Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2015, Vol. 41 ›› Issue (07): 1064-1072.doi: 10.3724/SP.J.1006.2015.01064

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Association Analysis between SSR Markers and Agronomic Traits in Barley

SI Er-Jing12,ZHANG Yu12,WANG Jun-Cheng12,MENG Ya-Xiong1,2,LI Bao-Chun1,3,MA Xiao-Le12,SHANG Xun-Wu2,WANG Hua-Jun1,2,*   

  1. 1 Gansu Provincial Key Laboratory of Aridland Crop Science / Gansu Key Laboratory of Crop Improvement & Germplasm Enhancement, Lanzhou 730070, China; 2 College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; 3 College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
  • Received:2014-11-14 Revised:2015-04-02 Online:2015-07-12 Published:2015-05-04
  • Contact: 王化俊, E-mail:whuajun@yahoo.com E-mail:sierjing@163.com

Abstract:

This study aimed at understanding the population structure of barley parent materials and identifying SSR markers associated with plant height, spike length, awn length, tiller number, effective tiller number, grain number per spike and thousand-grain weight. A total of 392 alleles were identified in 156 accessions using 86 polymorphic SSR markers with an average of 4.6 alleles per locus. The polymorphic information content ranged from 0.0612 to 0.8560. The 156 genotypes were divided into two populations according to structure analysis with SSR data. Eighteen markers were found to be associated with plant height, spike length, awn length, grain number per spike and thousand-grain weight using GLM (General Linear Model), and the phenotypic variation explained by a single marker ranged from 4.81% to 20.75%. Fourteen markers were found to be associated with plant height, spike length, awn length, effective tiller number, grain number per spike and thousand-grain weight using MLM(Mixed Linear Model), and the phenotypic variation explained by a single marker ranged from 6.64% to 31.55%. These associated markers provide a basis for future research.

Key words: Barley, SSR, Population structure, Agronomic trait, association analysis

[1]Tanksley S D, McCouch S R. Seed banks and molecular maps: unlocking genetic potential from the wild. Science, 1997, 277: 1063–1066



[2]Flint-Garcia S A, Thornsberry J M, Buckler I V. Structure of linkage disequilibrium in plants. Annu Rev Plant Biol, 2003, 54: 357–374



[3]Kruglyak L. Prospects for whole-genome linkage disequilibrium mapping of common disease genes. Nat Genet, 1999, 22: 139–144



[4]Jorde L B. Linkage disequilibrium and the search for complex disease genes. Genome Res, 2000, 10: 1435–1444



[5]魏添梅, 昌小平, 闵东红, 景蕊莲. 小麦抗旱品种的遗传多样性分析及株高优异等位变异挖掘. 作物学报, 2010, 36: 895–904



Wei T M, Chang X P, Min D H, Jing R L. Analysis of genetic diversity and tapping elite alleles for plant height in drought-tolerant wheat varieties. Acta Agron Sin, 2010, 36: 895–904 (in Chinese with English abstract)



[6]Maccaferri M, Sanguineti M C, Noli E, Tuberosa R. Population structure and long-range linkage disequilibrium in a durum wheat elite collection. Mol Breed, 2005, 15: 271–290



[7]Liu S, Yang X, Zhang D, Bai G, Chao S, Bockus W. Genome-wide association analysis identified SNPs closely linked to a gene resistant to soil-borne wheat mosaic virus. Theor Appl Genet, 2014, 127: 1039–1047



[8]Ducrocq S, Madur D, Veyrieras J B, Camus-Kulandaivelu L, Kloiber-Maitz M, Presterl T, Ouzunova M, Manicacci D, Charcosset A. Key impact of Vgt1 on flowering time adaptation in maize: evidence from association mapping and ecogeographical information. Genetics, 2008, 178: 2433–2437



[9]Kumar B, Abdel-Ghani A H, Pace J, Reyes-Matamoros J, Hochholdinger F, Lübberstedt T. Association analysis of single nucleotide polymorphisms in candidate genes with root traits in maize (Zea mays L.) seedlings. Plant Sci, 2014, 224: 9–19



