Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2019, Vol. 45 ›› Issue (7): 1128-1135.doi: 10.3724/SP.J.1006.2019.84117

• RESEARCH NOTES • Previous Articles    

Effects of glycinebetain on photosynthesis and biomass accumulation of island cotton seedlings under saline alkali stress

YAN Qing-Qing,ZHANG Ju-Song(),DAI Jian-Min,DOU Qiao-Qiao   

  1. Agriculture College, Xinjiang Agricultural University / Research Center of Cotton Engineering, Urumqi 830052, Xinjiang, China
  • Received:2018-08-26 Accepted:2019-01-19 Online:2019-07-12 Published:2019-03-26
  • Contact: Ju-Song ZHANG E-mail:xjndzjs@163.com
  • Supported by:
    This study was supported by the National Key Research and Development Program of China(2017YFD0101605-05);Xinjiang Graduate Research and Innovation Project(XJGRI2017070)


Xinhai 35 and Xinhai 48 varieties were used to study the effects of glycinebetain on photosynthesis, biomass accumulation and the role in the growth and development of sea island cotton seedlings under salt alkali stress, which will provide a reference for the application of glycinebetain in the salt alkali cultivation of island cotton. The concentration of saline alkali was 0, 120, 180, 240 mmol L -1, and the concentration of glycinebetain was 0, 30, 60 mmol L -1. With the increase of saline alkali concentration, island cotton seedling plant height, net photosynthetic rate (Pn), transpiration rate (Tr), stomatal conductance (Gs), intercellular CO2 concentration (Ci), plant fresh and dry weight accumulation showed a significant downward trend, but after glycinebetain spraying, the growth, photosynthesis and biomass accumulation of sea island cotton seedlings were improved in different degrees. Under the same saline alkali concentration, the above indices of island cotton seedlings increased first and then decreased with the increase of glycinebetain concentration. Under the same glycinebetain concentration, the promotion degree of each index of island cotton seedlings showed a continuous downward trend with the increase of salinity and alkali concentration. Under 120 mmol L -1 saline-alkali concentration, spraying 30 mmol L -1 glycinebetain had a significant effect on improving the photosynthetic performance, thereby increasing the plant height and biomass accumulation of island cotton seedlings, which was more effective in Xinhai 35 than in Xinhai 48. Therefore, in the cultivation of saline alkali soil (0-120 mmol L -1), foliar application of glycinebetain (30 mmol L -1) can significantly improve the growth and photosynthesis of island cotton.

Key words: island cotton, saline alkali stress, glycinebetain, photosynthesis, biomass accumulation

Fig. 1

Effects of different treatments on plant height of island cotton seedlings Bars superscripted by different letters are significantly different at P < 0.05."

Fig. 2

Effects of different treatments on photosynthetic gas parameters of island cotton seedlings Bars superscripted by different letters are significantly different at P < 0.05."

Table 1

Effects of different treatments on fresh weight of seedlings in island cotton"

Salt and alkali concentration (mmol L-1)
Betaine concentration
(mmol L-1)
Stem and leaf fresh weight (mg)
Root fresh weight
Total fresh weight
新海35号 0 0 7.89±0.17 a 1.98±0.12 a 9.87±0.28 a
Xinhai 35 120 0 6.96±0.17 de 1.73±0.01 cd 8.70±0.18 c
30 7.57±0.12 abc 1.86±0.03 ab 9.43±0.14 ab
60 7.38±0.03 bcd 1.82±0.04 bc 9.21±0.06 bc
180 0 5.73±0.24 hi 1.42±0.01 h 7.16±0.24 e
30 6.22±0.18 fg 1.52±0.01 fgh 7.74±0.20 d
60 6.01±0.19 gh 1.47±0.05 gh 7.48±0.22 de
240 0 3.44±0.22 k 1.10±0.05 i 4.54±0.27 g
30 3.65±0.19 k 1.18±0.03 i 4.83±0.16 g
60 3.49±0.02 k 1.12±0.01 i 4.61±0.01 g
Salt and alkali concentration (mmol L-1)
Betaine concentration
(mmol L-1)
Stem and leaf fresh weight (mg)
Root fresh weight
Total fresh weight
新海48号 0 0 7.75±0.14 ab 1.67±0.06 de 9.42±0.20 ab
Xinhai 48 120 0 6.54±0.10 ef 1.45±0.06 gh 7.99±0.07 d
30 7.35±0.08 bcd 1.64±0.02 def 8.99±0.06 bc
60 7.11±0.18 cd 1.57±0.05 efg 8.68±0.21 c
180 0 5.10±0.19 j 1.04±0.01 i 6.14±0.19 f
30 5.50±0.07 ij 1.12±0.03 i 6.62±0.07 f
60 5.24±0.10 j 1.06±0.02 i 6.30±0.10 f
240 0 2.59±0.18 l 0.59±0.01 j 3.19±0.18 h
30 2.63±0.17 l 0.62±0.02 j 3.24±0.18 h
60 2.46±0.20 l 0.52±0.06 j 2.98±0.24 h

