Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2021, Vol. 47 ›› Issue (6): 1114-1123.doi: 10.3724/SP.J.1006.2021.02047

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Genome-wide association study of blast resistance loci in the core germplasm of rice landraces from Guangxi

CHEN Can(), NONG Bao-Xuan(), XIA Xiu-Zhong, ZHANG Zong-Qiong, ZENG Yu, FENG Rui, GUO Hui, DENG Guo-Fu, LI Dan-Ting*(), YANG Xing-Hai*()   

  1. Rice Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding, Nanning 530007, Guangxi, China
  • Received:2020-07-12 Accepted:2020-12-01 Online:2021-06-12 Published:2020-12-28
  • Contact: LI Dan-Ting,YANG Xing-Hai E-mail:chencan129@126.com;nongbaoxuan88@gxaas.net;ricegl@163.com;yangxinghai514@163.com
  • Supported by:
    The Special Fund of Local Science and Technology Development for the Central Guidance(桂科ZY19183020);The Guangxi Special Fund for Innovation-Driven Development(AA17204045-1);The Guangxi Natural Science Fund(2020GXNSFAA259041);The Guangxi Natural Science Fund(2018GXNSFAA138124);The Guangxi Natural Science Fund(2017GXNSFBA198210);The Opening Project of Major Science and Technology Innovation Base for Guangxi(2018-05-Z06-CX04);The Development Fund of Guangxi Academy of Agricultural Sciences(桂农科2019Z08)

Abstract:

Blast disease is one of the most important rice diseases, which seriously affects the yield and quality in rice. In general, breeding resistant varieties is the most economical, environmental, and friendly way to control rice blast. Identification and mining of blast resistance genes are the basis and premise of disease resistance breeding. In our previous study, 419 core germplasms from Guangxi rice landraces were sequenced using specific-locus amplified fragment sequencing (SLAF-seq) technology, and 208,993 high-quality SNPs were identified. Spray inoculation at seedling stage was used to evaluate the resistance of the 419 germplasms to 7 strains. According to phenotype and genotype data, genome-wide association study (GWAS) for rice blast was performed using general linear model (GLM) and mixed linear model (MLM). A total of 20 loci were detected under the two models, including 20 loci detected by GLM and 1 locus detected by MLM. Chr12_10803913 locus was detected in both models. There were 17 loci, overlapping with previously reported genes/QTLs, while the remaining three loci were the first reported, including Chr3_18302718, Chr3_18302744, and Chr5_10379127. A total of 323 candidate genes were screened out in the genomic regions of 150 kb upstream and downstream of 20 significantly associated loci. Eight candidate genes were preliminarily determined to be related to disease resistance. Among them, both LOC_Os12g18360 (Pita) and LOC_Os12g18729 (Ptr) were known cloned genes, LOC_Os03g32100, LOC_Os03g32180, and LOC_Os05g18090 were selected as candidate genes near the three loci. The results provided the scientific basis for the mining of rice blast resistance loci and gene cloning.

Key words: rice, blast disease, genome-wide association study (GWAS), candidate genes

Table 1

Statistical analysis of leaf blast resistance of rice seedlings inoculated with different rice blast strains"

小种
Strain
抗级
Range
平均值±标准差
Mean±SE
变异系数
CV (%)
ZA9 1-9 5.03±1.49 29.62
ZA13 1-8 5.72±1.36 23.78
ZB1 1-7 4.29±1.44 33.57
ZB9 1-8 4.83±1.54 31.88
ZB13 1-7 3.80±1.53 40.26
ZC3 1-8 4.84±1.62 33.47
ZC13 1-7 2.93±1.40 47.78

Fig. 1

Distribution of resistance levels of leaf blast among the associated population inoculated with seven strains"

Fig. 2

Genome-wide association study of rice blast resistance to three strains A, B, and C represent Manhattan plot of GLM model ZB9, ZC3, and ZC13, respectively. D represents Manhattan plot ZC3 in MLM model. D, E, and F represent Quantitle-Quantitle plot of GLM model ZB9, ZC3, and ZC13, respectively. H represents Quantitle-Quantitle plot ZC3 in MLM model. The solid inverse triangle in the figure is the significant correlation point in this study."

