Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2021, Vol. 47 ›› Issue (2): 332-341.doi: 10.3724/SP.J.1006.2021.04106

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Development and application of a near infrared spectroscopy model for predicting high sucrose content of peanut seed

LEI Yong1(), WANG Zhi-Hui1, HUAI Dong-Xin1, GAO Hua-Yuan2, YAN Li-Ying1, LI Jian-Guo1, LI Wei-Tao1, CHEN Yu-Ning1, KANG Yan-Ping1, LIU Hai-Long2, WANG Xin1, XUE Xiao-Meng1, JIANG Hui-Fang1, LIAO Bo-Shou1,*()   

  1. 1Oil Crops Research Institute, Chinese Academy of Agricultural Sciences / Key Laboratory of Oil Crop Biology of the Ministry of Agriculture and Rural Affairs, Wuhan 430062, Hubei, China
    2Peanut Research Institute, Jilin Academy of Agricultural Sciences, Gongzhuling 136100, Jilin, China
  • Received:2020-05-14 Accepted:2020-08-19 Online:2021-02-12 Published:2020-09-21
  • Contact: LIAO Bo-Shou E-mail:leiyong@caas.cn;lboshou@hotmail.com
  • Supported by:
    National Key Research and Development Program of China(2018YFD1000900);Open Project of Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs(KF2020008);Innovation Program of the Chinese Academy of Agricultural Sciences(CAAS-ASTIP-2013-OCRI);Key-Area Research and Development Program of Guangdong Province(2020B020219003)

Abstract:

Sugar content is an important factor affecting the flavor and processing characteristics of peanut (Arachis hypogaea L.) kernel and the sucrose content accounts for more than 90% of the total sugar content in peanut kernel. High-efficiency detection approach for sucrose content is crucial in developing high sucrose peanut varieties. In this study, 185 peanut genotypes with diversified sucrose contents were scanned in wave length of 1100-2500 nm for constructing a near-infrared spectrum of naturally dried seeds. The sucrose contents were determined by high performance liquid chromatography (HPLC) combined with standard curve method. A near-infrared calibration model of peanut seed sucrose content was established by partial least square method (PLS). For sucrose content, the coefficient of determinations (R2) was 0.962 with mean square deviation of 0.383. The coefficient of correlation between the predicted values and chemically tested value were 0.947 in 20 external samples, indicating that the model could predict sucrose content of peanut kernel. Six new sweet peanut lines with sucrose content over 7%, oleic acid over 78%, oil content less than 48% and desirable agronomic characters were selected among the hybrid progenies of “Jihua 02-1-4 × Zhonghua 26”.

Key words: peanut, sucrose content, near infrared spectroscopy (NIRS) model, high sucrose content, varieties

Table 1

Peanut accessions used for developing NIR model"