[10]Wen W, Li D, Li X, Gao Y, Li W, Li H, Liu J, Liu H, Chen W, Luo J. Metabolome-based genome-wide association study of maize kernel leads to novel biochemical insights. Nat Commun, 2014, 5:3438, DOI: 10.1038/ncomms4438 (2014)



[11]Eizenga G C, Agrama H A, Lee F N, Yan W, Jia Y. Identifying novel resistance genes in newly introduced blast resistant rice germplasm. Crop Sci, 2006, 46: 1870-1878



[12]Yonemaru J, Mizobuchi R, Kato H, Yamamoto T, Yamamoto E, Matasubara K, Hirabayashi H, Takeuchi Y, Tsunematsu H, Ishii T. Genomic regions involved in yield potential detected by genome-wide association analysis in Japanese high-yielding rice cultivars. BMC Genomics, 2014, 15: 346



[13]D'hoop B B, Keizer P L, Paulo M J, Visser R G, van Eeuwijk F A, van Eck H J. Identification of agronomically important QTL in tetraploid potato cultivars using a marker-trait association analysis. Theor Appl Genet, 2014, 127: 731–748



[14]Ivandic V, Hackett C A, Nevo E, Keith R, Thomas W T, Forster B P. Analysis of simple sequence repeats (SSRs) in wild barley from the Fertile Crescent: associations with ecology, geography and flowering time. Plant Mol Biol, 2002, 48: 511–527



[15]Wu D, Qiu L, Xu L, Ye L, Chen M, Sun D, Chen Z, Zhang H, Jin X, Dai F, Zhang, G. Genetic variation of HvCBF genes and their association with salinity tolerance in Tibetan annual wild barley. PLoS One, 2011, 6: e22938



[16]Cai S, Wu D, Jabeen Z, Huang Y, Huang Y, Zhang G. Genome-wide association analysis of aluminum tolerance in cultivated and tibetan wild barley. PloS One, 2013, 8: e69776



[17]Visioni A, Tondelli A, Francia E, Pswarayi A, Malosetti M, Russell J, Thomas William, Waugh R, Pecchioni N, Romagosa I. Genome-wide association mapping of frost tolerance in barley (Hordeum vulgare L.). BMC Genomics, 2013, 14: 424



[18]Xia Y, Li R, Ning Z, Bai G, Siddique K H M, Yan G, Baum M, Varshney R K, Guo P. Single nucleotide polymorphisms in HSP17.8 and their association with agronomic traits in barley. PloS One, 2013, 8: e56816



[19]Ivandic V, Thomas W T B, Nevo E, Zhang Z, Forster B P. Associations of simple sequence repeats with quantitative trait variation including biotic and abiotic stress tolerance in Hordeum spontaneum. Plant Breed, 2003, 122: 300–304



[20]Kraakman A T, Niks R E, Van den Berg P M, Stam P, Van Eeuwijk F A. Linkage disequilibrium mapping of yield and yield stability in modern spring barley cultivars. Genetics, 2004, 168: 435–446



[21]Kraakman A T, Niks R E, Van den Berg P M, Stam P, Van Eeuwijk F A. Linkage disequilibrium mapping of morphological, resistance, and other agronomically relevant traits in modern spring barley cultivars. Mol Breed, 2006, 17: 41–58



[22]Roy J K, Smith K P, Muehlbauer G J, Chao S, Close T J, Steffenson B J. Association mapping of spot blotch resistance in wild barley. Mol Breed, 2010, 26: 243–256



[23]赖勇, 王鹏喜, 范贵强, 司二静, 王晋, 杨轲, 孟亚雄, 李葆春, 马小乐, 尚勋武, 王化俊. 大麦SSR标记遗传多样性及其与农艺性状关联分析, 中国农业科学, 2013, 46: 233–242



Lai Y, Wang P X, Fan G Q, Si E J, Wang J, Yang K, Meng Y X, Li B C, Ma X L, Shang X W, Wang H J. Genetic Diversity and association analysis using ssr marker in barley. Sci Agric Sin, 2013, 46: 233–242 (in Chinese with English abstract)