Table 2

SNP locus of significant association of rice blast and located genes/QTLs"

小种
Strain
染色体
Chr.
位置
Position
P
P-value
上游位点
Upstream loci
下游位点
Downstream loci
模型
Model
已知基因/QTL
Known genes/QTLs
ZB9 1 10,443,043 1.63E-06 10,293,043 10,593,043 GLM Pi-h2(t)
ZC3 1 8,116,727 1.54E-07 7,966,727 8,266,727 GLM Pi-sj9
ZC3 1 8,116,887 2.91E-07 7,966,887 8,266,887 GLM Pi-sj9
ZC3 3 18,302,718 3.60E-08 18,152,718 18,452,718 GLM
ZC3 3 18,302,744 1.35E-08 18,152,744 18,452,744 GLM
ZC3 5 10,379,127 2.32E-07 10,229,127 10,529,127 GLM
ZB9 8 6,776,078 4.99E-07 6,626,078 6,926,078 GLM Pizh, Pi42
小种
Strain
染色体
Chr.
位置
Position
P
P-value
上游位点
Upstream loci
下游位点
Downstream loci
模型
Model
已知基因/QTL
Known genes/QTLs
ZC13 12 10,917,077 9.44E-08 10,767,077 11,067,077 GLM Pi12, Pi157, Pi19(t), Pi20, Pi31(t), Pi42(t), Pi6(t), Pita, Pita2, Pi67, Pi39(t), Pi58(t), Pi57, Ptr
ZC13 12 10,919,541 3.98E-07 10,769,541 11,069,541 GLM
ZC3 12 10,629,609 6.56E-08 10,479,609 107,79,609 GLM
ZC3 12 10,796,961 1.84E-07 10,646,961 10,946,961 GLM
ZC3 12 10,801,871 1.30E-07 10,651,871 10,951,871 GLM
ZC3 12 10,803,744 7.39E-09 10,653,744 10,953,744 GLM
ZC3 12 10,803,791 3.45E-08 10,653,791 10,953,791 GLM
ZC3 12 10,803,913 9.20E-10 10,653,913 10,953,913 GLM
ZC3 12 10,816,142 4.90E-09 10,666,142 10,966,142 GLM
ZC3 12 10,816,145 8.24E-09 10,666,145 10,966,145 GLM
ZC3 12 10,816,166 8.24E-09 10,666,166 10,966,166 GLM
ZC3 12 10,816,338 8.01E-09 10,666,338 10,966,338 GLM
ZC3 12 10,926,790 2.35E-07 10,776,790 11,076,790 GLM
ZC3 12 10,803,913 3.93E-07 10,653,913 10,953,913 MLM

Table 3

Information of candidate genes"

基因名称
Gene name
物理位置
Physical position
基因注释
Gene annotation
LOC_Os01g14550 8,159,849-8,161,554 Pathogen-related protein, putative, expressed
LOC_Os01g14590 8,175,375-8,177,889 Pathogen-related protein, putative, expressed
LOC_Os03g32100 18,367,156-18,368,378 Spotted leaf 11, putative, expressed
LOC_Os03g32180 18,410,063-18,411,482 Polygalacturonase inhibitor 1 precursor, putative, expressed
LOC_Os05g18090 10,404,235-10,407,571 SHR5-receptor-like kinase, putative, expressed
LOC_Os12g18360 10,606,359-10,612,068 NB-ARC domain containing protein, expressed
LOC_Os12g18374 10,624,037-10,633,368 NB-ARC domain containing protein, expressed
LOC_Os12g18729 10,822,534-10,833,768 Expressed protein

Fig. 3

Identified blast resistance genes and their associated loci An inverted triangle refers to the region of an association point or associated bit. A: the rice blast genes located on chromosome 1; B: the rice blast genes on chromosome 12 overlapped with the significantly associated locus region."

