Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2015, Vol. 41 ›› Issue (02): 318-328.doi: 10.3724/SP.J.1006.2015.00318

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Morphological Structure Model of Leaf Space Based on Biomass at Pre-Overwintering Stage in Rapeseed (Brassica napus L.) Plant

ZHANG Wei-Xin1,2,CAO Hong-Xin2,*,ZHU Yan1,*,LIU Yan2,ZHANG Wen-Yu2,CHEN Yu-Li2,FU Kun-Ya1,2   

  1. 1 College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; 2 Institute of Agricultural Economy and Information / Engineering Research Center for Digital Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
  • Received:2014-06-16 Revised:2014-09-30 Online:2015-02-12 Published:2014-11-11
  • Contact: 曹宏鑫, E-mail: caohongxin@hotmail.com; 朱艳, E-mail: yanzhu@njau.edu.cn E-mail:nkyzwx@126.com

Abstract:

Rapeseed morphogenesis at pre-overwintering stage is the basis of growth and development of rapeseed in whole growth stage, and the leaf blades are important vegetative organ in this stage. To quantify the relationships between rapeseed plant architecture indices and the corresponding organ biomass, we used three cultivars including (V1) Ningyou 18 (conventional variety), (V2) Ningyou 16 (conventional variety), and (V3) Ningza 19 (hybrid) in the field experiments, and designed treatment of variety-fertilizer, variety-fertilizer-density, and variety tests in 2011–2012 and 2012–2013, with three fertilizer levels of no fertilizer, normal fertilizer (N, P2O5, K2O are 90 kg ha–1), and high fertilizer (N, P2O5, K2O are 180 kg ha–1), and three density levels of D1 (6×104 plant ha–1), D2 (1.2×105 plant ha–1), and D3 (1.8×105 plant ha–1). Morphological indices were determined at pre-overwintering stage, the biomass-based rapeseed aboveground structure model was established with morphological indices, and the relationships between leaf blade indices and leaf blade biomass were analyzed. The models were verified using independent experiment data in 2011–2012, and 2012–2013, showing that the simulated values from the rapeseed plant leaf space morphological structure models, such as leaf blade length, leaf blade width, leaf blade bowstring length, leaf blade petiole length, and leaf blade angle from 2011 to 2012 were goodness of fit to observed values, and their da values and RMSE values were –0.231 cm, 2.102 cm (n=63); –0.273 cm, 0.484 cm (n=63); –0.343 cm, 1.963 cm (n=63); 0.412 cm, 2.095 cm (n=36); –0.635 cm, 1.006 cm (n=27); 4.421°, 14.734° (n=63); 6.642°, 21.817° (n=63), respectively. The correlation between observation and simulation in the morphological indices were significant at P<0.001, but the dap values were less than 5% for the leaf blade length and the leaf blade bowstring length, which indicated that these models’ accuracy is high. The simulated values of the models had better consistency and better reliability with the observed values at pre-overwintering stage except for petiole length of the short-petiole leaves, leaf tangent angle, leaf bowstring angle, and the CPLB (partitioning coefficient of blade dry weight) under the condition of no fertilizer.

Key words: Rapeseed (Brassica napus L.), Leaf blade, Biomass, Morphological structure, Model

[1]王汉中. 中国油料供需形势、问题与发展对策. 北京: 中国农业科学技术出版社, 2002. pp 3–8

Wang H Z. Supply and Demand, Issues, and Development Countermeasures of China Oilseeds Industry. Beijing: China Agricultural Science and Technology Press, 2002. pp 3–8

[2]Williams J R, Jones C A, Kiniry J R, Spanel D A. The EPIC crop growth model. Trans ASAE, 32: 497–511

[3]Kiniry J R, Major D J, Lzaurralde R C, Williams J R, Gassman P W, Morrison M, Bergentine R, Zentener R P. EPIC model parameters for cereal, oil seed, and forage crop in the north Great Plain region. Can J Plant Sci, 1983, 63: 1063–1065

