Acta Agronomica Sinica ›› 2022, Vol. 48 ›› Issue (5): 1081-1090.doi: 10.3724/SP.J.1006.2022.14067
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
SUN Si-Min(), HAN Bei, CHEN Lin, SUN Wei-Nan, ZHANG Xian-Long, YANG Xi-Yan*(
)
[1] |
Snapp S, Koide R, Lynch J. Exploitation of localized phosphorus- patches by common bean roots. Plant Soil, 1995, 177:211-218.
doi: 10.1007/BF00010127 |
[2] |
Nicotra A, Babicka N, Westoby M. Seedling root anatomy and morphology: an examination of ecological differentiation with rainfall using phylogenetically independent contrasts. Oecologia, 2002, 130:136-145.
doi: 10.1007/s004420100788 pmid: 28547018 |
[3] | 梁泉, 廖红, 严小龙. 植物根构型的定量分析. 植物学通报, 2007, 24:695-702. |
Liang Q, Liao H, Yan X L. Quantitative analysis of plant root architecture. Chin Bull Bot, 2007, 24:695-702 (in Chinese with English abstract). | |
[4] | Zhang B W. Plant root research methods and trends. Agric Sci Technol, 2017, 18:2295-2298. |
[5] | 严小龙, 廖红, 杨茂. 根构型分析在豆科作物磷效率研究中的应用. 中国农业科技导报, 1999, (1):40-43. |
Yan X L, Liao H, Yang M. Application of root architecture analysis in the study of phosphorus efficiency of leguminous crops. Rev China Agric Sci Technol, 1999, (1):40-43 (in Chinese). | |
[6] |
Bonser A M, Lynch J, Snapp S. Effect of phosphorus deficiency on growth angle of basal roots in Phaseolus vulgaris. New Phytol, 1996, 132:281-288.
pmid: 11541132 |
[7] | 梁慧珍, 余永亮, 杨红旗, 张海洋, 董薇, 崔暐文, 巩鹏涛, 方宣钧. 幼苗期大豆根系性状的遗传分析与QTL检测. 中国农业科学, 2014, 47:1681-1691. |
Liang H Z, Yu Y L, Yang H Q, Zhang H Y, Dong W, Cui W W, Gong P T, Fang X J. Genetic and QTL analysis of root traits at seedling stage in soybean [Glycine max (L.) Merr.]. Sci Agric Sin, 2014, 47:1681-1691 (in Chinese with English abstract). | |
[8] | 蒋奇峰. 不同抗旱型玉米苗期根系性状的遗传分析. 西北农林科技大学硕士学位论文, 陕西杨凌, 2015. |
Jiang Q F. Analysis on the Heredity of Root Traits during Drought-resistant Maize Seedling. MS Thesis of Northwest A&F University, Yangling, Shaanxi, China, 2015 (in Chinese with English abstract). | |
[9] |
Pace J, Gardner C, Romay C, Ganapathysubramanian B, Lübberstedt T. Genome-wide association analysis of seedling root development in maize (Zea mays L.). BMC Genomics, 2015, 16:47.
doi: 10.1186/s12864-015-1226-9 |
[10] |
Beyer S, Daba S, Tyagi P, Bockelman H, Brown-Guedira G, Mohammadi M. Loci and candidate genes controlling root traits in wheat seedlings—a wheat root GWAS. Funct Integr Genomics, 2019, 19:91-107.
doi: 10.1007/s10142-018-0630-z |
[11] | 王杰. 甘蓝型油菜根系性状遗传基础解析. 中国农业科学院博士学位论文, 北京 2017. |
Wang J. Genetic Basis of Root Traits in Rapeseed (Brassica napus L.). PhD Dissertation of Chinese Academy of Agricultural Sciences, Beijing, China, 2017 (in Chinese with English abstract). | |
[12] | 陈贵菊, 靳义荣, 刘彩云, 贾德新, 樊庆琦, 刘金栋, 刘鹏. 普通小麦根系建成相关性状的全基因组关联分析. 植物遗传资源学报, 2020, 21:975-983. |
Chen G J, Jin Y R, Liu C Y, Jia D X, Fan Q Q, Liu J D, Liu P. Genome-wide association study of root system architecture related traits in common wheat (Triticum aestivum L.). J Plant Genet Resour, 2020, 21:975-983 (in Chinese with English abstract). | |
[13] | 张忠波, 刘贞贞, 平文超, 李洪民, 王安录, 李洪芹, 柴卫东. 棉花产量、纤维品质育种主要方法的简要剖析. 农业科技通讯, 2020, (7):279-281. |
Zhang Z B, Liu Z Z, Ping W C, Li H M, Wang A L, Li H Q, Chai W D. Brief analysis of the main breeding methods of cotton yield and fiber quality. Bull Agric Sci Technol, 2020, (7):279-281 (in Chinese). | |
[14] |
Fry E L, Evans A L, Sturrock C J, Bullock J M, Bardgett R D. Root architecture governs plasticity in response to drought. Plant Soil, 2018, 433:189-200.
