
AHTC1009675 长链酰基合成酶 长链脂肪酸代谢 上调 2.44
Long chain acyl-synthetase 1-like isoform×1 Long-chain fatty acid metabolic process Up
AHTC1026013 长链酰基合成酶 长链脂肪酸代谢 上调 3.03
Long chain acyl-synthetase 1-like isoform×1 Long-chain fatty acid metabolic process up
AHTC1017689 长链酰基合酶2 长链脂肪酸代谢 上调 2.65
Long chain acyl-synthetase 2 Long-chain fatty acid metabolic process up
AHTC1006429 长链酰基合成酶2异构体 长链脂肪酸代谢 上调 3.44
Long chain acyl-synthetase 2-like isoform×2 Long-chain fatty acid metabolic process Up
AHTC1034617 微粒体ω-3脂肪酸去饱和酶 脂质代谢; 氧化还原 上调 5.40
Microsomal omega-3 fatty acid desaturase Lipid metabolic process; oxidation-
reduction process
Up
基因编号
Gene ID
基因注释
Gene annotation
GO富集
GO enrichment
调控a
Regulationa
差异表达倍数
Fold change
AHTC1020991 非特异性脂质转移酶蛋白 脂质转移 上调 3.92
Non-specific lipid-transfer protein Lipid transport Up
AHTC1017861 ω-3去饱和酶家族蛋白 不饱和脂肪酸生物合成; 氧化还原 下调 2.55
Omega-3 desaturase family protein Unsaturated fatty acid biosynthetic process; oxidation-reduction process Down
AHTC1008662 硬脂酰ACP去饱和酶 脂肪酸生物合成 上调 3.48
Stearoyl-acyl-carrier desaturase Fatty acid biosynthetic process; oxidation-reduction process Up

Table 4

Differentially expressed genes involved in the lipid metabolism on 60 DAP"

基因编号
Gene ID
基因注释
Gene annotation
GO富集
GO enrichment
调控a
Regulationa
差异表达倍数
Fold change
AHTC1005431 类3-酮脂酰-合酶11 脂肪酸生物合成 上调 7.27
3-ketoacyl-synthase 11-like Fatty acid biosynthetic process Up
AHTC1000075 酰基载体蛋白 脂肪酸生物合成; 氧化还原 上调 3.10
Acyl carrier protein 1 Fatty acid biosynthetic process; oxidation- reduction process Up
AHTC1000128 酰基载体蛋白 脂肪酸生物合成; 氧化还原 上调 2.72
Acyl carrier protein 1 Fatty acid biosynthetic process; oxidation- reduction process Up
AHTC1028756 α-羧基转移酶前体 脂肪酸生物合成 上调 4.68
Alpha-carboxyltransferase precursor Fatty acid biosynthetic process Up
AHTC1005278 α-羧基转移酶 脂肪酸生物合成; 泛醌生物合成 上调 4.26
Alpha-carboxyl transferase 2 Fatty acid biosynthetic process; coenzyme biosynthetic process Up
AHTC1000881 β-羟烷基-ACP脱氢酶 脂肪酸生物合成 上调 18.60
Beta-hydroxyacyl-acp dehydratase Fatty acid biosynthetic process Up
AHTC1001812 β-酮酰基-ACP还原酶 脂肪酸生物合成; 氧化还原 上调 7.89
Beta-ketoacyl-acp reductase 1-2 Fatty acid biosynthetic process; oxidation- reduction process Up
AHTC1001844 β-酮酰基-ACP合酶 脂肪酸生物合成 上调 4.49
Beta-ketoacyl-acp synthase i-2 Fatty acid biosynthetic process Up
AHTC1007010 β-酮酰基-ACP合酶 脂肪酸生物合成 上调 3.25
Beta-ketoacyl-acp synthase ii-1 Fatty acid biosynthetic process Up
AHTC1002452 生物素羧基载体蛋白 脂肪酸生物合成 上调 6.29