[4]Precision Farming-The Epic Model. http://www.grida. no/prog/global/cgiar/awpack/farm.html

[5]Petersen C T, Jorgensen U, Svendsen H, Hansen S, Jensen N E, Nielsen. Parameter assessment for simulation of biomass production and nitrogen uptake in winter rape. Eur J Agron, 1995, 4: 77–89

[6]Habekotte B. Evalation of seed yield determining factors of winter oilseed rape (Brassica napus L.). Field Crops Res, 1997, 54: 137–151

[7]Habekott B. A model of the phenological development of winter oilseed rape (Brassica napus L.). Field Crops Res, 1997, 54: 127–136

[8]Gabriel le B, Denoroy P, Gosse G, Justes E, Andersen M N. Development and evaluation of a CERES-type model f or winter oil seed rape. Field Crops Res, 1998, 57: 95–111

[9]Robertson M J, Holland J F, Kirkegaard J A, Smith C J. Simulation growth and development of canola in Australia. In: Proceedings of the 10th International Rapeseed Congress, Canberra, Australia,1999

[10]Zhang C L, Li G M, Cao H X. Simulating growth and development of winter rape in Yangtze River valley. In: Proceedings of 11th International Rapeseed Congress, Copenhagen, Denmark, 6–10, July, 2003. p 835

[11]刘洪, 金之庆. 油菜发育动态模拟模型. 应用气象学报, 2003, 14: 634–640

Liu H, Jin Z Q. A phonological model to simulate rape development. J Appl Meteorol Sin, 2003, 14: 634–640 (in Chinese with English Abstract)

[12]廖桂平, 官春云. 甘蓝型冬油菜(Brassica napus)干物质积累、分配与转移的特性研究. 作物学报, 2002, 28: 52–58

Liao G P, Guan C Y. Study on characteristics of dry matter accumulation, distribution and transfer of winter rapeseed (Brassica napus L.). Acta Agron Sin, 2002, 28: 52–58 (in Chinese with English Abstract)

[13]廖桂平, 官春云, 陈社员. 基于Web的油菜生产专家系统的研究与应用. 农业系统科学与综合研究, 2005, 21(1): 8–11

Liao G P, Guan C Y, Chen S Y. Research and application of web-based rapeseed (Brassica napus L.) production expert system. Syst Sci Compreh Studies Agric, 2005, 21: 8–11 (in Chinese with English Abstract)

[14]刘铁梅, 胡立勇, 赵祖红, 曹凑贵, 曹卫星, 严美春. 油菜发育过程及生育期机理模型的研究: I. 模型的描述. 中国油料作物学报, 2004, 26: 27–31

Liu T M, Hu L Y, Zhao Z H, Cao C G, Cao W X, Yan M C. A mechanistic of phasic and phenological development in rape: I. Description of the model. Chin J Oil Crop Sci, 2004, 26: 27–31 (in Chinese with English Abstract)

[15]胡立勇, 刘铁梅, 郑小林, 曹凑贵, 曹卫星, 严美春. 油菜发育过程及生育期机理模型的研究: II. 模型的检验和评价. 中国油料作物学报, 2004, 26: 51–55

Hu L Y, Liu T M, Zheng X L, Cao C G, Cao W X, Yan M C. A mechanistic model of phasic and phenological development in rape: II. Validation and evaluation of the model. Chin J Oil Crop Sci, 2004, 26: 51–55 (in Chinese with English Abstract)

[16]曹宏鑫, 张春雷, 李光明, 张保军, 赵锁劳, 汪宝卿, 金之庆. 油菜生长发育模拟模型研究. 作物学报, 2006, 32: 1530–1536

Cao H X, Zhang C L, Li G M, Zhang B J, Zhao S L, Wang B Q, Jin Z Q. Researches of simulation models of rape (Brassica napus L.) growth and development. Acta Agron Sin, 2006, 32: 1530–1536 (in Chinese with English Abstract)