[24]Porebski S, Bailey L G, Baum B R. Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components. Plant Mol Biol Rep, 1997, 15: 8–15



[25]Paterson A H, Brubaker C L, Wendel J F. A rapid method for extraction of cotton (Gossypium spp.) genomic DNA suitable for RFLP or PCR analysis. Plant Mol Biol Rep, 1993, 11: 122–127



[26]Korff M, Wang H, Leon J, Pillen K. Development of candidate introgression lines using an exotic barley accession ( Hordeum vulgare ssp. spontaneum) as donor. Theor Appl Genet, 2004, 109: 1736–1745



[27]Breseghello F, Sorrells M E. Association mapping of kernel size and milling quality in wheat (Triticum aestivum L.) cultivars. Genetics, 2006, 172: 1165–1177



[28]Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol, 2005, 14: 2611-2620



[29]Kline J B, Moore D J, Clevenger C V. Activation and association of the Tec tyrosine kinase with the human prolactin receptor: mapping of a Tec/Vav1-receptor binding site. Mol Endocrinol, 2001, 15: 832–841



[30]Harris B P, Stokesbury K D E. The spatial structure of local surficial sediment characteristics on Georges Bank, USA. Cont Shelf Res, 2010, 30: 1840–1853



[31]Gupta P K, Rustgi S, Kulwal P L. Linkage disequilibrium and association studies in higher plants: present status and future prospects. Plant Mol Biol, 2005, 57: 461–485



[32]魏世平, 刘晓芬, 杨胜先, 吕海燕, 牛远, 章元明. 中国栽培大豆群体结构不同分类方法的比较. 南京农业大学学报, 2011, 34: 13–17



Wei S P, Liu X F, Yang S X, Lü H Y, Niu Y, Zhang Y M. Comparison of various clustering methods for population structure in Chinese cultivated soybean [Glycine max (L.) Merr.]. J Nanjing Agric Univ, 2011, 34(2): 13–17 (in Chinese with English abstract)



[33]文自翔, 赵团结, 郑永战, 刘顺湖, 王春娥, 王芳, 盖钧镒.中国栽培和野生大豆农艺品质性状与SSR标记的关联分析: I. 群体结构及关联标记. 作物学报, 2008, 34: 1169–1178



Wen Z X, Zhao T J, Zheng Y Z, Liu S H, Wang C E, Wang F, Gai J Y. Association analysis of agronomic and quality traits with ssr markers in Glycine max and Glycine soja in China: I. Population structure and associated markers. Acta Agron Sin, 2008, 34: 1169–1178 (in Chinese with English abstract)



[34]Pillen K, Zacharias A, Léon J. Comparative AB-QTL analysis in barley using a single exotic donor of Hordeum vulgare ssp. spontaneum. Theor Appl Genet, 2004, 108: 1591–1601



[35]Pillen K, Zacharias A, Léon J. Advanced backcross QTL analysis in barley (Hordeum vulgare L.). Theor Appl Genet, 2003, 107: 340–352



[36]Inostroza L, del Pozo A, Matus I, Castillo D, Hayes P, Machado S, Corey A. Association mapping of plant height, yield, and yield stability in recombinant chromosome substitution lines (RCSLs) using Hordeum vulgare subsp. spontaneum as a source of donor alleles in a Hordeum vulgare subsp. vulgare background. Mol Breed, 2009, 23: 365–376



[37]Locatelli A, Cuesta-Marcos A, Gutiérrez L, Hayes P M, Smith K P, Castro A J. Genome-wide association mapping of agronomic traits in relevant barley germplasm in Uruguay. Mol Breed, 2013, 31: 631–654



[38]Tondelli A, Xu X, Moragues M, Sharma R, Schnaithmann F, Ingvardsen C, Manninen O, Comadran J, Russell J, Waugh R. Structural and temporal variation in genetic diversity of European spring two-row barley cultivars and association mapping of quantitative traits. Plant Genome, 2013, 6: 1–14



[39]von Korff M, Wang H, Le´on J, Pillen K. AB-QTL analysis in spring barley: II. Detection of favourable exotic alleles for agronomic traits introgressed from wild barley (H. vulgare ssp. spontaneum). Theor Appl Genet, 2006, 112: 1221–1231