Table 2

Effects of different treatments on dry matter accumulation of island cotton"

Salt and alkali concentration (mmol L-1)
Betaine concentration (mmol L-1)
Stem and leaf dry weight (mg)
Root dry weight
Total dry weight
新海35号 0 0 0.97±0.01 a 0.19±0.01 a 1.16±0.02 a
Xinhai 35 120 0 0.74±0.03 d 0.14±0.00 cde 0.88±0.03 e
30 0.88±0.01 b 0.17±0.01 b 1.05±0.01 b
60 0.83±0.01 bc 0.15±0.00 cd 0.98±0.01 c
180 0 0.54±0.01 g 0.11±0.00 f 0.66±0.01 h
30 0.68±0.01 e 0.13±0.00 de 0.81±0.01 f
60 0.61±0.01 f 0.12±0.01 ef 0.74±0.01 g
240 0 0.33±0.04 i 0.08±0.01 gh 0.41±0.04 k
30 0.41±0.01 h 0.09±0.00 g 0.51±0.01 i
60 0.37±0.01 hi 0.06±0.00 i 0.43±0.01 jk
新海48号 0 0 0.86±0.01 b 0.15±0.00 c 1.01±0.01 bc
Xinhai 48 120 0 0.79±0.02 c 0.12±0.00 ef 0.92±0.02 de
30 0.85±0.04 b 0.14±0.00 cde 0.99±0.04 c
60 0.84±0.02 bc 0.13±0.01 de 0.97±0.01 cd
180 0 0.39±0.02 h 0.08±0.00 gh 0.46±0.02 ijk
30 0.43±0.00 h 0.09±0.00 g 0.52±0.00 i
60 0.42±0.00 h 0.07±0.00 hi 0.49±0.00 ij
240 0 0.15±0.00 j 0.02±0.00 jk 0.17±0.00 l
30 0.19±0.01 j 0.03±0.00 j 0.21±0.01 l
60 0.15±0.01 j 0.01±0.00 k 0.16±0.01 l
[1] 徐恒刚 . 中国盐生植被及盐渍化生态治理. 北京: 中国农业科学技术出版社, 2004.
Xu H G. Halophyte and Ecological Management of Salinization in China. Beijing: China Agricultural Science Technology Publisher, 2004 (in Chinese).
[2] 李建国, 濮励杰, 朱明, 张润森 . 土壤盐渍化研究现状及未来研究热点. 地理学报, 2012,67:1233-1245.
Li J G, Pu L J, Zhu M, Zhang R S . The present situation and hot issues in the salt-affected soil research. Acta Geogr Sin, 2012,67:1233-1245 (in Chinese with English abstract).
[3] 任丽丽, 任春明, 赵自国 . 植物耐盐性研究进展. 山西农业科学, 2010,38(5):87-90.
Ren L L, Ren C M, Zhao Z G . Research advances in plant salt-tolerance. J Shanxi Agric Sci, 2010,38(5):87-90 (in Chinese with English abstract).
[4] Singh M, Kumar J, Singh S, Singh V P . Roles of osmoprotectants in improving salinity and drought tolerance in plants: a review. Rev Environ Sci Biotechnol, 2015,14:407-426.
doi: 10.1007/s11157-015-9372-8
[5] 周洪华, 李卫红 . 胡杨木质部水分传导对盐胁迫的响应与适应. 植物生态学报, 2015,39:81-91.
Zhou H H, Li W H . Responses and adaptation of xylem hydraulic conductivity to salt stress in Populus euphratica. Chin J Plant Ecol, 2015,39:81-91 (in Chinese with English abstract).
[6] 岳健敏, 任琼, 张金池 . 植物盐耐机理研究进展. 林业工程学报, 2015,29(5):9-13.
Yue J M, Ren Q, Zhang J C . Advances in salt tolerance mechanism of plants. J For Eng, 2015,29(5):9-13 (in Chinese with English abstract).
[7] Chen T H, Murata N . Glycinebetaine protects plants against abiotic stress: mechanisms and biotechnological applications. Plant Cell Environ, 2011,34:1-20.
doi: 10.1111/pce.2011.34.issue-1
[8] 王素平, 郭世荣, 李璟, 胡晓辉, 焦彦生 . 盐胁迫对黄瓜幼苗根系生长和水分利用的影响. 应用生态学报, 2006,17:1883-1888.
Wang S P, Guo S R, Li J, Hu X H, Jiao Y S . Effects of salt stress on the growth of root system and water use efficiency of cucumber seedlings. Chin J Appl Ecol, 2006,17:1883-1888 (in Chinese with English abstract).