[17]汤亮, 朱艳, 刘铁梅, 曹卫星. 油菜生育期模拟模型研究. 中国农业科学, 2008, 41: 2493–2498

Tang L, Zhu Y, Liu T M, Cao W X. Process-based model for simulating phonological development in rapeseed. Sci Agric Sin, 2008, 41: 2493–2498 (in Chinese with English abstract)

[18]Groer C, Kniemeyer O, Hemmerling R, Kurth W, Becker H, Buck-Sorlin G. H. A dynamic 3D model of rape (Brassica napus L.) computing yield components under variable nitrogen fertilization regimes. 2007, http:// algorithmicbotany.org/FSPM07/proceedings.html

[19]Müller J, Braune H, Wernecke P, Diepenbrock W. Towards universality and modularity: a generic photosynthesis and transpiration module for functional structural plant models. 2007, http:// algorithmicbotany.org/FSPM07/proceedings.html

[20]Jullien A, Mathieu A, Allirand J M, Pinet A, de Reffye P, Ney B, Courne?de, P.-H. Modelling of branch and flower expansion in GreenLab model to account for the whole crop cycle of winter oilseed rape (Brassica Napus L.). In: 2009 Third International Symposium on Plant Growth Modeling, Simulation, Visualization and Applications, Beijing, China. pp. 167–174

[21]廖桂平, 李锦卫, 欧中斌, 聂敏. 基于参数L-系统的油菜花朵与花序生长可视化研究. 农业工程学报, 2009, 25(4): 150–156

Liao G P, Li J W, Ou Z B, Nie M. Visual growth of flower and inflorescence of rapeseed (Brassica napus L.) based on parametric L-system. Transac. CSAE, 2009, 25(4): 150–156 (in Chinese with English abstract)

[22]欧中斌. 油菜生长可视化仿真关键技术研究. 湖南农业大学硕士学位论文, 湖南长沙, 2007

Ou Z B. Study on the Visual Simulation Key Technology of Rapeseed (Brassica napus L.) Growth. MS Thesis of Hunan Agricultural University, Changsha, China, 2007 (in Chinese with English abstract)

[23]岳延滨. 油菜植株形态结构模型及可视化. 南京农业大学硕士学位论文, 江苏南京, 2010

Yue Y B. The Morphological Structural Model and Visualization of Rapeseed (Brassica napus L.) Plant. MS Thesis of Nanjing Agricultural University, Nanjing, China, 2010 (in Chinese with English abstract)

[24]赵丽丽, 郭新宇, 温维亮, 陆声链, 肖伯祥. 油菜花序三维形态结构数字化设计技术研究. 农机化研究, 2011, 5: 191–194

Zhao L L, Guo X Y, Wen W L, Lu S L, Xiao B X. Research on digital design for 3D shape of the rape inflorescence. J Agric Mech Res, 2011, 5: 191–194 (in Chinese with English abstract)

[25]赵丽丽, 温维亮, 彭亚宇, 郭新宇, 陆声链, 杜建军. 幼苗期油菜几何造型研究. 安徽农业科学, 2011, 39: 14005–14007

Zhao L L, Wen W L, Peng Y Y, Guo X Y, Lu S L, Du J J. Geometric modeling of (Brassica campestris L.) during seedling stage. Anhui Agric Sci, 2011, 39: 14005–14007 (in Chinese with English abstract)

[26]Cao H-X, Liu Y, Liu Y X, Hanan J S., Yue Y B, Zhu D W, Lu J F, Sun J Y, Shi C L, Ge D K, Wei X F, Yao A Q, Tian P P, Bao T L. Biomass-based rice (Oryza sativa L.) aboveground architectural parameter models. J Integr Agric, 2012, 11: 101–108