[40]Hori K, Kobayashi T, Shimizu A, Sato K, Takeda K, Kawasaki S. Efficient construction of high-density linkage map and its application to QTL analysis in barley. Theor Appl Genet, 2003, 107: 806–813



[41]Baghizadeh A, Taleei A R, Naghavi M R. QTL analysis for some agronomic traits in barley (Hordum vulgare L.). Int J Agric Biol, 2007, 9: 372–374



[42]Sameri M, Takeda K, Komatsuda T. Quantitative trait loci controlling agronomic traits in recombinant inbred lines from a cross of oriental-and occidental-type barley cultivars. Breed Sci, 2006, 56: 243–252



[43]Shahinnia F, Druka A, Franckowiak J, Morgante M, Waugh R, Stein N. High resolution mapping of dense spike-ar (dsp. ar) to the genetic centromere of barley chromosome 7H. Theor Appl Genet, 2012, 124: 373–384



[44]Wang J, Yang J, McNeil D L, Zhou M. Identification and molecular mapping of a dwarfing gene in barley (Hordeum vulgare L.) and its correlation with other agronomic traits. Euphytica, 2010, 175: 331–342



[45]Lex J, Ahlemeyer J, Friedt W, Ordon F. Genome-wide association studies of agronomic and quality traits in a set of German winter barley (Hordeum vulgare L.) cultivars using Diversity Arrays Technology (DArT). J Appl Genet, 2014, 1–11



[46]Kalladan R, Worch S, Rolletschek H, Harshavardhan V T, Kuntze L, Seiler C, Sreenivasulu, N, Röder M S. Identification of quantitative trait loci contributing to yield and seed quality parameters under terminal drought in barley advanced backcross lines. Mol Breed, 2013, 32: 71–90



[47]Teulat, B, Merah O, Souyris I, This D. QTLs for agronomic traits from a Mediterranean barley progeny grown in several environments. Theor Appl Genet, 2001, 103: 774–787



[48]Ellis R P, Forster B P, Gordon D C, Handley L L, Keith R P, Lawrence P, Mever R, Powell W, Robinson D, Scrimgeour C M. Phenotype/genotype associations for yield and salt tolerance in a barley mapping population segregating for two dwarfing genes. J Exp Bot, 2002, 53: 1163–1176



[49]Baum M, Grando S, Backes G, Jahoor A, Sabbagh A, Ceccarelli S. QTLs for agronomic traits in the Mediterranean environment identified in recombinant inbred lines of the cross 'Arta' × H. spontaneum 41-1. Theor Appl Genet, 2003, 107: 1215–1225