[1] Ashkani S, Rafii M Y, Shabanimofrad M, Miah G, Sahebi M, Azizi P, Tanweer F A, Akhtar M S, Nasehi A. Molecular breeding strategy and challenges towards the improvement of blast disease resistance in rice crop. Front Plant Sci, 2015,6:886.
[2] Sakulkoo W, Osés-Ruiz M, Garcia E O, Soanes D M, Littlejohn G R, Hacker C, Correia A, Valent B, Talbot N J. A single fungal MAP kinase controls plant cell-to-cell invasion by the rice blast fungus. Science, 2018,359:1399-1403.
[3] Scheuermann K K, Raimondi J V, Marschalek R, Andrade A D, Wickert E. The Molecular Basis of Plant Genetic Diversity. Shanghai: InTech China, 2012. pp 331-356.
[4] Manandhar H K, Lyngs Jorgensen H J, Mathur S B, Smedegaard-Peterson V. Suppression of rice blast by preinoculation with avirulent Pyricularia oryzae and the nonrice pathogen Bipolaris sorokiniana. Phytopathology, 1998,88:735-739.
[5] Zeigler R S, Leong S A, Teng P S. Rice Blast Disease. Wallingford: CAB International, 1994. pp 626.
[6] 曹妮, 陈渊, 季芝娟, 曾宇翔, 杨长登, 梁燕. 水稻抗稻瘟病分子机制研究进展. 中国水稻科学, 2019,33:489-498.
Cao N, Chen Y, Ji Z J, Zeng Y X, Yang C D, Liang Y. Recent progress in molecular mechanism of rice blast resistance. Chin J Rice Sci, 2019,33:489-498 (in Chinese with English abstract).
[7] Zheng C Q, Jiang N, Zhao X H, Yan T Z, Fu J, Li Y F, Wu Z X, Hu X C, Bai Z N, Liu T G, Xiao G, Zhou Y B, Chen L B, Wang K, Yang Y Z. Identification of the blast resistance gene Picl(t) from Chaling common wild rice (Oryza rufipogon Griff.). J Phytopathol, 2020,168:211-219.
[8] Kalia S, Rathour R. Current status on mapping of genes for resistance to leaf- and neck-blast disease in rice. 3 Biotech, 2019,9:209.
doi: 10.1007/s13205-019-1738-0 pmid: 31093479
[9] Mgonja E M, Park C H, Kang H X, Balimponya E G, Opiyo S, Bellizzi M, Mutiga S K, Rotich F, Ganeshan V D, Mabagala R, Sneller C, Correll J, Zhou B, Talbot N J, Mitchell T K, Wang G L. Genotyping-by-sequencing-based genetic analysis of African rice cultivars and association mapping of blast resistance genes against Magnaporthe oryzae populations in Africa. Phytopathology, 2017,107:1039-1046.
[10] Wang C H, Yang Y L, Yuan X P, Xu Q, Feng Y, Yu H Y, Wang Y P, Wei X H. Genome-wide association study of blast resistance in indica rice. BMC Plant Biol, 2014,14:311-321.
doi: 10.1186/s12870-014-0311-6 pmid: 25403621
[11] Kang H X, Wang Y, Peng S S, Zhang Y L, Xiao Y H, Wan D, Qu S H, Li Z Q, Yan S Y, Wang Z L, Liu W D, Ning Y S, Korniliev P, Leung H, Mezey J, Mccouch S R, Wang G L. Dissection of the genetic architecture of rice resistance to the blast fungus Magnaporthe oryzae. Mol Plant Pathol, 2016,17:959-972.
[12] Lin H A, Chen S Y, Chang F Y, Tung C W, Chen Y C, Shen W C, Chen R S, Wu C W, Chung C L. Genome-wide association study of rice genes and loci conferring resistance to Magnaporthe oryzae isolates from Taiwan. Bot Stud, 2018,59:32.
[13] Li C G, Wang D, Peng S S, Chen Y, Su P, Chen J B, Zheng L M, Tan X Q, Liu J L, Xiao Y H, Kang H X, Zhang D Y, Wang G L, Liu Y. Genome-wide association mapping of resistance against rice blast strains in South China and identification of a new Pik allele. Rice, 2019,12:47.
pmid: 31309315
[14] Lu Q, Wang C H, Niu X J, Zhang M C, Xu Q, Feng Y, Yang Y L, Wang S, Yuan X P, Yu H Y, Wang Y P, Wei X H. Detecting novel loci underlying rice blast resistance by integrating a genome-wide association study and RNA sequencing. Mol Breed, 2019,39:81.