样品编号
Sample ID
品种(系)
Variety (line)
种植地点
Location
样品编号
Sample ID
品种(系)
Variety (line)
种植地点
Location
S001 A1435-3 湖北武汉 Wuhan, Hubei S104 A1516-1 湖北武汉 Wuhan, Hubei
S002 A1435-4 湖北武汉 Wuhan, Hubei S105 A1516-2 湖北武汉 Wuhan, Hubei
S003 A1442-1 湖北武汉 Wuhan, Hubei S106 A1518-1 湖北武汉 Wuhan, Hubei
S004 A1444-1 湖北武汉 Wuhan, Hubei S107 A1518-2 湖北武汉 Wuhan, Hubei
S005 A1444-2 湖北武汉 Wuhan, Hubei S108 A1520-1 湖北武汉 Wuhan, Hubei
S006 A1444-4 湖北武汉 Wuhan, Hubei S109 A1520-2 湖北武汉 Wuhan, Hubei
S007 A1444-5 湖北武汉 Wuhan, Hubei S110 A1529-1 湖北武汉 Wuhan, Hubei
S008 A1444-6 湖北武汉 Wuhan, Hubei S111 A1529-2 湖北武汉 Wuhan, Hubei
S009 A1447-1 湖北武汉 Wuhan, Hubei S112 A1532 湖北武汉 Wuhan, Hubei
S010 A1447-2 湖北武汉 Wuhan, Hubei S113 A1538 湖北武汉 Wuhan, Hubei
S011 A1447-3 湖北武汉 Wuhan, Hubei S114 A1541 湖北武汉 Wuhan, Hubei
S012 A1447-4 湖北武汉 Wuhan, Hubei S115 A1543-1 湖北武汉 Wuhan, Hubei
S013 A1447-5 湖北武汉 Wuhan, Hubei S116 A1543-2 湖北武汉 Wuhan, Hubei
样品编号
Sample ID
品种(系)
Variety (line)
种植地点
Location
样品编号
Sample ID
品种(系)
Variety (line)
种植地点
Location
S014 A1447-7 湖北武汉 Wuhan, Hubei S117 A1547-1 湖北武汉 Wuhan, Hubei
S015 A1449-1 湖北武汉 Wuhan, Hubei S118 A1547-2 湖北武汉 Wuhan, Hubei
S016 A1449-2 湖北武汉 Wuhan, Hubei S119 A1547-3 湖北武汉 Wuhan, Hubei
S017 A1449-3 湖北武汉 Wuhan, Hubei S120 A1547-4 湖北武汉 Wuhan, Hubei
S018 A1449-4 湖北武汉 Wuhan, Hubei S121 A1547-5 湖北武汉 Wuhan, Hubei
S019 A1449-5 湖北武汉 Wuhan, Hubei S122 花育23 Huayu 23 湖北武汉 Wuhan, Hubei
S020 A1449-6 湖北武汉 Wuhan, Hubei S123 远杂9102 Yuanza 9102 湖北武汉 Wuhan, Hubei
S021 A1449-7 湖北武汉 Wuhan, Hubei S124 锦花15 Jinhua 15 湖北武汉 Wuhan, Hubei
S022 A1449-8 湖北武汉 Wuhan, Hubei S125 贵州红 Guizhouhong 湖北武汉 Wuhan, Hubei
S023 A1449-10 湖北武汉 Wuhan, Hubei S126 扶余四粒红 Fuyusilihong 湖北武汉 Wuhan, Hubei
S024 A1449-11 湖北武汉 Wuhan, Hubei S127 花育16 Huayu 16 湖北武汉 Wuhan, Hubei
S025 A1449-12 湖北武汉 Wuhan, Hubei S128 云花3号 Yunhua 3 湖北武汉 Wuhan, Hubei
S026 A1449-13 湖北武汉 Wuhan, Hubei S129 山东仔 Shandongzai 湖北武汉 Wuhan, Hubei
S027 A1449-14 湖北武汉 Wuhan, Hubei S130 麻阳小子 Mayangxiaozi 湖北武汉 Wuhan, Hubei
S028 A1454-1 湖北武汉 Wuhan, Hubei S131 扶余四粒红 Fuyusiliong 湖北武汉 Wuhan, Hubei
S029 A1454-2 湖北武汉 Wuhan, Hubei S132 青花505 Qinhua 505 湖北武汉 Wuhan, Hubei
S030 A1454-3 湖北武汉 Wuhan, Hubei S133 赣花7号 Ganhua 7 湖北武汉 Wuhan, Hubei
S031 A1454-4 湖北武汉 Wuhan, Hubei S134 红豆花生 Hongdouhuasheng 湖北武汉 Wuhan, Hubei
S032 A1454-5 湖北武汉 Wuhan, Hubei S135 团风小红粒 Tuanfengxiaoli 湖北武汉 Wuhan, Hubei
S033 A1454-6 湖北武汉 Wuhan, Hubei S136 沿河本地种 Yanhebendizhong 湖北武汉 Wuhan, Hubei
S034 A1458-1 湖北武汉 Wuhan, Hubei S137 贵州红花生 Guizhouhonghuasheng 湖北武汉 Wuhan, Hubei