doi: 10.1007/s11104-018-3824-1 |
[15] |
Maurel C, Nacry P. Root architecture and hydraulics converge for acclimation to changing water availability. Nat Plants, 2020, 6:744-749.
doi: 10.1038/s41477-020-0684-5 |
[16] | 张吴平, 李保国. 棉花根系生长发育的虚拟研究. 系统仿真学报, 2006, 18:283-286. |
Zhang W P, Li B G. Three-dimensional model simulating development and growth of cotton root system. J Syst Simul, 2006, 18:283-286 (in Chinese with English abstract). | |
[17] |
Zhu D, Li X M, Wang Z W, You C Y, Nie X H, Sun J, Zhang X L, Zhang D W, Lin Z X. Genetic dissection of an allotetraploid interspecific CSSLs guides interspecific genetics and breeding in cotton. BMC Genomics, 2020, 21:431.
doi: 10.1186/s12864-020-06800-x pmid: 32586283 |
[18] |
Li B Q, Chen L, Sun W N, Wu D, Wang M J, Yu Y, Chen G X, Yang W N, Lin Z X, Zhang X L, Duan L F, Yang X Y. Phenomics-based GWAS analysis reveals the genetic architecture for drought resistance in cotton. Plant Biotechnol J, 2020, 18:2533-2544.
doi: 10.1111/pbi.v18.12 |
[19] |
Wang M J, Tu L L, Yuan D J, Zhu D, Shen C, Li J Y, Liu F Y, Pei L L, Wang P C, Zhao G N, Ye Z X, Huang H, Yan F L, Ma Y Z, Zhang L, Liu M, You J Q, Yang Y, C Liu Z P, Huang F, Li B Q, Qiu P, Zhang Q H, Zhu L F, Jin S X, Yang X Y, Min L, Li G L, Chen L L, Zheng H K, Lindsey K, Lin Z X, Udall J A, Zhang X. Reference genome sequences of two cultivated allotetraploid cottons, Gossypium hirsutum and Gossypium barbadense. Nat Genet, 2019, 51:224-229.
doi: 10.1038/s41588-018-0282-x |
[20] |
Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 2009, 25:14.
doi: 10.1093/bioinformatics/btn569 |
[21] |
McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, DePristo M A. The genome analysis toolkit: a map reduce framework for analyzing next-generation DNA sequencing data. Genome Res, 2010, 20:1297-1303.
doi: 10.1101/gr.107524.110 pmid: 20644199 |
[22] |
Joost S, Kalbermatten M, Bonin A. Spatial analysis method (SAM): a software tool combining molecular and environmental data to identify candidate loci for selection. Mol Ecol Resour, 2008, 8:957-960.
doi: 10.1111/men.2008.8.issue-5 |
[23] | Chang C C, Chow C C, Tellier L C, Vattikuti S, Purcell S M, Lee J J. Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigasciense, 2015, 4:7. |
[24] |
Hubisz M J, Falush D, Stephens M, Pritchard J K. Inferring weak population structure with the assistance of sample group information. Mol Ecol Resour, 2009, 9:1322-1332.
doi: 10.1111/men.2009.9.issue-5 |
[25] |
Earl D A, Von Holdt B M. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour, 2012, 4:359-361.
doi: 10.1007/s12686-011-9548-7 |
[26] |
Barrett J C, Fry B, Maller J, Daly M J. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics, 2005, 21:263-265.
pmid: 15297300 |
[27] | Olivier J, Vekemans X. SPAGeDI: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol Resour, 2002, 2:618-620. |
[28] |
Abdurakhmonov I Y, Saha S, Jenkins J N, Buriev Z T, Shermatov S E, Scheffler B E, Pepper A E, Yu J Z, Kohel R J, Abdukarimov A. Linkage disequilibrium based association mapping of fiber quality traits in G. hirsutum L. variety germplasm. Genomics, 2008, 92:478-487.