[15] Yang X H, Xia X Z, Zeng Y, Nong B X, Zhang Z Q, Wu Y Y, Xiong F Q, Zhang Y X, Liang H F, Deng G F, Li D T. Identification of candidate genes for gelatinization temperature, gel consistency and pericarp color by GWAS in rice based on SLAF-sequencing. PLoS One, 2018,13:e0196690.
pmid: 29746484
[16] 杨行海, 农保选, 夏秀忠, 张宗琼, 曾宇, 刘开强, 邓国富, 李丹婷. 水稻糯性相关基因的全基因组关联分析. 植物学报, 2016,51:737-742.
Yang X H, Nong B X, Xia X Z, Zhang Z Q, Zeng Y, Liu K Q, Deng G F, Li D T. Genome-wide association study of genes related to waxiness in Oryza sativa. Chin Bull Bot, 2016,51:737-742 (in Chinese with English abstract).
[17] 杨行海, 农保选, 夏秀忠, 张宗琼, 曾宇, 刘开强, 邓国富, 李丹婷. 广西地方稻种资源核心种质红色种皮全基因组关联分析及鉴定两个新的Rc等位基因. 分子植物育种, 2017,15:1-6.
Yang X H, Nong B X, Xia X Z, Zhang Z Q, Zeng Y, Liu K Q, Deng G F, Li D T. Validation of the red pericarp gene from 419 rice landrace core collection in Guangxi using genome-wide association study and discovery of two novel Rc alleles. Mol Plant Breed, 2017,15:1-6 (in Chinese with English abstract).
[18] 农保选, 秦碧霞, 夏秀忠, 杨行海, 张宗琼, 曾宇, 刘驰, 蔡健和, 谢慧婷, 崔丽贤, 罗群昌, 邓国富, 刘丕庆, 李丹婷. 南方水稻黑条矮缩病苗期抗性的全基因组关联分析. 分子植物育种, 2019,17:1069-1079.
Nong B X, Qin B X, Xia X Z, Yang X H, Zhang Z Q, Zeng Y, Liu C, Cai J H, Xie H T, Cui L X, Luo Q C, Deng G F, Liu P Q, Li D T. Genome-wide association study of seedling resistance of southern rice black-streaked dwarf virus. Mol Plant Breed, 2019,17:1069-1079 (in Chinese with English abstract).
[19] Park C H, Chen S B, Shirsekar G, Zhou B, Khang C H, Songkumarn P, Afzal A J, Ning Y S, Wang R Y, Bellizzi M, Valent B, Wang G L. The Magnaporthe oryzae effector AvrPiz-t targets the RING E3 ubiquitin ligase APIP6 to suppress pathogen-associated molecular pattern-triggered immunity in rice. Plant Cell, 2012,24:4748-4762.
[20] IRRI (International Rice Research Institute). Standard Evaluation System for Rice. Philippines: International Rice Research Institute, Manila, Philippines. 1996. pp 17-18.
[21] Zhang Z W, Ersoz E, Lai C Q, Todhunter R J, Tiwari H K, Gore M A, Bradbury P J, Yu J M, Arnett D K, Ordovas J M, Buckler E S. Mixed linear model approach adapted for genome-wide association studies. Nat Genet, 2010,42:355-360.
[22] Liu W D, Liu J L, Triplett L, Leach J E, Wang G L. Novel insights into rice innate immunity against bacterial and fungal pathogens. Annu Rev Phytopathol, 2014,52:213-241.
pmid: 24906128
[23] Kourelis J van der Hoorn R A L. Defended to the nines: 25 years of resistance gene cloning identifies nine mechanisms for R protein function. Plant Cell, 2018,30:285-299.
[24] Orbach M J, Farrall L, Sweigard J A, Chumley F G, Valent B. A telomeric avirulence gene determines efficacy for the rice blast resistance gene Pi-ta. Plant Cell, 2000,12:2019-2032.
pmid: 11090206
[25] Bryan G T, Wu K S, Farrall L, Jia Y L, Hershey H P, McAdams H S A, Faulk K N, Donaldson G K, Tarchini R, Valent B. A single amino acid difference distinguishes resistant and susceptible alleles of the rice blast resistance gene Pi-ta. Plant Cell, 2000,12:2033-2045.
pmid: 11090207
[26] Zhao H J, Wang X Y, Jia Y L, Minkenberg B, Wheatley M, Fan J B, Jia M H, Famoso A, Edward J D, Wamishe Y, Valent B, Wang G L, Yang Y N. The rice blast resistance gene Ptr encodes an atypical protein required for broad-spectrum disease resistance. Nat Commun, 2018,9:2039.