S035 A1458-3 湖北武汉 Wuhan, Hubei S138 贵州红皮 Guizhouhongpi 湖北武汉 Wuhan, Hubei
S036 A1458-4 湖北武汉 Wuhan, Hubei S139 红花生 Honghuasheng 湖北武汉 Wuhan, Hubei
S037 A1463 湖北武汉 Wuhan, Hubei S140 14-511855 湖北武汉 Wuhan, Hubei
S038 A1464-1 湖北武汉 Wuhan, Hubei S141 皖花2号 Wanhua 2 湖北武汉 Wuhan, Hubei
S039 A1464-2 湖北武汉 Wuhan, Hubei S142 日照瓜子 Rizhaoguazi 湖北武汉 Wuhan, Hubei
S040 A1464-3 湖北武汉 Wuhan, Hubei S143 天府3号 Tianfu 3 湖北武汉 Wuhan, Hubei
S041 A1464-4 湖北武汉 Wuhan, Hubei S144 天府22 Tianfu 22 湖北武汉 Wuhan, Hubei
S042 A1464-5 湖北武汉 Wuhan, Hubei S145 开封水果 Kaifengshuiguo 湖北武汉 Wuhan, Hubei
S043 A1464-6 湖北武汉 Wuhan, Hubei S146 冀花10号 Jihua 10 湖北武汉 Wuhan, Hubei
S044 A1464-7 湖北武汉 Wuhan, Hubei S147 河北水果 Hebeishuiguo 湖北武汉 Wuhan, Hubei
S045 A1467-1 湖北武汉 Wuhan, Hubei S148 红仁花生 Hongrenhuasheng 湖北武汉 Wuhan, Hubei
S046 A1467-2 湖北武汉 Wuhan, Hubei S149 四粒红 Silihong 湖北武汉 Wuhan, Hubei
S047 A1467-3 湖北武汉 Wuhan, Hubei S150 杜皮红 Dupihong 湖北武汉 Wuhan, Hubei
S048 A1467-4 湖北武汉 Wuhan, Hubei S151 钟山红豆 Zhongshanhongdou 湖北武汉 Wuhan, Hubei
S049 A1467-5 湖北武汉 Wuhan, Hubei S152 吉花18 Jihua 18 湖北武汉 Wuhan, Hubei
S050 A1467-6 湖北武汉 Wuhan, Hubei S153 吉花19 Jihua 19 湖北武汉 Wuhan, Hubei
S051 A1471-1 湖北武汉 Wuhan, Hubei S154 吉花20 Jihua 20 湖北武汉 Wuhan, Hubei
S052 A1471-2 湖北武汉 Wuhan, Hubei S155 吉花23 Jihua 23 湖北武汉 Wuhan, Hubei
S053 A1471-3 湖北武汉 Wuhan, Hubei S156 吉花24 Jihua 24 湖北武汉 Wuhan, Hubei
S054 A1471-4 湖北武汉 Wuhan, Hubei S157 阜花25 Fuhua 25 湖北武汉 Wuhan, Hubei
S055 A1473-1 湖北武汉 Wuhan, Hubei S158 阜花26 Fuhua 26 湖北武汉 Wuhan, Hubei
S056 A1473-2 湖北武汉 Wuhan, Hubei S159 阜花30 Fuhua 30 湖北武汉 Wuhan, Hubei
S057 A1473-3 湖北武汉 Wuhan, Hubei S160 花育23 Huayu 23 安徽合肥 Hefei, Anhui
S058 A1473-4 湖北武汉 Wuhan, Hubei S161 四粒红 Silihong 河北石家庄 Shijiazhuang, Hebei
样品编号
Sample ID
品种(系)
Variety (line)
种植地点
Location
样品编号
Sample ID
品种(系)
Variety (line)
种植地点
Location
S059 A1473-5 湖北武汉 Wuhan, Hubei S162 冀113 Ji 113 河北石家庄 Shijiazhuang, Hebei
S060 A1473-6 湖北武汉 Wuhan, Hubei S163 远杂9102 Yuanza 9102 河北石家庄 Shijiazhuang, Hebei
S061 A1473-7 湖北武汉 Wuhan, Hubei S164 冀11 Ji 11 河北石家庄 Shijiazhuang, Hebei
S062 A1473-8 湖北武汉 Wuhan, Hubei S165 冀花18 Jihua 18 河北石家庄 Shijiazhuang, Hebei
S063 A1476 湖北武汉 Wuhan, Hubei S166 冀甜1号 Jitian 1 河北石家庄 Shijiazhuang, Hebei
S064 A1478-1 湖北武汉 Wuhan, Hubei S167 中花16 Zhonghua 16 四川成都 Chengdu, Sichuan
S065 A1480-1 湖北武汉 Wuhan, Hubei S168 蜀花3号 Shuhua 3 四川成都 Chengdu, Sichuan
S066 A1480-2 湖北武汉 Wuhan, Hubei S169 天府11 Tianfu 11 四川成都 Chengdu, Sichuan
S067 A1480-3 湖北武汉 Wuhan, Hubei S170 花育23 Huayu 23 四川成都 Chengdu, Sichuan
S068 A1480-4 湖北武汉 Wuhan, Hubei S171 远杂9102 Yuanza 9102 四川成都 Chengdu, Sichuan