Biotin carboxyl carrier protein 2-2 Fatty acid biosynthetic process Up
AHTC1014935 生物素羧基载体蛋白 脂肪酸生物合成 上调 2.83
Biotin carboxyl carrier protein 2-2 Fatty acid biosynthetic process Up
AHTC1022457 生物素羧基载体蛋白 脂肪酸生物合成 上调 4.01
Biotin carboxyl carrier protein 2-2 Fatty acid biosynthetic process Up
AHTC1032453 酰基-载体-蛋白合酶 脂肪酸生物合成 上调 3.90
Fatty acid biosynthesis 1 isoform 1 Fatty acid biosynthetic process Up
AHTC1009675 长链酰基合成酶 长链脂肪酸代谢 上调 7.57
Long chain acyl-synthetase 1-like isoform×1 Long-chain fatty acid metabolic process Up
基因编号
Gene ID
基因注释
Gene annotation
GO富集
GO enrichment
调控a
Regulationa
差异表达倍数
Fold change
AHTC1026013 长链酰基合成酶 长链脂肪酸代谢 上调 9.64
Long chain acyl-synthetase 1-like isoform×1 Long-chain fatty acid metabolic process Up
AHTC1017689 长链酰基合酶2 长链脂肪酸代谢 上调 6.75
Long chain acyl-synthetase 2 Long-chain fatty acid metabolic process Up
AHTC1020991 非特异性脂质转移酶蛋白 脂质转移 上调 3.89
Non-specific lipid-transfer protein Lipid transport Up
AHTC1002315 非特异性脂质转移酶蛋白 脂质转移 上调 3.73
Non-specific lipid-transfer protein at5g64080-like Lipid transport Up
AHTC1015374 非特异性脂质转移酶蛋白 脂质转移 上调 3.13
Non-specific lipid-transfer protein at5g64080-like Lipid transport Up
AHTC1019533 酰基转移酶 甘油酯生物合成 下调 6.23
O-acyltransferase wsd1-like Glycerolipid biosynthetic process Down
AHTC1005424 油酰-酰基载体蛋白硫酯酶 脂肪酸生物合成 上调 2.72
Oleoyl-acyl carrier protein thioesterase chloroplastic-like Fatty acid biosynthetic process Up
AHTC1000715 ω6 脂肪酸去饱和酶 脂质代谢; 氧化还原 上调 3.82
Omega 6 fatty acid desaturase Lipid metabolic process; oxidation-reduction process Up
AHTC1021791 过氧化物酶体脂肪酸-β氧化多功能蛋白 脂肪酸生物合成; 氧化还原 下调 2.62
Peroxisomal fatty acid beta-oxidation multifunctional protein mfp2-like Fatty acid metabolic process; oxidation-
reduction process
Down
AHTC1001749 硬脂酰-ACP去饱和酶 脂肪酸生物合成; 氧化还原 上调 29.89
Searoyl-acp desaturase Fatty acid biosynthetic process; oxidation- reduction process Up
AHTC1003174 超长链3-酰基还原酶 超长链脂肪酸生物合成 上调 3.92
Very-long-chain 3-oxoacyl-reductase 1-like Very long-chain fatty acid biosynthetic process Up
AHTC1001068 类超长链烯酰还原酶异构体 脂质代谢; 氧化还原 上调 3.97
Very-long-chain enoyl-reductase-like isoformx1 Lipid metabolic process; oxidation-reduction process Up
AHTC1001069 类超长链烯酰还原酶异构体 脂质代谢; 氧化还原 上调 3.80
Very-long-chain enoyl-reductase-like isoformx1 Lipid metabolic process; oxidation-reduction process Up

Fig. 6

Protein-protein interaction of WRI1 Black and grey represent the up- and down-regulated expression genes of F18 compared with ‘Luhua 6’."