[27] 宋微. 松粳9号对稻瘟病抗性及抗病基因定位. 东北农业大学硕士学位论文,黑龙江哈尔滨, 2013.
Song W. Identification and Gene Mapping of Resistance to Magnaporthe Grisea in Songjing No. 9. MS Thesis of Northeast Agricultural University, Harbin, Heilongjiang,China, 2013 (in Chinese with English abstract).
[28] Xiao W M, Yang Q Y, Sun D Y, Wang H, Guo T, Liu Y Z, Zhu X Y, Chen Z Q. Identification of three major R genes responsible for broad-spectrum blast resistance in an indica rice accession. Mol Breed, 2015,35:49.
[29] Causse M A, Fulton T M, Cho Y G, Ahn S N, Chunwongse J, Wu K S, Xiao J H, Yu Z H, Ronald P C, Harrington S E, Second G, McCouch S R, Tanksley S D. Saturated molecular map of the rice genome based on an interspecific backcross population. Genetics, 1994,138:1251-1274.
[30] Lee S, Wamishe Y, Jia Y, Liu G, Jia M H. Identification of two major resistance genes against race IE-1k of Magnaporthe oryzae the indica rice cultivar Zhe 733. Mol Breed, 2009,24:127-134.
[31] Sallaud C, Lorieux M, Roumen E, Tharreau D, Berruyer R, Svestasrani P, Garsmeur O, Ghesquiere A, Notteghem J L. Identification of five new blast resistance genes in the highly blast-resistant rice variety IR64 using a QTL mapping strategy. Theor Appl Genet, 2003,106:794-803.
[32] Zheng K L, Zhuang J Y, Lu J, Qian H R, Lin H X. Identification of DNA markers tightly linked to blast resistance genes in rice. In: Khush G S, Hettel G, Rola T, eds. Rice Genetics III (in Part 2), IRRI, Manila, Philippines, 2008. pp 565-569.
[33] Naqvi N I, Chattoo B B. Molecular genetic analysis and sequence characterized amplified region-assisted selection of blast resistance in rice. Rice Genet, 1996,3:570-576.
[34] Koide Y, Telebanco-Yanoria M J, Pena F D, Fukuta Y, Kobayashi N. Characterization of rice blast isolates by the differential system and their application for mapping a resistance gene,Pi19(t). J Phytopathol, 2011,159:85-93.
[35] Li W, Lei C L, Cheng Z J, Jia Y L, Huang D L, Wang J L, Wang J K, Zhang X, Su N, Guo X P, Zhai H Q, Wan J M. Identification of SSR markers for a broad-spectrum blast resistance gene Pi20(t) for marker-assisted breeding. Mol Breed, 2008,22:141-149.
[36] Kumar P, Pathania S, Katoch P, Sharma T R, Plaha P, Rathour R. Genetic and physical mapping of blast resistance gene Pi-42(t) on the short arm of rice chromosome 12. Mol Breed, 2010,25:217-228.
[37] Yu Z H, Mackill D J, Bonman J M, McCouch S R, Guiderdon i E, Notteghem J L, Tanksley S D. Molecular mapping of genes for resistance to rice blast (Pyricularia grisea Sacc.). Theor Appl Genet, 1996,93:859-863.
[38] Hayashi K, Yoshida H, Ashikawa I. Development of PCR-based allele-specific and InDel marker sets for nine rice blast resistance genes. Theor Appl Genet, 2006,113:251-260.
pmid: 16791691
[39] Joshi S, Dhatwalia S, Kaachra A, Sharma K D, Rathour R. Genetic and physical mapping of a new rice blast resistance specificity Pi-67 from a broad spectrum resistant genotype Tetep. Euphytica, 2019,215:9.
[40] Liu X Q, Yang Q Z, Lin F, Hua L X, Wang C T, Wang L, Pan Q H. Identification and fine mapping of Pi39(t), a major gene conferring the broad-spectrum resistance to Magnaporthe oryzae. Mol Genet Genom, 2007,278:403-410.