[9] Rahnama A, James R A, Poustini K, Munns R . Stomatal conductance as a screen for osmotic stress tolerance in durum wheat growing in saline soil. Funct Plant Biol, 2010,37:255-263.
doi: 10.1071/FP09148
[10] 王玉萍, 高会会, 刘悦善, 慕平, 鱼小军, 安黎哲, 张峰 . 高山植物光合机构耐受胁迫的适应机制. 应用生态学报, 2013,24:2049-2055.
Wang Y P, Gao H H, Liu Y S, Mu P, Yu X J, An L Z, Zhang F . Adaptation mechanisms of alpine plants photosynthetic apparatus against adverse stress: a review. Chin J Appl Ecol, 2013,24:2049-2055 (in Chinese with English abstract).
[11] 丁俊祥, 邹杰, 唐立松, 刘卫国 . 克里雅河流域荒漠-绿洲交错带3种不同生活型植物的光合特性. 生态学报, 2015,35:733-741.
Ding J X, Zou J, Tang L S, Liu W G . Photosynthetic characteristics of three different life-form plants in the desert-Oasisecotone of Keriya river basin. Acta Ecol Sin, 2015,35:733-741 (in Chinese with English abstract).
[12] 王宇超, 王得祥 . 盐胁迫对木本滨藜叶绿素合成及净光合速率的影响. 农业工程学报, 2012,28(10):151-158.
Wang Y C, Wang D X . Effects of salt stress on chlorophyll content and net photosynthetic rate of woody saltbush. Trans CSAE, 2012,28(10):151-158 (in Chinese with English abstract).
[13] 马荣, 王成, 马庆, 侯佩臣, 王晓冬 . 向日葵芽苗期离子对复合盐胁迫的响应. 中国生态农业学报, 2017,25:720-729.
Ma R, Wang C, Ma Q, Hou P C, Wang X D . Ion response of sunflower at sprouting stage to mixed salt stress. Chin J Eco-Agric, 2017,25:720-729 (in Chinese with English abstract).
[14] 张会慧, 张秀丽, 李鑫, 丁俊男, 朱文旭, 齐飞, 张婷, 田野, 孙广玉 . NaCl和Na2CO3胁迫对桑树幼苗生长和光合特性的影响. 应用生态学报, 2012,23:625-631.
Zhang H H, Zhang X L, Li X, Ding J N, Zhu W X, Qi F, Zhang T, Tian Y, Sun G Y . Effects of NaCl and Na2CO3 stresses on the growth and photosynthesis characteristics of Morus alba seedlings. Chin J Appl Ecol, 2012,23:625-631 (in Chinese with English abstract).
[15] 许大全 . 光合作用气孔限制分析中的一些问题. 植物生理学报, 1997,33:241-244.
Xu D Q . Some problems in stomatal limitation analysis of photosynthesis. J Plant Physiol, 1997,33:241-244 (in Chinese with English abstract).
[16] Nusrat N, Shahbaz M, Perveen S . Modulation in growth, photosynthetic efficiency, activity of antioxidants and mineral ions by foliar application of glycinebetaine on pea (Pisum sativum L.) under salt stress. Acta Physiol Planta, 2014,36:2985-2998.
[17] 雷永康, 徐智敏, 李取生, 何宝燕, 梅秀芹, 陈艳芳, 曹刚 . 外源甜菜碱对苋菜抗盐性与累积重金属特性的影响. 环境科学学报, 2015,35:1587-1595.
Lei Y K, Xu Z M, Li Q S, He B Y, Mei X Q, Chen Y F, Cao G . Effect of exogenous glycinebetaine on the salinity tolerance and heavy metals accumulation of edible amaranth. Acta Sci Circumst, 2015,35:1587-1595 (in Chinese with English abstract).
[18] 刘佳琪, 杨雪, 李迪, 杨海灵 . 胡杨甜菜碱醛脱氢酶基因的功能分化. 生物工程学报, 2012,28:329-339.
Liu J Q, Yang X, Li D, Yang H L . Functional divergence of betaine aldehyde dehydrogenase genes in Populus euphratica. Chin J Biotechnol, 2012,28:329-339 (in Chinese with English abstract).