doi: 10.1016/j.ygeno.2008.07.013 pmid: 18801424 |
[29] | 张爱良, 苗果园, 王建平. 作物根系与水分的关系. 作物研究, 1997, (2):6-8. |
Zhang A L, Miao G Y, Wang J P. The relationship between crop roots and water. Crop Res, 1997, (2):6-8 (in Chinese). | |
[30] | 邓旭阳, 周淑秋, 郭新宇, 赵春江, 王纪华. 玉米根系几何造型研究. 工程图学学报, 2004, 25(4):62-66. |
Deng X Y, Zhou S Q, Guo X Y, Zhao C J, Wang J H. Study on the geometry modeling for corn root system. J Eng Graph, 2004, 25(4):62-66 (in Chinese with English abstract). | |
[31] | Brunel-Saldias N, Ferrio J P, Elazab A, Orellana M, Del Pozo A. Root architecture and functional traits of Spring Wheat under contrasting water regimes. Fronit Plant Sci, 2020, 11:581140. |
[32] | 林涛, 汤秋香, 郝卫平, 吴凤全, 雷蕾, 严昌荣, 何文清, 梅旭荣. 地膜残留量对棉田土壤水分分布及棉花根系构型的影响. 农业工程学报, 2019, 35(19):117-125. |
Lin T, Tang Q X, Hao W P, Wu F Q, Lei L, Yan C R, He W Q, Mei X R. Effects of plastic film residue rate on root zone water environment and root distribution of cotton under drip irrigation condition. Trans CSAE, 2019, 35(19):117-125 (in Chinese with English abstract). | |
[33] | 潘晓迪, 张颖, 邵萌, 马黎明, 郭新宇. 作物根系结构对干旱胁迫的适应性研究进展. 中国农业科技导报, 2017, 19(2):51-58. |
Pan X D, Zhang Y, Shao M, Ma L M, Guo X Y. Research progress on adaptive responses of crop root structure to drought stress. J Agric Sci Technol, 2017, 19(2):51-58 (in Chinese with English abstract). | |
[34] |
Shahzad A N, Rizwan M, Asghar M G, Qureshi M K, Bukhari S A H, Kiran A, Wakeel A. Early maturing Bt cotton requires more potassium fertilizer under water deficiency to augment seed-cotton yield but not lint quality. Sci Rep, 2019, 9:7378.
doi: 10.1038/s41598-019-43563-2 pmid: 31089147 |
[35] |
Ayele A G, Dever J K, Kelly C M, Sheehan M, Morgan V, Payton P. Responses of upland cotton (Gossypium hirsutum L.) lines to irrigated and rainfed conditions of texas high plains. Plants, 2020, 9:1598.
doi: 10.3390/plants9111598 |
[36] | 刘婷婷, 滕元旭, 杨涛, 李斌, 万素梅, 陈国栋, 张伟. 玉米‖棉花的作物生理特性及根系特征研究. 干旱地区农业研究, 2019, 37(6):160-165. |
Liu T T, Teng Y X, Yang T, Li B, Wan S M, Chen G D, Zhang W. Study on physiological and root morphological characteristics of maize and cotton intercropping. Agric Res Arid Areas, 2019, 37(6):160-165 (in Chinese with English abstract). | |
[37] | 张小琼, 郭剑, 代书桃, 任元, 李凤艳, 刘京宝, 李永祥, 张登峰, 石云素, 宋燕春, 黎裕, 王天宇, 邹华文, 李春辉. 玉米花期根系结构的表型变异与全基因组关联分析. 中国农业科学, 2019, 52:2391-2405. |
Zhang X Q, Guo J, Dai S T, Ren Y, Li F Y, Liu J B, Li Y X, Zhang D F, Shi Y S, Song Y C, Li Y, Wang T Y, Zou H W, Li C H. Phenotypic variation and genome-wide association analysis of root architecture at maize flowering stage. Sci Agric Sin, 2019, 52:2391-2405 (in Chinese with English abstract). | |
[38] | Li X, Guo Z, Lyu Y, Cen X, Ding X, Wu H, Li X, Huang J, Xiong L. Genetic control of the root system in rice under normal and drought stress conditions by genome-wide association study. PLoS Genet, 2017, 13:e1006889. |
[39] |
Deolu-Ajayi A O, Meyer A J, Haring M A, Julkowska M M, Testerink C. Genetic loci associated with early salt stress responses of roots. iScience, 2019, 21:458-473.
doi: S2589-0042(19)30423-7 pmid: 31707259 |
[40] |
Deja-Muylle A, Parizot B, Motte H, Beeckman T. Exploiting natural variation in root system architecture via genome-wide association studies. J Exp Bot, 2020, 71:2379-2389.