[41] Koide Y, Telebanco-Yanoria M J, Fukuta Y, Kobayashi N. Detection of novel blast resistance genes,Pi58(t) and Pi59(t), in a Myanmar rice landrace based on a standard differential system. Mol Breed, 2013,32:241-252.
[42] Dong L Y, Liu S F, Xu P, Deng W, Li X D, Tharreau D, Li J, Zhou J W, Wang Q, Tao D Y, Yang Q Z. Fine mapping of Pi57(t) conferring broad spectrum resistance against Magnaporthe oryzae in introgressionline IL-E1454 derived from Oryza longistaminata. PLoS One, 2017,12:e0186201.
pmid: 29016662
[43] Liang Z J, Wang L, Pan Q H. A new recessive gene conferring resistance against rice blast. Rice, 2016,9:47.
[44] Devi S J S R, Singh K, Umakanth B, Vishalakshi B, Rao K V S, Suneel B, Sharma S K, Kadambari G K M, Prasad M S, Senguttvel P, Syamaladevi D P, Madhav M S. Identification and characterization of a large effect QTL from Oryza glumaepatula revealed Pi68(t) as putative candidate gene for rice blast resistance. Rice, 2020,13:17.
[45] Naqvi N I, Bonman J M, Mackill D J, Nelson R J, Chattoo B B. Identifcation of RAPD markers linked to a major blast resistance gene in rice. Mol Breed, 1995,1:341-348.
[46] Ahn S N, Kim Y K, Hong H C, Han S S, Choi H C, McCouch S R, Moon H P. Mapping of genes conferring resistance to Korean isolates of rice blast fungus using DNA markers. Korean J Breed. 1997,29:416-423.
[47] 鲁清. 水稻种质资源重要农艺性状的全基因组关联分析. 中国农业科学院博士学位论文,北京, 2016.
Lu Q. Genome-wide Association Studies of Important Agronomic Traits in Rice Germplasm. PhD Dissertation of Chinese Academy of Agricultural Sciences, Beijing,China, 2016 (in Chinese with English abstract).
[48] Bagnaresi P, Biselli C, Orrù L, Urso S, Crispino L, Abbruscato P, Piffanelli P, Lupotto E, Cattivelli L, Vale G. Comparative transcriptome profiling of the early response to Magnaporthe oryzae in durable resistant vs susceptible rice (Oryza sativa L.) genotypes. PLoS One, 2012,7:e51609.
[49] Meng Q F, Gupta R, Kwon S J, Wang Y M. Agrawal G K, Rakwal R, Park S R, Kim S T. Transcriptomic analysis of Oryza sativa leaves reveals key changes in response to Magnaporthe oryzae MSP1. Plant Pathol J, 2018,34:257.
[50] Li W T, Zhu Z W, Chern M, Yin J J, Yang C, Ran L, Cheng M P, He M, Wang K, Wang J, Zhou X G, Zhu X B, Chen Z X, Wang J C, Zhao W, Ma B T, Qin P, Chen W L, Wang Y P, Liu J L, Wang W M, Wu X J, Li P, Wang J R, Zhu L H, Li S G, Chen X W. A natural allele of a transcription factor in rice confers broad-spectrum blast resistance. Cell, 2017,170:114-126.
pmid: 28666113
[1] TIAN Tian, CHEN Li-Juan, HE Hua-Qin. Identification of rice blast resistance candidate genes based on integrating Meta-QTL and RNA-seq analysis [J]. Acta Agronomica Sinica, 2022, 48(6): 1372-1388.
[2] ZHENG Chong-Ke, ZHOU Guan-Hua, NIU Shu-Lin, HE Ya-Nan, SUN wei, XIE Xian-Zhi. Phenotypic characterization and gene mapping of an early senescence leaf H5(esl-H5) mutant in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1389-1400.
[3] ZHOU Wen-Qi, QIANG Xiao-Xia, WANG Sen, JIANG Jing-Wen, WEI Wan-Rong. Mechanism of drought and salt tolerance of OsLPL2/PIR gene in rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1401-1415.
[4] ZHENG Xiao-Long, ZHOU Jing-Qing, BAI Yang, SHAO Ya-Fang, ZHANG Lin-Ping, HU Pei-Song, WEI Xiang-Jin. Difference and molecular mechanism of soluble sugar metabolism and quality of different rice panicle in japonica rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1425-1436.