S069 A1483-1 湖北武汉 Wuhan, Hubei S172 中花6号 Zhonghua 16 四川成都 Chengdu, Sichuan
S070 A1483-2 湖北武汉 Wuhan, Hubei S173 四粒红 Silihong 四川成都 Chengdu, Sichuan
S071 A1483-3 湖北武汉 Wuhan, Hubei S174 中花24 Zhonghua 24 四川成都 Chengdu, Sichuan
S072 A1485-1 湖北武汉 Wuhan, Hubei S175 中花21 Zhonghua 21 四川成都 Chengdu, Sichuan
S073 A1485-2 湖北武汉 Wuhan, Hubei S176 罗汉果 Luohanguo 四川成都 Chengdu, Sichuan
S074 A1485-3 湖北武汉 Wuhan, Hubei S177 中花21 Zhonghua 21 安徽合肥 Hefei, Anhui
S075 A1485-4 湖北武汉 Wuhan, Hubei S178 罗汉果 Luohanguo 安徽合肥 Hefei, Anhui
S076 A1488 湖北武汉 Wuhan, Hubei S179 中花215 Zhonghua 215 安徽合肥 Hefei, Anhui
S077 A1490-1 湖北武汉 Wuhan, Hubei S180 中花16 Zhonghua 16 安徽合肥 Hefei, Anhui
S078 A1490-2 湖北武汉 Wuhan, Hubei S181 四粒红 Silihong 安徽合肥 Hefei, Anhui
S079 A1493-1 湖北武汉 Wuhan, Hubei S182 中花21 Zhonghua 21 河北石家庄 Shijiazhuang, Hebei
S080 A1493-2 湖北武汉 Wuhan, Hubei S183 罗汉果 Luohanguo 河北石家庄 Shijiazhuang, Hebei
S081 A1495-1 湖北武汉 Wuhan, Hubei S184 中花16 Zhonghua 16 河北石家庄 Shijiazhuang, Hebei
S082 A1495-2 湖北武汉 Wuhan, Hubei S185 冀花16 Jihua 16 河北石家庄 Shijiazhuang, Hebei
S083 A1497 湖北武汉 Wuhan, Hubei ST01 中花16 Zhonghua 16 湖北武汉 Wuhan, Hubei
S084 A1504-1 湖北武汉 Wuhan, Hubei ST02 中花21 Zhonghua 21 湖北武汉 Wuhan, Hubei
S085 A1504-2 湖北武汉 Wuhan, Hubei ST03 A1458-2 湖北武汉 Wuhan, Hubei
S086 A1504-3 湖北武汉 Wuhan, Hubei ST04 宛花2号 Wanhua 2 湖北武汉 Wuhan, Hubei
S087 A1504-4 湖北武汉 Wuhan, Hubei ST05 中花15 Zhonghua 15 湖北武汉 Wuhan, Hubei
S088 A1504-5 湖北武汉 Wuhan, Hubei ST06 中花12 Zhonghua 12 湖北武汉 Wuhan, Hubei
S089 A1504-6 湖北武汉 Wuhan, Hubei ST07 19A1385 湖北武汉 Wuhan, Hubei
S090 A1504-7 湖北武汉 Wuhan, Hubei ST08 皖花9号 Wanhua 9 安徽合肥 Hefei, Anhui
S091 A1507-1 湖北武汉 Wuhan, Hubei ST09 徐花甜29 Xuhuatian 29 江苏徐州 Xuzhou, Jiangsu
S092 A1507-2 湖北武汉 Wuhan, Hubei ST10 中花9号 Zhonghua 9 湖北武汉 Wuhan, Hubei
S093 A1507-4 湖北武汉 Wuhan, Hubei ST11 远杂9102 Yuanza 9102 江苏南京 Nanjing, Jiangsu
S094 A1507-5 湖北武汉 Wuhan, Hubei ST12 宁泰9922 Ningtai 9922 江苏南京 Nanjing, Jiangsu
S095 A1510-1 湖北武汉 Wuhan, Hubei ST13 A1447-6 湖北武汉 Wuhan, Hubei
S096 A1510-2 湖北武汉 Wuhan, Hubei ST14 苏花0537 Suhua 0537 江苏南京 Nanjing, Jiangsu
S097 A1513-1 湖北武汉 Wuhan, Hubei ST15 大四粒红 Dasilihong 湖北武汉 Wuhan, Hubei
S098 A1513-2 湖北武汉 Wuhan, Hubei ST16 冀花16 Jihua 16 湖北武汉 Wuhan, Hubei
S099 A1513-3 湖北武汉 Wuhan, Hubei ST17 苏花1713 Suhua 1713 江苏南京 Nanjing, Jiangsu
S100 A1513-4 湖北武汉 Wuhan, Hubei ST18 冀花11 Jihua 11 湖北武汉 Wuhan, Hubei
S101 A1513-5 湖北武汉 Wuhan, Hubei ST19 A1478-2 湖北武汉 Wuhan, Hubei
S102 A1513-6 湖北武汉 Wuhan, Hubei ST20 徐花甜30 Xuhuatian 30 江苏徐州 Xuzhou, Jiangsu
S103 A1513-7 湖北武汉 Wuhan, Hubei