Fig. 7

RT-PCR validation results of the differentially expressed genes at different developmental stages"

Table 5

RT-PCR validation results of the differentially expressed genes"

基因编号
Gnen ID
基因注释
Gene annotation
发育时期
Development stage
调控a
Regulation a
芯片数据(倍数)
Microarray data
(fold change)
RT-PCR验证结果(倍数)
RT-PCR result
(fold change)
AHTC1032413 黄酮醇合酶 DAP30 上调 6.05 13.64
Flavonol synthase flavanone 3-hydroxylase-like Up
AHTC1030930 锌指蛋白 DAP30 下调 -3.78 -4.55
Dof zinc finger protein Down
AHTC1005724 非特异性脂质转移酶 DAP40 上调 4.04 3.25
Non-specific lipid-transfer protein 3-like Up
AHTC1030772 β-羟酰基-ACP脱水酶 DAP40 上调 2.86 2.11
Beta-hydroxyacyl-acp dehydrase 1 Up
AHTC1020107 鞘脂Δ8 去饱和酶 DAP40 上调 2.04 3.48
Fatty acid sphingolipid desaturase Up
AHTC1012845 WRI1 转录因子 DAP40 上调 2.15 2.31
Ethylene-responsive transcription factor wri1-like Up
AHTC1030930 锌指蛋白 DAP40 下调 -5.30 -10.24
Dof zinc finger protein down
AHTC1014100 肌醇半乳糖醇合酶 DAP40 下调 -3.09 -4.07
Galactinol synthase 8 Down
AHTC1001812 β-酮酰基-ACP还原酶 DAP60 上调 7.89 5.09
Beta-ketoacyl-acp reductase 1-2 Up
AHTC1001844 β-酮酰基-ACP合酶 DAP60 上调 4.49 4.83
Beta-ketoacyl-acp synthase i-2 Up
AHTC1012845 WRI1 转录因子 DAP60 上调 5.83 21.21
Ethylene-responsive transcription factor wri1-like Up
AHTC1005424 酰基载体蛋白硫酯酶 DAP60 上调 2.72 3.47
Oleoyl-acyl carrier protein thioesterase chloroplastic-like Up
基因编号
Gnen ID
基因注释
Gene annotation
发育时期
Development stage
调控a
Regulationa
芯片数据(倍数)
Microarray data
(fold change)
RT-PCR验证结果(倍数)
RT-PCR result
(fold change)
AHTC1001749 硬脂酰-ACP去饱和酶 DAP60 上调 29.89 16.26
Stearoyl-acp desaturase Up
AHTC1000715 ω6 脂肪酸去饱和酶 DAP60 上调 3.82 1.55
Omega 6 fatty acid desaturase Up
AHTC1002482 天冬酰胺合成酶 DAP60 下调 -4.87 -6.12
Asparagine synthetase 2 Down
AHTC1027178 Hsf 转录因子 DAP60 下调 -4.39 -9.85
Heat stress transcription factor a-2-like Down
[1] Sarvamangala C, Gowda M, Varshney R. Identification of quantitative trait loci for protein content, oil content and oil quality for groundnut (Arachis hypogaea L.). Field Crops Res, 2011,122:49-59.
[2] Huth P J, Fulgoni III V L, Larson B T. A systematic review of high-oleic vegetable oil substitutions for other fats and oils on cardiovascular disease risk factors: implications for novel high-oleic soybean oils. Adv Nutr, 2015,6:674-693.
[3] 陈玉梅, 李璐璐, 陈锦玲, 徐媛, 李惠敏, 秦新民. 基于转录组测序的花生籽粒不同发育时期油脂合成相关基因差异表达分析. 河南农业科学, 2019,48(7):24-37.
Chen Y M, Li L L, Chen J L, Xu Y, Li H M, Qin X M. Differential expression analysis of genes related to lipid synthesis through transcriptome sequencing during different developmental stages in peanut seed. J Henan Agric Sci, 2019,48(7):24-37 (in Chinese with English abstract).
[4] Chi X Y, Yang Q L, Pan L J, Chen N, Wang T, Wang M, Yang Z, Guan X, Yu S L. Isolation and expression analysis of glycerol-3-phosphate acyltransferase genes from peanuts (Arachis hypogaea L.). Grasas y Aceites, 2015,66:e093.
[5] Chi X Y, Hu R B, Zhang X W, Chen M N, Chen N, Pan L J, Wang T, Wang M, Yang Z, Wang Q F, Yu S L. Cloning and functional analysis of three diacylglycerol acyltransferase genes from peanut (Arachis hypogaea L.). PLoS One, 2014,9:e105834.
[6] Zheng L, Shockey J, Guo F, Shi L M, Li X G, Shan L, Wan S B, Peng Z Y. Discovery of a new mechanism for regulation of plant triacylglycerol metabolism: the peanut diacylglycerol acyltransferase-1 gene family transcriptome is highly enriched in alternative splicing variants. J Plant Physiol, 2017,219:62-70.
[7] Chi X Y, Dong F, Yang Q L, Chen M N, Chen N, Pan L J, Wang T, Wang M, Yang Z, He Y N, Yu S L. Expression and characterization of Lysophosphatidyl acyltransferase genes from peanut (Arachis hypogaea L.). Res Crops, 2014,15:141-153.
[8] Chen S L, Huang J Q, Lei Y, Zhang Y T, Ren X P, Chen Y N, Jiang H F, Yan L Y, Li Y R, Liao B S. Identification and characterization of a gene encoding a putative lysophosphatidyl acyltransferase from Arachis hypogaea. J Biosci, 2012,37:1029-1039.
