Acta Agron Sin ›› 2015, Vol. 41 ›› Issue (07): 1073-1085.doi: 10.3724/SP.J.1006.2015.01073
• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles Next Articles
QI Bo,ZHANG Ning,ZHAO Tuan-Jie,XING Guang-Nan,ZHAO Jing-Ming*,GAI Jun-Yi*
[1]Watson D J. Comparative physiological studies on the growth of field crops: I. Variation in net assimilation rate and leaf area between species and varieties, and within and between years. Ann Bot, 1947, 11: 41–76[2]Haboudane D, Miller J R, Pattey E, Zarco–Tejada P J, Strachan I B. Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture. Remote Sens Environ, 2004, 90: 337–352[3]Goetz S J, Prince S D. Remote sensing of net primary production in boreal forest stands. Agric For Meteorol, 1996, 78: 149–179[4]Moran M S, Maas S J, Pinter Jr P J. Combining remote sensing and modeling for estimating surface evaporation and biomass production. Remote Sens Rev, 1995, 12: 335–353[5]Tucker C J, Holben B N, Elgin J H, Jr., McMurtrey J E. Relationship of spectral data to grain yield variation. Photogramm Eng Rem S, 1980, 46: 657–666[6]Lam H M, Xu X, Liu X, Chen W, Yang G, Wong F L, Li M W, He W, Qin N, Wang B, Li J, Jian M, Wang J, Shao G, Wang J, Sun S S, Zhang G. Resequencing of 31 wild and cultivated soybean genomes identifies patterns of genetic diversity and selection. Nat Genet, 2010, 42: 1053–1059[7]Vaesen K, Gilliams S, Nackaerts K, Coppin P. Ground-measured spectral signatures as indicators of ground cover and leaf area index: the case of paddy rice. Field Crops Res, 2001, 69: 13–25[8]Thenkabail P S, Smith R B, De Pauw E. Hyperspectral vegetation indices and their relationships with agricultural crop characteristics. Remote Sens Environ, 2000, 71: 158–182[9]Mutanga O, Skidmore A K, van Wieren S. Discriminating tropical grass (Cenchrus ciliaris) canopies grown under different nitrogen treatments using spectroradiometry. Isprs J Photogr Remote Sens, 2003, 57: 263–272[10]Miller J R, Hare E W, Wu J. Quantitative characterization of the vegetation red edge reflectance: 1. An inverted-Gaussian reflectance model. Intl J Remote Sens, 1990, 11: 1755–1773[11]薛利红, 曹卫星, 罗卫红, 王绍华. 光谱植被指数与水稻叶面积指数相关性的研究. 植物生态学报, 2004, 28: 47–52 Xue L H, Cao W X, Luo W H, Wang S H. Relationship between spectral vegetation indices and LAI in rice. Acta Phytoecol Sin, 2004, 28: 47–52 ( in Chinese with English abstract) [12]吴琼, 齐波, 赵团结, 姚鑫锋, 朱艳, 盖钧镒. 高光谱遥感估测大豆冠层生长和籽粒产量的探讨. 作物学报, 2013, 39: 309–318Wu Q, Qi B, Zhao T J, Yao X F, Zhu Y, Gai J Y. A tentative study on utilization of canopy hyperspectral reflectance to estimate canopy growth and seed yield in soybean. Acta Agron Sin, 2013, 39: 309–318 (in Chinese with English abstract) [13]宋开山, 张柏, 王宗明, 张渊智, 刘焕军. 基于人工神经网络的大豆叶面积高光谱反演研究. 中国农业科学, 2006, 39: 1138–1145Song K S, Zhang B, Wang Z M, Zhang Y Z, Liu H J. Soybean LAI estimation with in-situ collected hyperspectral data based on BP-neural networks. Sci Agric Sin, 2006, 39: 1138–1145 (in Chinese with English abstract)[14]黄春燕, 刘胜利, 王登伟, 战勇, 张恒斌, 袁杰, 马勤建, 陈燕, 赵鹏举. 大豆叶面积指数的高光谱估算模型研究. 大豆科学, 2008, 27: 228–232Huang C Y, Liu S L, Wang D W, Zhan Y, Zhang H B, Yuan J, Ma Q J, Chen Y, Zhao P J. Models for estimating soybean leaf area index using hyperspectral data. Soybean Sci, 2008, 27: 228–232 (in Chinese with English abstract)[15]Gitelson A A. Wide dynamic range vegetation index for remote quantification of biophysical characteristics of vegetation. J Plant Physiol, 2004, 161: 165–173[16]Wang W, Yao X, Yao X F, Tian Y C, Liu X J, Ni J, Cao W D, Zhu Y. Estimating leaf nitrogen concentration with three-band vegetation