Fig. 1

Near infrared reflectance spectroscopy instrument Unity-SpectrastarXL and small cup used in this experiment"

Table 2

Chemical values of sucrose content tested by HPLC"

样品编号
Sample ID
蔗糖含量
Sucrose content (%)
样品编号
Sample
ID
蔗糖含量
Sucrose content (%)
样品编号
Sample
ID
蔗糖含量
Sucrose content (%)
样品编号
Sample
ID
蔗糖含量
Sucrose content (%)
样品编号
Sample
ID
蔗糖含量
Sucrose content (%)
S001 6.43 S038 7.22 S075 5.82 S112 5.50 S149 2.47
S002 7.66 S039 7.02 S076 6.25 S113 6.50 S150 1.68
S003 5.46 S040 6.91 S077 5.61 S114 3.95 S151 2.07
S004 6.48 S041 6.86 S078 6.35 S115 5.77 S152 2.45
S005 5.93 S042 6.66 S079 5.68 S116 5.77 S153 1.75
S006 5.36 S043 6.58 S080 5.46 S117 4.77 S154 1.33
S007 6.17 S044 6.43 S081 6.12 S118 5.68 S155 2.10
S008 5.38 S045 6.26 S082 6.33 S119 6.53 S156 1.71
S009 5.05 S046 6.04 S083 6.47 S120 5.15 S157 1.68
S010 6.51 S047 5.97 S084 5.59 S121 5.70 S158 1.70
S011 6.67 S048 6.42 S085 5.45 S122 2.38 S159 2.01
S012 6.77 S049 8.48 S086 5.74 S123 1.87 S160 2.12
S013 8.01 S050 6.22 S087 6.58 S124 1.68 S161 2.80
S014 6.86 S051 6.06 S088 6.16 S125 2.13 S162 2.05
S015 5.85 S052 5.86 S089 6.45 S126 2.16 S163 2.72
S016 5.03 S053 5.90 S090 5.68 S127 1.65 S164 4.00
S017 5.44 S054 6.20 S091 5.83 S128 2.09 S165 3.52
S018 5.94 S055 6.00 S092 6.09 S129 1.27 S166 8.39
S019 6.20 S056 6.24 S093 7.48 S130 1.29 S167 2.67
S020 6.31 S057 6.58 S094 7.55 S131 1.65 S168 2.99
S021 4.94 S058 5.44 S095 6.56 S132 1.56 S169 3.04
S022 5.23 S059 5.30 S096 7.32 S133 2.27 S170 3.00
S023 6.49 S060 5.41 S097 6.34 S134 1.61 S171 3.31
S024 5.24 S061 5.31 S098 6.16 S135 1.34 S172 2.80
S025 5.83 S062 5.33 S099 6.39 S136 1.87 S173 3.12
S026 4.93 S063 6.34 S100 6.42 S137 1.26 S174 2.95
S027 5.53 S064 5.42 S101 6.19 S138 1.02 S175 3.57
S028 6.20 S065 6.49 S102 5.74 S139 1.20 S176 2.64
S029 5.07 S066 5.93 S103 5.28 S140 2.32 S177 2.21
S030 7.22 S067 6.19 S104 5.36 S141 1.56 S178 3.13
S031 7.36 S068 6.67 S105 5.71 S142 2.36 S179 3.96
S032 5.73 S069 7.24 S106 5.42 S143 2.54 S180 2.38
S033 5.85 S070 6.59 S107 5.91 S144 1.36 S181 2.97
S034 8.06 S071 6.56 S108 5.89 S145 1.52 S182 3.50
S035 6.45 S072 5.28 S109 6.36 S146 2.22 S183 2.89
S036 5.61 S073 7.44 S110 4.91 S147 3.24 S184 2.75
S037 5.60 S074 6.41 S111 5.22 S148 2.50 S185 3.17

Fig. 2

NIR spectrums of peanut kernel samples"

Fig. 3

Determination coefficient of predicted sucrose content in peanut seed by near-infrared reflectance spectroscopy"

Fig. 4

Correlation coefficients of sucrose content between HPLC and NIR testing in the external peanut samples"

Table 3

Validation of near infrared model for sucrose content in peanut seed (%)"

样品编号
Sample ID
化学值
Chemical value
预测值
Prediction value
偏差
Deviation
样品编号
Sample ID
化学值
Chemical value
预测值
Prediction value
偏差
Deviation
ST01 0.780 1.263 0.483 ST11 2.220 2.563 0.343
ST02 0.818 1.256 0.438 ST12 2.320 2.810 0.490
ST03 9.030 7.590 -1.440 ST13 6.520 6.152 -0.368
ST04 0.940 1.174 0.234 ST14 2.570 3.290 0.720
ST05 1.021 1.234 0.213 ST15 2.910 2.696 -0.214
ST06 1.078 0.716 -0.362 ST16 3.020 3.730 0.710
ST07 1.119 1.164 0.045 ST17 3.370 3.213 -0.157
ST08 1.246 0.927 -0.320 ST18 3.540 2.982 -0.558
ST09 4.773 5.268 0.495 ST19 4.045 4.518 0.473
ST10 1.851 2.246 0.395 ST20 5.206 4.706 -0.500

Fig. 5

Selected peanut lines with high sugar and high oleic acid content"

Table 4

Main characters of selected peanut lines with high sucrose and oleic acid"