[9] 皮广静, 刘风珍, 万勇善, 张昆, 吕玉英, 张秀荣. 花生高油品系农大D666及其亲本油脂合成酰基转移酶基因的表达分析. 分子植物育种, 2018,16:1057-1065.
Pi G J, Liu F Z, Wan Y S, Zhang K, Lyu Y Y, Zhang X R. Expression analysis of Acyltransferase genes involved in oil biosynthesis in high-oil peanut line Nongda D666 and parents. Mol Plant Breed, 2018,16:1057-1065 (in Chinese with English abstract).
[10] Chi X Y, Yang Q L, Pan L J, Chen M N, He Y N, Yang Z, Yu S L. Isolation and characterization of fatty acid desaturase genes from peanut (Arachis hypogaea L.). Plant Cell Rep, 2011,30:1393-1404.
[11] Chi X Y, Zhang Z M, Chen N, Zhang X W, Wang M, Chen M N, Wang T, Pan L J, Chen J, Yang Z, Guan X Y, Yu S L. Isolation and functional analysis of fatty acid desaturase genes from peanut (Arachis hypogaea L.). PLoS One, 2017,12:e0189759.
[12] Focks N, Benning C. Wrinkled1: a novel, low-seed-oil mutant of Arabidopsis with a deficiency in the seed-specific regulation of carbohydrate metabolism. Plant Physiol, 1998,118:91-101.
[13] Pouvreau B, Baud B, Vernoud V, Morin V, Py C, Gendrot G, Pichon J P, Rouster J, Paul W, Rogowsky P M. Duplicate maize Wrinkled1 transcription factors activate target genes involved in seed oil biosynthesis. Plant Physiol, 2011,156:674-686.
[14] 孙金波, 石素华, 杨利, 李凤丽, 王兴军, 赵术珍. 花生WRI1基因家族的全基因组与表达谱分析. 花生学报, 2020,49(1):9-18.
Sun J B, Shi S H, Yang L, Li F L, Wang X J, Zhao S Z. Genome-wide analysis of WRI1 gene family and their expression profiles in peanut. J Peanut Sci, 2020,49(1):9-18 (in Chinese with English abstract).
[15] Harwood H J. Oleochemicals as a fuel: mechanical and economic feasibility. J Am Oil Chem Soci, 1984,61:315-324.
[16] 迟晓元, 郝翠翠, 潘丽娟, 陈娜, 陈明娜, 王通, 王冕, 杨珍, 梁成伟. 不同花生品种脂肪酸组成及其积累规律的研究. 花生学报, 2016,45(3):32-36.
Chi X Y, Hao C C, Pan L J, Chen N, Chen M N, Wang T, Wang M, Yang Z, Liang C W. Fatty acid accumulation pattern in different types of peanut. J Peanut Sci, 2016,45:32-36 (in Chinese with English abstract).
[17] Yu P, Wang C H, Xu Q, Feng Y, Yuan X P, Yu H Y, Wang Y P, Tang S X, Wei X H. Detection of copy number variations in rice using array-based comparative genomic hybridization. BMC Genomics, 2011,12:372.
[18] 陈娜, 迟晓元, 程果, 潘丽娟, 陈明娜, 王通, 王冕, 杨珍, 禹山林. 花生中低温胁迫相关转录因子基因的筛选. 核农学报, 2016,30(1):19-27.
Chen N, Chi X Y, Cheng G, Pan L J, Chen M N, Wang T, Wang M, Yang Z, Yu S L. Profiling of genes encoding cold stress-related transcription factors in peanut. J Nucl Agric Sci, 2016,30:19-27 (in Chinese with English abstract).
[19] Barbour J A, Howe P R, Buckley J D, Bryan J, Coates A M. Cerebrovascular and cognitive benefits of high-oleic peanut consumption in healthy overweight middle-aged adults. Nutr Neurosci, 2017,20:555-562.
[20] 姜慧芳, 任小平, 黄家权, 雷永, 廖伯寿. 野生花生脂肪酸组成的遗传变异及远缘杂交创造高油酸低棕榈酸花生新种质. 作物学报, 2009,35:25-32.
Jiang H F, Ren X P, Huang J Q, Lei Y, Liao B S. Genetic variation of fatty acid components in Arachis species and development of interspecific hybrids with high oleic and low palmitic acids. Acta Agron Sin, 2009,35:25-32 (in Chinese with English abstract).