[27]Cao H X, Hanan J S., Liu Y, Liu Y X, Yue Y B, Zhu D W, Lu J F, Sun J Y, Shi C L, Ge D K, Wei X F, Yao A Q, Tian P P, Bao T L. Comparison of crop model validation methods. J Integr Agric, 2012, 11: 1274–1285

[28]刘岩, 陆建飞, 曹宏鑫, 石春林, 刘永霞, 朱大威, 孙金英, 岳延滨, 魏秀芳, 田平平, 包太林. 基于生物量的水稻叶片主要几何属性模型研究, 中国农业科学, 2009, 42: 4093–4099

Liu Y, Lu J F, Cao H X, Shi C L, Liu Y X, Zhu D W, Sun J Y, Yue Y B, Wei X F, Tian P P, Bao T L. Main geometrical parameter models of rice blade based on biomass. Sci Agric Sin, 2009, 42: 4093–4099 (in Chinese with English abstract)

[29]Zhao Z Y, Yue Y B, Nie K Y, Li L J, Peng Z L, Sun C Q, Wang R Y, Li Y R. Study on morphological simulation models of chili pepper leaves. Guizhou Agric Sin, 2012, 40: 182–186

[30]刘宏伟, 吴斌, 张红英, 李芳, 邵延华. 水稻叶片几何模型及其可视化研究. 计算机工程, 2009, 35: 263–268

Liu H W, Wu B, Zhang H Y, Li F, Shao Y H. Research on rice leaf geometric model and its visualization. Comput Engin, 2009, 35: 263–268 (in Chinese with English abstract)

[31]朱艳, 刘小军, 谭子辉, 汤亮, 田永超, 姚霞, 曹卫星. 冬小麦叶色动态的量化研究. 中国农业科学, 2008, 41: 3851–3857

Zhu Y, Liu X J, Tan Z H, Tang L, Tian Y C, Yao X, Cao W X. Sci Agric Sin, 2008, 41: 3851–3857 (in Chinese with English abstract