品系名称
Lines name
蔗糖含量
Sucrose content (%)
含油量
Oil content (%)
油酸
Oleate
content (%)
百果重
100-pod
weight (g)
百仁重
100-seed weight (g)
出仁率
Shelling
percentage (%)
荚果长
Pod length
(cm)
籽仁长
Seed length
(cm)
SYT5-1 8.45 46.8 79.6 212 67 76.4 5.1 1.6
SYT7-1 7.63 45.3 80.2 204 56 76.6 4.6 1.5
SYT3-1 7.12 44.6 78.6 162 76 70.3 3.9 1.8
SYT3-2 8.02 47.8 81.5 176 80 74.9 3.7 1.8
SYT4-1 7.88 45.3 79.8 159 67 76.7 3.0 1.5
SYT4-2 9.07 42.2 81.1 168 80 78.6 3.2 1.5
[1] 廖伯寿, 殷艳, 马霓. 中国油料作物产业发展回顾与展望. 农学学报, 2018,8(1):107-112.
Liao B S, Yin Y, Ma N. Review and future prospects of oil crops industry development in China. J Agric, 2018,8(1):107-112 (in Chinese with English abstract).
[2] 房元瑾, 孙子淇, 苗利娟, 齐飞艳, 黄冰艳, 郑峥, 董文召, 汤丰收, 张新友. 花生种仁外观和营养品质特征及食用型花生育种利用分析. 植物遗传资源学报, 2018,19:875-886.
Fang Y J, Sun Z Q, Miao L J, Qi F Y, Huang B Y, Zheng Z, Dong W Z, Tang F S, Zhang X Y. Characterization of kernel appearance and nutritional quality in peanut accessions and its application for food-use peanut breeding. J Plant Genet Resour, 2018,19:875-886 (in Chinese with English abstract).
[3] Pattee H E, Isleib T G, Giesbrecht F G. Variation in intensity of sweet and bitter sensory attributes across peanut genotypes. Peanut Sci, 1998,25:63-69.
doi: 10.3146/i0095-3679-25-2-2
[4] Pattee H, Isleib T, Giesbrecht F, McFeeters R. Investigations into genotypic variations of peanut carbohydrates. J Agric Food Chem, 2000,48:750-756.
doi: 10.1021/jf9910739 pmid: 10725144
[5] Pattee H E, Isleib T G, Giesbrecht F G, McFeeters R F. Relationships of sweet, bitter, and roasted peanut sensory attributes with carbohydrate components in peanuts. J Agric Food Chem, 2000,48:757-763.
doi: 10.1021/jf9910741 pmid: 10725145
[6] Isleib T, Pattee H, Giesbrecht F. Oil, sugar, and starch characteristics in peanut breeding lines selected for low and high oil content and their combining ability. J Agric Food Chem, 2004,52:3165-3168.
doi: 10.1021/jf035465y pmid: 15137870
[7] Bishi S K, Kumar L, Dagla M C, Mahatma M K, Rathnakumar A L, Lalwani H B. Characterization of Spanish peanut germplasm (Arachis hypogaea L.) for sugar profiling and oil quality. Ind Crops Prod, 2013,51:46-50.
doi: 10.1016/j.indcrop.2013.08.050
[8] Bishi S K, Lokesh K, Mahatma M K, Khatediya N, Chauhan S M, Misra J B. Quality traits of Indian peanut cultivars and their utility as nutritional and functional food. Food Chem, 2015,67:107-114.
[9] 王铎, 张力, 范素杰, 韩笑, 吴晗, 王丕武, 姚丹, 张君. 大豆主要脂肪酸含量近红外模型的建立. 大豆科学, 2017,36:295-299.
Wang D, Zhang L, Fan S J, Han X, Wu H, Wang P W, Yao D, Zhang J. Establishment of NIRS model for the main fatty acids in soybean. Soybean Sci, 2017,36:295-299 (in Chinese with English abstract).
[10] 康月琼, 郝风, 柴勇, 杨俊英, 黄永东, 熊英, 褚能明, 余官平. 油菜品质近红外检测模型建立的研究. 中国农学通报, 2011,27(5):144-148.
Kang Y Q, Hao F, Cai Y, Yang J Y, Huang Y D, Xiong Y, Chu N M, Yu G P. Study on construction of determination model of rapeseed quality with near-infrared spectroscopy. Chin Agric Sci Bull, 2011,27(5):144-148 (in Chinese with English abstract).
[11] 刘盼, 张艳欣, 黎冬华, 王林海, 高媛, 周瑢, 张秀荣, 魏鑫. 基于近红外模型的芝麻核心种质油脂和蛋白质含量变异分析. 中国油料作物学报, 2016,38:722-729.
Liu P, Zhang Y X, Li D H, Wang L H, Gao Y, Zhou R, Zhang X R, Wei X. Oil and protein contents analysis of sesame core collections based on near infrared reflectance spectroscopy model. Chin J Oil Crop Sci, 2016,38:722-729 (in Chinese with English abstract).
[12] Misra J B, Mathur R S, Bhatt D M. Near-infrared transmittance spectroscopy: a potential tool for non-destructive determination of oil content in groundnuts. J Sci Food Agric, 2000,80:237-240.