[1] XIAO Ying-Ni, YU Yong-Tao, XIE Li-Hua, QI Xi-Tao, LI Chun-Yan, WEN Tian-Xiang, LI Gao-Ke, HU Jian-Guang. Genetic diversity analysis of Chinese fresh corn hybrids using SNP Chips [J]. Acta Agronomica Sinica, 2022, 48(6): 1301-1311.
[2] WANG Xing-Rong, LI Yue, ZHANG Yan-Jun, LI Yong-Sheng, WANG Jun-Cheng, XU Yin-Ping, QI Xu-Sheng. Drought resistance identification and drought resistance indexes screening of Tibetan hulless barley resources at adult stage [J]. Acta Agronomica Sinica, 2022, 48(5): 1279-1287.
[3] YAO Xiao-Hua, WANG Yue, YAO You-Hua, AN Li-Kun, WANG Yan, WU Kun-Lun. Isolation and expression of a new gene HvMEL1 AGO in Tibetan hulless barley under leaf stripe stress [J]. Acta Agronomica Sinica, 2022, 48(5): 1181-1190.
[4] CHEN Xiao-Hong, LIN Yuan-Xiang, WANG Qian, DING Min, WANG Hai-Gang, CHEN Ling, GAO Zhi-Jun, WANG Rui-Yun, QIAO Zhi-Jun. Development of DNA molecular ID card in hog millet germplasm based on high motif SSR [J]. Acta Agronomica Sinica, 2022, 48(4): 908-919.
[5] ZHANG Xia, YU Zhuo, JIN Xing-Hong, YU Xiao-Xia, LI Jing-Wei, LI Jia-Qi. Development and characterization analysis of potato SSR primers and the amplification research in colored potato materials [J]. Acta Agronomica Sinica, 2022, 48(4): 920-929.
[6] XU De-Rong, SUN Chao, BI Zhen-Zhen, QIN Tian-Yuan, WANG Yi-Hao, LI Cheng-Ju, FAN You-Fang, LIU Yin-Du, ZHANG Jun-Lian, BAI Jiang-Ping. Identification of StDRO1 gene polymorphism and association analysis with root traits in potato [J]. Acta Agronomica Sinica, 2022, 48(1): 76-85.
[7] YU Rui-Su, TIAN Xiao-Kang, LIU Bin-Bin, DUAN Ying-Xin, LI Ting, ZHANG Xiu-Ying, ZHANG Xing-Hua, HAO Yin-Chuan, LI Qin, XUE Ji-Quan, XU Shu-Tu. Dissecting the genetic architecture of lodging related traits by genome-wide association study and linkage analysis in maize [J]. Acta Agronomica Sinica, 2022, 48(1): 138-150.
[8] ZHAO Jing, MENG Fan-Gang, YU De-Bin, QIU Qiang, ZHANG Ming-Hao, RAO De-Min, CONG Bo-Tao, ZHANG Wei, YAN Xiao-Yan. Response of agronomic traits and P/Fe utilization efficiency to P application with different P efficiency in soybean [J]. Acta Agronomica Sinica, 2021, 47(9): 1824-1833.
[9] HE Jun-Yu, ZHONG Wei, CHEN Yun-Qiong, WANG Wei-Bin, XIONG Jing-Lei, JIANG Ya-Li, SHI Hui-Meng, CHEN Sheng-Wei. Analysis on the accumulation characteristics of seven flavonoids at grain development stage in barley [J]. Acta Agronomica Sinica, 2021, 47(8): 1624-1630.
[10] GENG La, HUANG Ye-Chang, LI Meng-Di, XIE Shang-Geng, YE Ling-Zhen, ZHANG Guo-Ping. Genome-wide association study of β-glucan content in barley grains [J]. Acta Agronomica Sinica, 2021, 47(7): 1205-1214.
[11] LI Jie, FU Hui, YAO Xiao-Hua, WU Kun-Lun. Differentially expressed protein analysis of different drought tolerance hulless barley leaves [J]. Acta Agronomica Sinica, 2021, 47(7): 1248-1258.
[12] WANG Yan-Yan, WANG Jun, LIU Guo-Xiang, ZHONG Qiu, ZHANG Hua-Shu, LUO Zheng-Zhen, CHEN Zhi-Hua, DAI Pei-Gang, TONG Ying, LI Yuan, JIANG Xun, ZHANG Xing-Wei, YANG Ai-Guo. Construction of SSR fingerprint database and genetic diversity analysis of cigar germplasm resources [J]. Acta Agronomica Sinica, 2021, 47(7): 1259-1274.
[13] HAN Bei, WANG Xu-Wen, LI Bao-Qi, YU Yu, TIAN Qin, YANG Xi-Yan. Association analysis of drought tolerance traits of upland cotton accessions (Gossypium hirsutum L.) [J]. Acta Agronomica Sinica, 2021, 47(3): 438-450.
[14] TANG Jing-Quan, WANG Nan, GAO Jie, LIU Ting-Ting, WEN Jing, YI Bin, TU Jin-Xing, FU Ting-Dong, SHEN Jin-Xiong. Bioinformatics analysis of SnRK gene family and its relation with seed oil content of Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(3): 416-426.
[15] JIANG Wei, PAN Zhe-Chao, BAO Li-Xian, ZHOU Fu-Xian, LI Yan-Shan, SUI Qi-Jun, LI Xian-Ping. Genome-wide association analysis for late blight resistance of potato resources [J]. Acta Agronomica Sinica, 2021, 47(2): 245-261.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!