[1] WANG Jing-Tian, ZHANG Ya-Wen, DU Ying-Wen, REN Wen-Long, LI Hong-Fu, SUN Wen-Xian, GE Chao, ZHANG Yuan-Ming. SEA v2.0: an R software package for mixed major genes plus polygenes inheritance analysis of quantitative traits [J]. Acta Agronomica Sinica, 2022, 48(6): 1416-1424.
[2] WANG Wang-Nian, GE Jun-Zhu, YANG Hai-Chang, YIN Fa-Ting, HUANG Tai-Li, KUAI Jie, WANG Jing, WANG Bo, ZHOU Guang-Sheng, FU Ting-Dong. Adaptation of feed crops to saline-alkali soil stress and effect of improving saline-alkali soil [J]. Acta Agronomica Sinica, 2022, 48(6): 1451-1462.
[3] YAN Yu-Ting, SONG Qiu-Lai, YAN Chao, LIU Shuang, ZHANG Yu-Hui, TIAN Jing-Fen, DENG Yu-Xuan, MA Chun-Mei. Nitrogen accumulation and nitrogen substitution effect of maize under straw returning with continuous cropping [J]. Acta Agronomica Sinica, 2022, 48(4): 962-974.
[4] ZHANG Jia-Kang, LI Fei, SHI Shu-De, YANG Hai-Bo. Construction and application of the critical nitrogen concentration dilution model of sugar beet in Inner Mongolia, China [J]. Acta Agronomica Sinica, 2022, 48(2): 488-496.
[5] ZHANG Jian, XIE Tian-Jin, WEI Xiao-Nan, WANG Zong-Kai, LIU Chong-Tao, ZHOU Guang-Sheng, WANG Bo. Estimation of feed rapeseed biomass based on multi-angle oblique imaging technique of unmanned aerial vehicle [J]. Acta Agronomica Sinica, 2021, 47(9): 1816-1823.
[6] JIANG Jian-Hua, ZHANG Wu-Han, DANG Xiao-Jing, RONG Hui, YE Qin, HU Chang-Min, ZHANG Ying, HE Qiang, WANG De-Zheng. Genetic analysis of stigma traits with genic male sterile line by mixture model of major gene plus polygene in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2021, 47(7): 1215-1227.
[7] HUANG Bing-Yan, SUN Zi-Qi, LIU Hua, FANG Yuan-Jin, SHI Lei, MIAO Li-Juan, ZHANG Mao-Ning, ZHANG Zhong-Xin, XU Jing, ZHANG Meng-Yuan, DONG Wen-Zhao, ZHANG Xin-You. Genetic analysis of fat content based on nested populations in peanut (Arachis hypogaea L.) [J]. Acta Agronomica Sinica, 2021, 47(6): 1100-1108.
[8] WEI Huan-He, ZHANG Xu-Bin, GE Jia-Lin, MENG Tian-Yao, LU Yu, LI Xin-Yue, TAO Yuan, DING En-Hao, CHEN Ying-Long, DAI Qi-Gen. Dynamics in above-ground biomass accumulation after transplanting and its characteristic analysis in Yongyou japonica/indica hybrids [J]. Acta Agronomica Sinica, 2021, 47(3): 546-555.
[9] LEI Yong, WANG Zhi-Hui, HUAI Dong-Xin, GAO Hua-Yuan, YAN Li-Ying, LI Jian-Guo, LI Wei-Tao, CHEN Yu-Ning, KANG Yan-Ping, LIU Hai-Long, WANG Xin, XUE Xiao-Meng, JIANG Hui-Fang, LIAO Bo-Shou. Development and application of a near infrared spectroscopy model for predicting high sucrose content of peanut seed [J]. Acta Agronomica Sinica, 2021, 47(2): 332-341.
[10] LI Yan-Da, CAO Zhong-Sheng, SHU Shi-Fu, SUN Bin-Feng, YE Chun, HUANG Jun-Bao, ZHU Yan, TIAN Yong-Chao. Model for monitoring leaf dry weight of double cropping rice based on crop growth monitoring and diagnosis apparatus [J]. Acta Agronomica Sinica, 2021, 47(10): 2028-2035.
[11] CUI Ying, LIN Hong-Hong, XIE Yun, LIU Su-Hong. Application study of crop yield prediction based on AquaCrop model in black soil region of Northeast China [J]. Acta Agronomica Sinica, 2021, 47(1): 159-168.
[12] LI Zong-Fei,SU Ji-Xia,FEI Cong,LI Yang-Yang,LIU Ning-Ning,DAI Yu-Xiang,ZHANG Kai-Xiang,WANG Kai-Yong,FAN Hua,CHEN Bing. Estimation of total nitrogen content in sugarbeet leaves under drip irrigation based on hyperspectral characteristic parameters and vegetation index [J]. Acta Agronomica Sinica, 2020, 46(4): 557-570.
[13] HAN Kang, YU Jing, SHI Xiao-Hua, CUI Shi-Xin, FAN Ming-Shou. Inversion of nitrogen accumulation in potato leaf with different spectral indices [J]. Acta Agronomica Sinica, 2020, 46(12): 1979-1990.
[14] LI Yao-Yao,FAN Pan-Pan,MING Bo,WANG Chun-Xia,WANG Ke-Ru,HOU Peng,XIE Rui-Zhi,LI Shao-Kun. Establishment and application of spring maize leaf longevity model based on Gaussian function [J]. Acta Agronomica Sinica, 2019, 45(8): 1221-1229.
[15] WU Ya-Peng,HE Li,WANG Yang-Yang,LIU Bei-Cheng,WANG Yong-Hua,GUO Tian-Cai,FENG Wei. Dynamic model of vegetation indices for biomass and nitrogen accumulation in winter wheat [J]. Acta Agronomica Sinica, 2019, 45(8): 1238-1249.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!