indices in rice and wheat. Field Crops Res, 2012, 129: 90–98[17]Gitelson A A, Merzlyak M N. Signature analysis of leaf reflectance spectra: algorithm development for remote sensing of chlorophyll. J Plant Physiol, 1996, 148: 494–500[18]Gutierrez-Rodriguez M, Escalante–Estrada J A, Rodriguez gonzalez M T, Reynolds J P. Canopy reflectance indices and its relationship with yield in common bean plants (Phaseolus vulgaris L.) with phosphorous supply. J Agric Biol, 2006, 2: 203–207 [19]Marshak A, Knyazikhin Y, Davis A B, Wiscombe W J, Pilewskie P. Cloud-vegetation interaction: use of normalized difference cloud index for estimation of cloud optical thickness. Geophys Res Lett, 2000, 27: 1695–1698[20]Shibayama M, Akiyama T. Seasonal visible, near-infrared and mid-infrared spectra of rice canopies in relation to lai and above-ground dry phytomass. Remote Sens Environ, 1989, 27: 119–127[21]Blackburn G A. Quantifying chlorophylls and caroteniods at leaf and canopy scales: an evaluation of some hyperspectral approaches. Remote Sens Environ, 1998, 66: 273–285[22]Aparicio N, Villegas D, Casadesus J, Araus J L, Royo C. Spectral vegetation indices as nondestructive tools for determining durum wheat yield. Agron J, 2000, 92: 83–91[23]Loague K, Green R E. Statistical and graphical methods for evaluating solute transport models: Overview and application. J Contam Hydrol, 1991, 7: 51–73[24]Jamieson P D, Porter J R, Wilson D R. A test of the computer simulation model ARCWHEAT1 on wheat crops grown in New Zealand. Field Crops Res, 1991, 27: 337–350[25]Efron B, Stein C. The Jackknife estimate of variance. Ann Stat, 1981, 9: 586–596[26]Efron B. The Jackknife, the Bootstrap and Other Resampling Plans. Philadelphia: Society for Industrial and Applied Mathematics, 1982. pp 14–22[27]Heege H J, Reusch S, Thiessen E. Prospects and results for optical systems for site-specific on-the-go control of nitrogen-top-dressing in Germany. Precis Agric, 2008, 9: 115–131[28]Erdle K, Mistele B, Schmidhalter U. Comparison of active and passive spectral sensors in discriminating biomass parameters and nitrogen status in wheat cultivars. Field Crops Res, 2011, 124: 74–84[29]Goel P K, Prasher S O, Landry J A, Patel R M, Viau A A, Miller J R. Estimation of crop biophysical parameters through airborne and field hyperspectral remote sensing. Trans ASAE, 2003, 46: 1235–1246[30]Zarco–Tejada P J, Miller J R, Noland T L, Mohammed G H, Sampson P H. Scaling-up and model inversion methods with narrowband optical indices for chlorophyll content estimation in closed forest canopies with hyperspectral data. IEEE T Geosci Remote, 2001, 39: 1491–1507[31]Baret F, Guyot G. Potentials and limits of vegetation indexes for lai and apar assessment. Remote Sens Environ, 1991, 35: 161–173[32]Broge N H, Leblanc E. Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density. Remote Sens Environ, 2001, 76: 156–172[33]Chen J M. Evaluation of vegetation indices and a modified simple ratio for boreal applications. Can J Remote Sens, 1996, 22: 229–242[34]Brown L, Chen J M, Leblanc S G, Cihlar J. A shortwave infrared modification to the simple ratio for LAI retrieval in boreal forests: an image and model analysis. Remote Sens Environ, 2000, 71: 16–25 |
[1] | CHEN Ling-Ling, LI Zhan, LIU Ting-Xuan, GU Yong-Zhe, SONG Jian, WANG Jun, QIU Li-Juan. Genome wide association analysis of petiole angle based on 783 soybean resources (Glycine max L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1333-1345. |
[2] | YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487. |