[21] 于明洋, 孙明明, 郭悦, 姜平平, 雷永, 黄冰艳, 冯素萍, 郭宝珠, 隋炯明, 王晶珊. 利用回交法快速选育高油酸花生新品系. 作物学报, 2017,43:855-861.
Yu M Y, Sun M M, Guo Y, Jiang P P, Lei Y, Huang B Y, Feng S P, Guo B Z, Sui J M, Wang J S. Breeding new peanut line with high oleic acid content using backcross method. Acta Agron Sin, 2017,43:855-861 (in Chinese with English abstract).
[22] 陈四龙. 花生油脂合成相关基因的鉴定与功能研究. 中国农业科学院研究生院博士学位论文,北京, 2012, pp 60-61.
Chen S L. Identification and Functional Analysis of Lipid Biosynthesis Related Genes in Peanut (Arachis hypogaea L.). PhD Dissertation of Graduate School of Chinese Academy of Agricultural Sciences, Beijing,China, 2012, pp 60-61 (in Chinese with English abstract).
[23] Li F P, Ma C Z, Wang X, Gao C B, Zhang J F, Wang Y Y, Cong N, Li X H, Wen J, Yi B, Shen J X, Tu J X, Fu T D. Characterization of sucrose transporter alleles and their association with seed yield-related traits in Brassica napus L. BMC Plant Biol, 2011,11:168.
doi: 10.1186/1471-2229-11-168
[24] Zaborowska Z, Starzycki M, Femiak I, Swiderski M, Legocki A B. Yellow lupine gene encoding stearoyl-ACP desaturase: organization, expression and potential application. Acta Biochim Pol, 2002,49:29-42.
pmid: 12136953
[25] Bruner A C, Jung S, Abbott A G, Powell G L. The naturally occurring high oleate oil character in some peanut varieties results from reduced oleoyl-PC desaturase activity from mutation of aspartate 150 to asparagine. Crop Sci, 2001,41:522-526.
[26] 官梅, 李栒, 官春云. 利用基因芯片技术研究甘蓝型油菜油酸合成中差异表达基因. 作物学报, 2010,36:968-978.
Guan M, Li X, Guan C Y. Differentially expressed genes in oleic acid synthesis of Brassica napus by detected gene chip. Acta Agron Sin, 2010,36:968-978 (in Chinese with English abstract).
[27] 李玉兰, 孙勤富, 王幼平. 植物油脂合成的转录调控研究进展. 分子植物育种, 2016,14:2509-2518.
Li Y L, Sun Q F, Wang Y P. Research advance in transcriptional regulation of lipid synthesis and accumulation in plant. Mol Plant Breed, 2016,14:2509-2518 (in Chinese with English abstract).
[28] Maeo K, Tokuda T, Ayame A, Mitsui N, Kawai T, Tsukagoshi H, Ishiguro S, Nakamura K. An AP2-type transcription factor, WRINKLED1, of Arabidopsis thaliana binds to the AW-box sequence conserved among proximal upstream regions of genes involved in fatty acid synthesis. Plant J, 2009,60:476-487.
[29] Fukuda N, Ikawa Y, Aoyagi T, Kozaki A. Expression of the genes coding for plastidic acetyl-CoA carboxylase subunits is regulated by a location-sensitive transcription factor binding site. Plant Mol Biol, 2013,82:473-483.
[1] YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487.
[2] LI Hai-Fen, WEI Hao, WEN Shi-Jie, LU Qing, LIU Hao, LI Shao-Xiong, HONG Yan-Bin, CHEN Xiao-Ping, LIANG Xuan-Qiang. Cloning and expression analysis of voltage dependent anion channel (AhVDAC) gene in the geotropism response of the peanut gynophores [J]. Acta Agronomica Sinica, 2022, 48(6): 1558-1565.
[3] LI A-Li, FENG Ya-Nan, LI Ping, ZHANG Dong-Sheng, ZONG Yu-Zheng, LIN Wen, HAO Xing-Yu. Transcriptome analysis of leaves responses to elevated CO2 concentration, drought and interaction conditions in soybean [Glycine max (Linn.) Merr.] [J]. Acta Agronomica Sinica, 2022, 48(5): 1103-1118.
[4] DING Hong, XU Yang, ZHANG Guan-Chu, QIN Fei-Fei, DAI Liang-Xiang, ZHANG Zhi-Meng. Effects of drought at different growth stages and nitrogen application on nitrogen absorption and utilization in peanut [J]. Acta Agronomica Sinica, 2022, 48(3): 695-703.