[19] 高雁, 娄恺, 李春 . 盐分胁迫下棉花幼苗对外源甜菜碱的生理响应. 农业工程学报, 2011,27(增刊1):244-248.
Gao Y, Lou K, Li C . Effect of exogenous glycine betaine on the physiological responses of cotton seedlings under salt stress. Trans CSAE, 2011,27(suppl-1):244-248 (in Chinese with English abstract).
[20] 黄英运, 朱丹华, 李虹章, 董德坤 . 外源甜菜碱对NaCl胁迫下大豆苗期生理指标的影响. 浙江农业学报, 2012,24:12-16.
Huang Y Y, Zhu D H, Li H Z, Dong D K . Effects of exogenous glycine betaine on the physiological indexes of soybean seedlings under NaCl stress. Acta Agric Zhejiangensis, 2012,24:12-16 (in Chinese with English abstract).
[21] 赵新西, 马千全, 梁超, 房燕, 王玮 . 甜菜碱预处理对盐胁迫下小麦幼苗类囊体膜脂脂肪酸组分和功能的影响. 作物学报, 2006,32:703-708.
Zhao X X, Ma Q Q, Liang C, Fang Y, Wang W . Effects of pretreated with glycinebetaine on the fatty acid composition and function of wheat thylakoid membrane under salt stress. Acta Agron Sin, 2006,32:703-708 (in Chinese with English abstract).
[22] Wei D, Zhang W, Wang C C, Meng Q W, Li G, Tony H H, Yang X H . Genetic engineering of the biosynthesis of glycinebetaine leads to alleviate salt-induced potassium efflux and enhances salt tolerance in tomato plants. Plant Sci, 2017,257:74-83.
doi: 10.1016/j.plantsci.2017.01.012
[23] Khalid A, Athar H U R, Zafar Z U, Akram A, Hussain K, Manzoor H, Al-Qurainy F, Ashraf M . Photosynthetic capacity of canola (Brassica napus L.) plants as affected by glycinebetaine under salt stress. J Appl Bot Food Qual, 2015,88:78-86.
[24] Cengiz K, Osman S, Salih A, Murat D . Mitigation effects of glycinebetaine on oxidative stress and some key growth parameters of maize exposed to salt stress. Turk J Agric For, 2013,37:188-194.
[25] Suriyan C U, Chalermpol K . Effect of glycinebetaine on proline, water use, and photosynthetic efficiencies, and growth of rice seedlings under salt stress. Turk J Agric For, 2010,34:517-527.
[26] 严青青, 张巨松, 李星星, 王燕提 . 盐碱胁迫对海岛棉种子萌发及幼苗根系生长的影响. 作物学报, 2019,45:99-109.
Yan Q Q, Zhang J S, Li X X, Wang Y T . Effects of salinity stress on seed germination and root growth of seedlings in island cotton. Acta Agron Sin, 2019,45:99-109 (in Chinese with English abstract).
[27] 尹海龙, 田长彦 . 根施甜菜碱对盐胁迫下玉米幼苗根系生长与光合特性的影响. 干旱区资源与环境, 2013,27(9):113-118.
Yin H L, Tian C Y . Effects of root-applied glycinebetaine on the root growth and photosynthetic characteristics under salt stress in maize seedlings. J Arid Land Resour Environ, 2013,27(9):113-118 (in Chinese with English abstract).
[28] 张浩, 郭丽丽, 叶嘉, 张雷, 王清涛, 李菲, 张茜茜, 曹旭, 徐明, 郝立华, 郑云普 . 樱桃番茄叶片气孔特征和气体交换过程对NaCl胁迫的响应. 农业工程学报, 2018,34(5):107-113.
Zhang H, Guo L L, Ye J, Zhang L, Wang Q T, Li F, Zhang Q Q, Cao X, Xu M, Hao L H, Zheng Y P . Responses of leaf stomatal traits and gas exchange process of cherry tomato to NaCl salinity stress. Trans CSAE, 2018,34(5):107-113 (in Chinese with English abstract).