[5] YAN Jia-Qian, GU Yi-Biao, XUE Zhang-Yi, ZHOU Tian-Yang, GE Qian-Qian, ZHANG Hao, LIU Li-Jun, WANG Zhi-Qin, GU Jun-Fei, YANG Jian-Chang, ZHOU Zhen-Ling, XU Da-Yong. Different responses of rice cultivars to salt stress and the underlying mechanisms [J]. Acta Agronomica Sinica, 2022, 48(6): 1463-1475.
[6] YANG Jian-Chang, LI Chao-Qing, JIANG Yi. Contents and compositions of amino acids in rice grains and their regulation: a review [J]. Acta Agronomica Sinica, 2022, 48(5): 1037-1050.
[7] DENG Zhao, JIANG Nan, FU Chen-Jian, YAN Tian-Zhe, FU Xing-Xue, HU Xiao-Chun, QIN Peng, LIU Shan-Shan, WANG Kai, YANG Yuan-Zhu. Analysis of blast resistance genes in Longliangyou and Jingliangyou hybrid rice varieties [J]. Acta Agronomica Sinica, 2022, 48(5): 1071-1080.
[8] YANG De-Wei, WANG Xun, ZHENG Xing-Xing, XIANG Xin-Quan, CUI Hai-Tao, LI Sheng-Ping, TANG Ding-Zhong. Functional studies of rice blast resistance related gene OsSAMS1 [J]. Acta Agronomica Sinica, 2022, 48(5): 1119-1128.
[9] ZHU Zheng, WANG Tian-Xing-Zi, CHEN Yue, LIU Yu-Qing, YAN Gao-Wei, XU Shan, MA Jin-Jiao, DOU Shi-Juan, LI Li-Yun, LIU Guo-Zhen. Rice transcription factor WRKY68 plays a positive role in Xa21-mediated resistance to Xanthomonas oryzae pv. oryzae [J]. Acta Agronomica Sinica, 2022, 48(5): 1129-1140.
[10] WANG Xiao-Lei, LI Wei-Xing, OU-YANG Lin-Juan, XU Jie, CHEN Xiao-Rong, BIAN Jian-Min, HU Li-Fang, PENG Xiao-Song, HE Xiao-Peng, FU Jun-Ru, ZHOU Da-Hu, HE Hao-Hua, SUN Xiao-Tang, ZHU Chang-Lan. QTL mapping for plant architecture in rice based on chromosome segment substitution lines [J]. Acta Agronomica Sinica, 2022, 48(5): 1141-1151.
[11] WANG Ze, ZHOU Qin-Yang, LIU Cong, MU Yue, GUO Wei, DING Yan-Feng, NINOMIYA Seishi. Estimation and evaluation of paddy rice canopy characteristics based on images from UAV and ground camera [J]. Acta Agronomica Sinica, 2022, 48(5): 1248-1261.
[12] KE Jian, CHEN Ting-Ting, WU Zhou, ZHU Tie-Zhong, SUN Jie, HE Hai-Bing, YOU Cui-Cui, ZHU De-Quan, WU Li-Quan. Suitable varieties and high-yielding population characteristics of late season rice in the northern margin area of double-cropping rice along the Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(4): 1005-1016.
[13] CHEN Yue, SUN Ming-Zhe, JIA Bo-Wei, LENG Yue, SUN Xiao-Li. Research progress regarding the function and mechanism of rice AP2/ERF transcription factor in stress response [J]. Acta Agronomica Sinica, 2022, 48(4): 781-790.
[14] WANG Lyu, CUI Yue-Zhen, WU Yu-Hong, HAO Xing-Shun, ZHANG Chun-Hui, WANG Jun-Yi, LIU Yi-Xin, LI Xiao-Gang, QIN Yu-Hang. Effects of rice stalks mulching combined with green manure (Astragalus smicus L.) incorporated into soil and reducing nitrogen fertilizer rate on rice yield and soil fertility [J]. Acta Agronomica Sinica, 2022, 48(4): 952-961.
[15] QIN Qin, TAO You-Feng, HUANG Bang-Chao, LI Hui, GAO Yun-Tian, ZHONG Xiao-Yuan, ZHOU Zhong-Lin, ZHU Li, LEI Xiao-Long, FENG Sheng-Qiang, WANG Xu, REN Wan-Jun. Characteristics of panicle stem growth and flowering period of the parents of hybrid rice in machine-transplanted seed production [J]. Acta Agronomica Sinica, 2022, 48(4): 988-1004.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!