[5] HUANG Li, CHEN Yu-Ning, LUO Huai-Yong, ZHOU Xiao-Jing, LIU Nian, CHEN Wei-Gang, LEI Yong, LIAO Bo-Shou, JIANG Hui-Fang. Advances of QTL mapping for seed size related traits in peanut [J]. Acta Agronomica Sinica, 2022, 48(2): 280-291.
[6] WANG Ying, GAO Fang, LIU Zhao-Xin, ZHAO Ji-Hao, LAI Hua-Jiang, PAN Xiao-Yi, BI Chen, LI Xiang-Dong, YANG Dong-Qing. Identification of gene co-expression modules of peanut main stem growth by WGCNA [J]. Acta Agronomica Sinica, 2021, 47(9): 1639-1653.
[7] WANG Jian-Guo, ZHANG Jia-Lei, GUO Feng, TANG Zhao-Hui, YANG Sha, PENG Zhen-Ying, MENG Jing-Jing, CUI Li, LI Xin-Guo, WAN Shu-Bo. Effects of interaction between calcium and nitrogen fertilizers on dry matter, nitrogen accumulation and distribution, and yield in peanut [J]. Acta Agronomica Sinica, 2021, 47(9): 1666-1679.
[8] SHI Lei, MIAO Li-Juan, HUANG Bing-Yan, GAO Wei, ZHANG Zong-Xin, QI Fei-Yan, LIU Juan, DONG Wen-Zhao, ZHANG Xin-You. Characterization of the promoter and 5'-UTR intron in AhFAD2-1 genes from peanut and their responses to cold stress [J]. Acta Agronomica Sinica, 2021, 47(9): 1703-1711.
[9] GAO Fang, LIU Zhao-Xin, ZHAO Ji-Hao, WANG Ying, PAN Xiao-Yi, LAI Hua-Jiang, LI Xiang-Dong, YANG Dong-Qing. Source-sink characteristics and classification of peanut major cultivars in North China [J]. Acta Agronomica Sinica, 2021, 47(9): 1712-1723.
[10] ZHANG He, JIANG Chun-Ji, YIN Dong-Mei, DONG Jia-Le, REN Jing-Yao, ZHAO Xin-Hua, ZHONG Chao, WANG Xiao-Guang, YU Hai-Qiu. Establishment of comprehensive evaluation system for cold tolerance and screening of cold-tolerance germplasm in peanut [J]. Acta Agronomica Sinica, 2021, 47(9): 1753-1767.
[11] XUE Xiao-Meng, WU JIE, WANG Xin, BAI Dong-Mei, HU Mei-Ling, YAN Li-Ying, CHEN Yu-Ning, KANG Yan-Ping, WANG Zhi-Hui, HUAI Dong-Xin, LEI Yong, LIAO Bo-Shou. Effects of cold stress on germination in peanut cultivars with normal and high content of oleic acid [J]. Acta Agronomica Sinica, 2021, 47(9): 1768-1778.
[12] HAO Xi, CUI Ya-Nan, ZHANG Jun, LIU Juan, ZANG Xiu-Wang, GAO Wei, LIU Bing, DONG Wen-Zhao, TANG Feng-Shou. Effects of hydrogen peroxide soaking on germination and physiological metabolism of seeds in peanut [J]. Acta Agronomica Sinica, 2021, 47(9): 1834-1840.
[13] ZHANG Wang, XIAN Jun-Lin, SUN Chao, WANG Chun-Ming, SHI Li, YU Wei-Chang. Preliminary study of genome editing of peanut FAD2 genes by CRISPR/Cas9 [J]. Acta Agronomica Sinica, 2021, 47(8): 1481-1490.
[14] DAI Liang-Xiang, XU Yang, ZHANG Guan-Chu, SHI Xiao-Long, QIN Fei-Fei, DING Hong, ZHANG Zhi-Meng. Response of rhizosphere bacterial community diversity to salt stress in peanut [J]. Acta Agronomica Sinica, 2021, 47(8): 1581-1592.
[15] HUANG Wen-Gong, JIANG Wei-Dong, YAO Yu-Bo, SONG Xi-Xia, LIU Yan, CHEN Si, ZHAO Dong-Sheng, WU Guang-Wen, YUAN Hong-Mei, REN Chuan-Ying, SUN Zhong-Yi, WU Jian-Zhong, KANG Qing-Hua. Transcriptome profiling of flax (Linum usttatissimum L.) response to low potassium stress [J]. Acta Agronomica Sinica, 2021, 47(6): 1070-1081.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!