[29] Athar H U R, Zafar Z U, Ashraf M . Glycinebetaine improved photosynthesis in canola under salt stress: evaluation of chlorophyll fluorescence parameters as potential indicators. J Agron Crop Sci, 2015,201:428-442.
doi: 10.1111/jac.2015.201.issue-6
[30] 梁杨杨, 吴晓蕾, 李敬蕊, 宫彬彬, 高洪波, 王春燕 . 盐碱胁迫下GABA对番茄幼苗活性氧代谢及光合性能的影响. 河北农业大学学报, 2016,39(3):7-13.
Liang Y Y, Wu X L, Li J R, Gong B B, Gao H B, Wang C Y . Effects of exogenous GABA on reactive oxygen species metabolism and photosynthesis characteristics of tomatoes under mixed NaCl and NaHCO3 stress. J Agric Univ Hebei, 2016,39(3):7-13 (in Chinese with English abstract).
[31] 李善家, 韩多红, 王恩军, 武燕 . 外源甜菜碱对盐胁迫下黑果枸杞种子萌发和幼苗保护酶活性的影响. 草业科学, 2016,33:674-680.
Li S J, Han D H, Wang E J, Wu Y . Effects of exogenous betaine on seed germination and antioxidase activities of lycium ruthenium seedlings under NaCl stress. Pratac Sci, 2016,33:674-680 (in Chinese with English abstract).
[32] Rhodes D . Salt tolerance of glyciebetaine-deficient and -containing maize lines. Plant Physiol, 1995,107:631-638.
doi: 10.1104/pp.107.2.631
[33] Goel D, Singh A K, Yadav V, Babbar S B, Murata N, Bansal K C . Transformation of tomato with a bacterial codA gene enhances tolerance to salt and water stresses. J Plant Physiol, 2011,168:1286-1294.
[34] Nomura M, Hibino T, Takabe T, Sugiyama T, Yokota A, Miyake H, Takabe T . Transgenically produced glycinebetaine protects ribulose 1,5-bisphosphate carboxylase/oxygenase from inactivation in Synechococcus sp. PCC7942 under salt stress. Plant Cell Physiol, 1998,39:425-432.
[1] GAO Zhen, LIANG Xiao-Gui, ZHANG Li, ZHAO Xue, DU Xiong, CUI Yan-Hong, ZHOU Shun-Li. Effects of irrigating at different growth stages on kernel number of spring maize in the North China Plain [J]. Acta Agronomica Sinica, 2021, 47(7): 1324-1331.
[2] ZHOU Lian, LIU Chao-Xian, XIONG Yu-Han, ZHOU Jing, CAI Yi-Lin. Functional analysis of plasma membrane intrinsic protein ZmPIP1;1 involved in drought tolerance and photosynthesis in maize [J]. Acta Agronomica Sinica, 2021, 47(3): 472-480.
[3] WEI Huan-He, ZHANG Xu-Bin, GE Jia-Lin, MENG Tian-Yao, LU Yu, LI Xin-Yue, TAO Yuan, DING En-Hao, CHEN Ying-Long, DAI Qi-Gen. Dynamics in above-ground biomass accumulation after transplanting and its characteristic analysis in Yongyou japonica/indica hybrids [J]. Acta Agronomica Sinica, 2021, 47(3): 546-555.
[4] HOU Hui-Zhi, ZHANG Xu-Cheng, FANG Yan-Jie, YU Xian-Feng, WANG Hong-Li, MA Yi-Fan, ZHANG Guo-Ping, LEI Kang-Ning. Effects of micro ridge-furrow with plastic mulching on soil hydrothermal environment and photosynthesis at seedling stage of spring wheat on cold rain-fed area [J]. Acta Agronomica Sinica, 2020, 46(9): 1398-1407.