[3] | YU Chun-Miao, ZHANG Yong, WANG Hao-Rang, YANG Xing-Yong, DONG Quan-Zhong, XUE Hong, ZHANG Ming-Ming, LI Wei-Wei, WANG Lei, HU Kai-Feng, GU Yong-Zhe, QIU Li-Juan. Construction of a high density genetic map between cultivated and semi-wild soybeans and identification of QTLs for plant height [J]. Acta Agronomica Sinica, 2022, 48(5): 1091-1102. |
[4] | LI A-Li, FENG Ya-Nan, LI Ping, ZHANG Dong-Sheng, ZONG Yu-Zheng, LIN Wen, HAO Xing-Yu. Transcriptome analysis of leaves responses to elevated CO2 concentration, drought and interaction conditions in soybean [Glycine max (Linn.) Merr.] [J]. Acta Agronomica Sinica, 2022, 48(5): 1103-1118. |
[5] | PENG Xi-Hong, CHEN Ping, DU Qing, YANG Xue-Li, REN Jun-Bo, ZHENG Ben-Chuan, LUO Kai, XIE Chen, LEI Lu, YONG Tai-Wen, YANG Wen-Yu. Effects of reduced nitrogen application on soil aeration and root nodule growth of relay strip intercropping soybean [J]. Acta Agronomica Sinica, 2022, 48(5): 1199-1209. |
[6] | WANG Hao-Rang, ZHANG Yong, YU Chun-Miao, DONG Quan-Zhong, LI Wei-Wei, HU Kai-Feng, ZHANG Ming-Ming, XUE Hong, YANG Meng-Ping, SONG Ji-Ling, WANG Lei, YANG Xing-Yong, QIU Li-Juan. Fine mapping of yellow-green leaf gene (ygl2) in soybean (Glycine max L.) [J]. Acta Agronomica Sinica, 2022, 48(4): 791-800. |
[7] | LI Rui-Dong, YIN Yang-Yang, SONG Wen-Wen, WU Ting-Ting, SUN Shi, HAN Tian-Fu, XU Cai-Long, WU Cun-Xiang, HU Shui-Xiu. Effects of close planting densities on assimilate accumulation and yield of soybean with different plant branching types [J]. Acta Agronomica Sinica, 2022, 48(4): 942-951. |
[8] | DU Hao, CHENG Yu-Han, LI Tai, HOU Zhi-Hong, LI Yong-Li, NAN Hai-Yang, DONG Li-Dong, LIU Bao-Hui, CHENG Qun. Improving seed number per pod of soybean by molecular breeding based on Ln locus [J]. Acta Agronomica Sinica, 2022, 48(3): 565-571. |
[9] | ZHOU Yue, ZHAO Zhi-Hua, ZHANG Hong-Ning, KONG You-Bin. Cloning and functional analysis of the promoter of purple acid phosphatase gene GmPAP14 in soybean [J]. Acta Agronomica Sinica, 2022, 48(3): 590-596. |
[10] | WANG Juan, ZHANG Yan-Wei, JIAO Zhu-Jin, LIU Pan-Pan, CHANG Wei. Identification of QTLs and candidate genes for 100-seed weight trait using PyBSASeq algorithm in soybean [J]. Acta Agronomica Sinica, 2022, 48(3): 635-643. |
[11] | ZHANG Guo-Wei, LI Kai, LI Si-Jia, WANG Xiao-Jing, YANG Chang-Qin, LIU Rui-Xian. Effects of sink-limiting treatments on leaf carbon metabolism in soybean [J]. Acta Agronomica Sinica, 2022, 48(2): 529-537. |
[12] | YU Tao-Bing, SHI Qi-Han, NIAN-Hai , LIAN Teng-Xiang. Effects of waterlogging on rhizosphere microorganisms communities of different soybean varieties [J]. Acta Agronomica Sinica, 2021, 47(9): 1690-1702. |
[13] | SONG Li-Jun, NIE Xiao-Yu, HE Lei-Lei, KUAI Jie, YANG Hua, GUO An-Guo, HUANG Jun-Sheng, FU Ting-Dong, WANG Bo, ZHOU Guang-Sheng. Screening and comprehensive evaluation of shade tolerance of forage soybean varieties [J]. Acta Agronomica Sinica, 2021, 47(9): 1741-1752. |
[14] | CAO Liang, DU Xin, YU Gao-Bo, JIN Xi-Jun, ZHANG Ming-Cong, REN Chun-Yuan, WANG Meng-Xue, ZHANG Yu-Xian. Regulation of carbon and nitrogen metabolism in leaf of soybean cultivar Suinong 26 at seed-filling stage under drought stress by exogenous melatonin [J]. Acta Agronomica Sinica, 2021, 47(9): 1779-1790. |
[15] | ZHANG Ming-Cong, HE Song-Yu, QIN Bin, WANG Meng-Xue, JIN Xi-Jun, REN Chun-Yuan, WU Yao-Kun, ZHANG Yu-Xian. Effects of exogenous melatonin on morphology, photosynthetic physiology, and yield of spring soybean variety Suinong 26 under drought stress [J]. Acta Agronomica Sinica, 2021, 47(9): 1791-1805. |
|