doi: 10.1002/(ISSN)1097-0010
[13] 曲艺伟, 张鹤, 韩笑, 李雪莹, 王传堂, 王丕武, 姚丹, 张君. 花生脂肪酸近红外模型的建立. 分子植物育种, 2019,17:568-578.
Qu Y W, Zhang H, Han X, Li X Y, Wang C T, Wang P W, Yao D, Zhang J. Establishment of near-infrared model of peanut fatty acids. Mol Plant Breed, 2019,17:568-578 (in Chinese with English abstract).
[14] Fox G, Cruickshank A. Near infrared reflectance as a rapid and inexpensive surrogate measure for fatty acid composition and oil content of peanuts (Arachis hypogaea L.). J Near Infrar Spec, 2005,13:287.
doi: 10.1255/jnirs.559
[15] Tillman B L, Gorbet D W, Person G. Predicting oleic and linoleic acid content of single peanut seeds using near-infrared reflectance spectroscopy. Crop Sci, 2006,46:2121-2126.
doi: 10.2135/cropsci2006.01.0031
[16] 王秀贞, 唐月异, 张建成, 崔凤高, 陈殿绪, 迟玉成, 王传堂. 近红外技术分析化学诱变对花生脂肪、蛋白质和蔗糖含量的影响. 花生学报, 2009,38(4):5-8.
Wang X Z, Tang Y Y, Zhang J C, Cui F G, Chen D X, Chi Y C, Wang C T. Analyzing the effect of chemical treatment on oil, protein and sucrose content of peanut with NIRS. J Peanut Sci, 2009,38(4):5-8 (in Chinese with English abstract).
[17] Wang C T, Tang Y Y, Wang X Z, Chen D X, Yu S L. Evaluation of groundnut genotypes from China for quality traits. J Agric Res, 2011,12:1-5.
doi: 10.1071/AR9610001
[18] 张建成, 王传堂, 王秀贞, 唐月异, 张树伟, 李贵杰. 花生自然风干种子油酸、亚油酸和棕榈酸含量的近红外分析模型构建. 中国农学通报, 2011,27(3):90-93.
Zhang J C, Wang C T, Wang X Z, Tang Y Y, Zhang S W, Li G J. NIRS calibration models predictive of oleic, linoleic and palmitic acid content in sun-dried bulk peanut seed Samples. Chin Agric Sci Bull, 2011,27(3):90-93 (in Chinese with English abstract).
[19] 李建国, 薛晓梦, 张照华, 王志慧, 晏立英, 陈玉宁, 万丽云, 康彦平, 淮东欣, 姜慧芳, 雷永, 廖伯寿. 单粒花生主要脂肪酸含量近红外预测模型的建立及其应用. 作物学报, 2019,45:1891-1898.
doi: 10.3724/SP.J.1006.2019.94016
Establishment and applicant of near-infrared reflectance spectroscopy models for predicting main fatty acid contents of single seed in peanut. Acta Agron Sin, 2019,45:1891-1898 (in Chinese with English abstract).
[20] 秦利, 刘华, 杜培, 董文召, 黄冰艳, 韩锁义, 张忠信, 齐飞艳, 张新友. 基于近红外光谱法的花生种仁中蔗糖含量的测定. 中国油料作物学报, 2016,38:666-671.
doi: 10.7505/j.issn.1007-9084.2016.05.018
Qin L, Liu H, Du P, Dong W Z, Huang B Y, Han S Y, Zhang Z X, Qi F Y, Zhang X Y. Determination of sucrose content in peanut seed kernel based on near infrared spectroscopy. Chin J Oil Crop Sci, 2016,38:666-671 (in Chinese with English abstract).
[21] 唐月异, 王秀贞, 刘婷, 吴琪, 孙全喜, 王志伟, 张欣, 王传堂, 邵俊飞. 花生自然风干种子蔗糖含量近红外定量分析模型构建. 山东农业科学, 2018,50(6):159-162.
Tang Y Y, Wang X Z, Liu T, Wu Q, Sun Q X, Wang Z W, Zhang X, Wang C T, Shao J F. A near infrared spectroscopy model for predicting sucrose content of sun-dried peanut seeds. Shandong Agric Sci, 2018,50(6):159-162 (in Chinese with English abstract).
[22] 中华人民共和国卫生和计划生育委员会. GB 5009.8-2016. 食品安全国家标准——食品中果糖、葡萄糖、蔗糖、麦芽糖、乳糖的测定. 北京: 中国标准出版社, 2016. pp 1-16.
National Health and Family Planning Commission of People’s Republic of China. GB 5009. 8-2016. National Standards for Food Safety Determination of Fructose, Glucose, Sucrose, Maltose and Lactose Content in Food. Beijing: Standards Press of China, 2016. pp 1-16.
[1] YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487.
[2] LI Hai-Fen, WEI Hao, WEN Shi-Jie, LU Qing, LIU Hao, LI Shao-Xiong, HONG Yan-Bin, CHEN Xiao-Ping, LIANG Xuan-Qiang. Cloning and expression analysis of voltage dependent anion channel (AhVDAC) gene in the geotropism response of the peanut gynophores [J]. Acta Agronomica Sinica, 2022, 48(6): 1558-1565.