[5] Jing-Nan ZOU,Qi YU,Xi-Jun JIN,Ming-Yao WANG,Bin QIN,Chun-Yuan REN,Meng-Xue WANG,Yu-Xian ZHANG. Effects of exogenous melatonin on physiology and yield of soybean during seed filling stage under drought stress [J]. Acta Agronomica Sinica, 2020, 46(5): 745-758.
[6] CAO Xin-Chuan,HU Shou-Lin,HAN Xiu-Feng,HE Liang-Rong,GUO Wei-Feng. Relationship of stage development of cotton bolls with yield and quality in island cotton [J]. Acta Agronomica Sinica, 2020, 46(02): 300-306.
[7] YU Qi,FENG Nai-Jie,WANG Shi-Ya,ZUO Guan-Qiang,ZHENG Dian-Feng. Effects of S3307 on the photosynthesis and yield of mung bean at R1 and R5 stages under waterlogging stress [J]. Acta Agronomica Sinica, 2019, 45(7): 1080-1089.
[8] Le-Chen LI,Guo-Zhong ZHU,Xiu-Juan SU,Wang-Zhen GUO. Genome-wide screening and evaluation of SNP core loci for fingerprinting construction of cotton accessions (G. barbadense) [J]. Acta Agronomica Sinica, 2019, 45(5): 647-655.
[9] Han-Yu WU,Fei XIAO,Ya-Li ZHANG,Chuang-Dao JIANG,Wang-Feng ZHANG. Repetitive intense flashes inhibit photosystem II activity and thermal dissipation in cotton leaves [J]. Acta Agronomica Sinica, 2019, 45(5): 792-797.
[10] Han-Yu WU,Ya-Jun ZHANG,Wang-Feng ZHANG,Ke-Ru WANG,Shao-Kun LI,Chuang-Dao JIANG. Photosynthetic characteristics of senescent leaf induced by high planting density of maize at heading stage in the field [J]. Acta Agronomica Sinica, 2019, 45(2): 248-255.
[11] Qing-Qing YAN,Ju-Song ZHANG,Xing-Xing LI,Yan-Ti WANG. Effects of salinity stress on seed germination and root growth of seedlings in island cotton [J]. Acta Agronomica Sinica, 2019, 45(1): 100-110.
[12] Chao LI,Zhi-Kun LI,Qi-Shen GU,Jun YANG,Hui-Feng KE,Li-Qiang WU,Guo-Ning WANG,Yan ZHANG,Jin-Hua WU,Gui-Yin ZHANG,Yuan-Yuan YAN,Zhi-Ying MA,Xing-Fen WANG. Molecular Evaluation for Chromosome Segment Substitution Lines of Gossypium barbadense and QTL Mapping for Fiber Quality and Yield [J]. Acta Agronomica Sinica, 2018, 44(8): 1114-1126.
[13] Qing-Fei WU, Lei QIN, Lei DONG, Ze-Hong DING, Ping-Hua LI, Bai-Juan DU. Transcriptome Analysis on a Maize Photosynthetic Mutant hcf136 (high chlorophyll fluorescence 136) [J]. Acta Agronomica Sinica, 2018, 44(04): 493-504.
[14] BAI Wei, ZHANG Li-Zhen, PANG Huan-Cheng, SUN Zhan-Xiang, NIU Shi-Wei, CAI Qian,AN Jing-Wen. Effects of Straw Returning Combined with Nitrogen Fertilizer on Photosynthetic Performance and Yield of Spring Maize in Northeast China [J]. Acta Agron Sin, 2017, 43(12): 1845-1855.
[15] XIAO Fei,YANG Yan-Long,WANG Ya-Ting,MA Hui,ZHANG Wang-Feng. Effects of Low Temperature on PSI and PSII Photoinhibition in Cotton Leaf at Boll Stage [J]. Acta Agron Sin, 2017, 43(09): 1401-1409.
Full text



No Suggested Reading articles found!