[3] DING Hong, XU Yang, ZHANG Guan-Chu, QIN Fei-Fei, DAI Liang-Xiang, ZHANG Zhi-Meng. Effects of drought at different growth stages and nitrogen application on nitrogen absorption and utilization in peanut [J]. Acta Agronomica Sinica, 2022, 48(3): 695-703.
[4] HUANG Li, CHEN Yu-Ning, LUO Huai-Yong, ZHOU Xiao-Jing, LIU Nian, CHEN Wei-Gang, LEI Yong, LIAO Bo-Shou, JIANG Hui-Fang. Advances of QTL mapping for seed size related traits in peanut [J]. Acta Agronomica Sinica, 2022, 48(2): 280-291.
[5] WANG Ying, GAO Fang, LIU Zhao-Xin, ZHAO Ji-Hao, LAI Hua-Jiang, PAN Xiao-Yi, BI Chen, LI Xiang-Dong, YANG Dong-Qing. Identification of gene co-expression modules of peanut main stem growth by WGCNA [J]. Acta Agronomica Sinica, 2021, 47(9): 1639-1653.
[6] WANG Jian-Guo, ZHANG Jia-Lei, GUO Feng, TANG Zhao-Hui, YANG Sha, PENG Zhen-Ying, MENG Jing-Jing, CUI Li, LI Xin-Guo, WAN Shu-Bo. Effects of interaction between calcium and nitrogen fertilizers on dry matter, nitrogen accumulation and distribution, and yield in peanut [J]. Acta Agronomica Sinica, 2021, 47(9): 1666-1679.
[7] SHI Lei, MIAO Li-Juan, HUANG Bing-Yan, GAO Wei, ZHANG Zong-Xin, QI Fei-Yan, LIU Juan, DONG Wen-Zhao, ZHANG Xin-You. Characterization of the promoter and 5'-UTR intron in AhFAD2-1 genes from peanut and their responses to cold stress [J]. Acta Agronomica Sinica, 2021, 47(9): 1703-1711.
[8] GAO Fang, LIU Zhao-Xin, ZHAO Ji-Hao, WANG Ying, PAN Xiao-Yi, LAI Hua-Jiang, LI Xiang-Dong, YANG Dong-Qing. Source-sink characteristics and classification of peanut major cultivars in North China [J]. Acta Agronomica Sinica, 2021, 47(9): 1712-1723.
[9] ZHANG He, JIANG Chun-Ji, YIN Dong-Mei, DONG Jia-Le, REN Jing-Yao, ZHAO Xin-Hua, ZHONG Chao, WANG Xiao-Guang, YU Hai-Qiu. Establishment of comprehensive evaluation system for cold tolerance and screening of cold-tolerance germplasm in peanut [J]. Acta Agronomica Sinica, 2021, 47(9): 1753-1767.
[10] XUE Xiao-Meng, WU JIE, WANG Xin, BAI Dong-Mei, HU Mei-Ling, YAN Li-Ying, CHEN Yu-Ning, KANG Yan-Ping, WANG Zhi-Hui, HUAI Dong-Xin, LEI Yong, LIAO Bo-Shou. Effects of cold stress on germination in peanut cultivars with normal and high content of oleic acid [J]. Acta Agronomica Sinica, 2021, 47(9): 1768-1778.
[11] HAO Xi, CUI Ya-Nan, ZHANG Jun, LIU Juan, ZANG Xiu-Wang, GAO Wei, LIU Bing, DONG Wen-Zhao, TANG Feng-Shou. Effects of hydrogen peroxide soaking on germination and physiological metabolism of seeds in peanut [J]. Acta Agronomica Sinica, 2021, 47(9): 1834-1840.
[12] ZHANG Wang, XIAN Jun-Lin, SUN Chao, WANG Chun-Ming, SHI Li, YU Wei-Chang. Preliminary study of genome editing of peanut FAD2 genes by CRISPR/Cas9 [J]. Acta Agronomica Sinica, 2021, 47(8): 1481-1490.
[13] FU Hua-Ying, ZHANG Ting, PENG Wen-Jing, DUAN Yao-Yao, XU Zhe-Xin, LIN Yi-Hua, GAO San-Ji. Identification of resistance to leaf scald in newly released sugarcane varieties at seedling stage by artificial inoculation [J]. Acta Agronomica Sinica, 2021, 47(8): 1531-1539.
[14] DAI Liang-Xiang, XU Yang, ZHANG Guan-Chu, SHI Xiao-Long, QIN Fei-Fei, DING Hong, ZHANG Zhi-Meng. Response of rhizosphere bacterial community diversity to salt stress in peanut [J]. Acta Agronomica Sinica, 2021, 47(8): 1581-1592.
[15] HUANG Bing-Yan, SUN Zi-Qi, LIU Hua, FANG Yuan-Jin, SHI Lei, MIAO Li-Juan, ZHANG Mao-Ning, ZHANG Zhong-Xin, XU Jing, ZHANG Meng-Yuan, DONG Wen-Zhao, ZHANG Xin-You. Genetic analysis of fat content based on nested populations in peanut (Arachis hypogaea L.) [J]. Acta Agronomica Sinica, 2021, 47(6): 1100-1108.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!