doi: 10.1093/jxb/eraa029 pmid: 31957786 |
[1] | CHEN Ling-Ling, LI Zhan, LIU Ting-Xuan, GU Yong-Zhe, SONG Jian, WANG Jun, QIU Li-Juan. Genome wide association analysis of petiole angle based on 783 soybean resources (Glycine max L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1333-1345. |
[2] | ZHOU Jing-Yuan, KONG Xiang-Qiang, ZHANG Yan-Jun, LI Xue-Yuan, ZHANG Dong-Mei, DONG He-Zhong. Mechanism and technology of stand establishment improvements through regulating the apical hook formation and hypocotyl growth during seed germination and emergence in cotton [J]. Acta Agronomica Sinica, 2022, 48(5): 1051-1058. |
[3] | YAN Xiao-Yu, GUO Wen-Jun, QIN Du-Lin, WANG Shuang-Lei, NIE Jun-Jun, ZHAO Na, QI Jie, SONG Xian-Liang, MAO Li-Li, SUN Xue-Zhen. Effects of cotton stubble return and subsoiling on dry matter accumulation, nutrient uptake, and yield of cotton in coastal saline-alkali soil [J]. Acta Agronomica Sinica, 2022, 48(5): 1235-1247. |
[4] | ZHENG Shu-Feng, LIU Xiao-Ling, WANG Wei, XU Dao-Qing, KAN Hua-Chun, CHEN Min, LI Shu-Ying. On the green and light-simplified and mechanized cultivation of cotton in a cotton-based double cropping system [J]. Acta Agronomica Sinica, 2022, 48(3): 541-552. |
[5] | ZHANG Yan-Bo, WANG Yuan, FENG Gan-Yu, DUAN Hui-Rong, LIU Hai-Ying. QTLs analysis of oil and three main fatty acid contents in cottonseeds [J]. Acta Agronomica Sinica, 2022, 48(2): 380-395. |
[6] | ZHANG Te, WANG Mi-Feng, ZHAO Qiang. Effects of DPC and nitrogen fertilizer through drip irrigation on growth and yield in cotton [J]. Acta Agronomica Sinica, 2022, 48(2): 396-409. |
[7] | ER Chen, LIN Tao, XIA Wen, ZHANG Hao, XU Gao-Yu, TANG Qiu-Xiang. Coupling effects of irrigation and nitrogen levels on yield, water distribution and nitrate nitrogen residue of machine-harvested cotton [J]. Acta Agronomica Sinica, 2022, 48(2): 497-510. |
[8] | ZHAO Hai-Han, LIAN Wang-Min, ZHAN Xiao-Deng, XU Hai-Ming, ZHANG Ying-Xin, CHENG Shi-Hua, LOU Xiang-Yang, CAO Li-Yong, HONG Yong-Bo. Genetic dissection of the bacterial blight disease resistance in super hybrid rice RILs using genome-wide association study [J]. Acta Agronomica Sinica, 2022, 48(1): 121-137. |
[9] | ZHAO Wen-Qing, XU Wen-Zheng, YANG Liu-Yan, LIU Yu, ZHOU Zhi-Guo, WANG You-Hua. Different response of cotton leaves to heat stress is closely related to the night starch degradation [J]. Acta Agronomica Sinica, 2021, 47(9): 1680-1689. |
[10] | YUE Dan-Dan, HAN Bei, Abid Ullah, ZHANG Xian-Long, YANG Xi-Yan. Fungi diversity analysis of rhizosphere under drought conditions in cotton [J]. Acta Agronomica Sinica, 2021, 47(9): 1806-1815. |
[11] | ZENG Zi-Jun, ZENG Yu, YAN Lei, CHENG Jin, JIANG Cun-Cang. Effects of boron deficiency/toxicity on the growth and proline metabolism of cotton seedlings [J]. Acta Agronomica Sinica, 2021, 47(8): 1616-1623. |
[12] | WANG Yan-Hua, LIU Jing-Sen, LI Jia-Na. Integrating GWAS and WGCNA to screen and identify candidate genes for biological yield in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(8): 1491-1510. |
[13] | MA Juan, CAO Yan-Yong, LI Hui-Yong. Genome-wide association study of ear cob diameter in maize [J]. Acta Agronomica Sinica, 2021, 47(7): 1228-1238. |
[14] | GAO Lu, XU Wen-Liang. GhP4H2 encoding a prolyl-4-hydroxylase is involved in regulating cotton fiber development [J]. Acta Agronomica Sinica, 2021, 47(7): 1239-1247. |
[15] | GENG La, HUANG Ye-Chang, LI Meng-Di, XIE Shang-Geng, YE Ling-Zhen, ZHANG Guo-Ping. Genome-wide association study of β-glucan content in barley grains [J]. Acta Agronomica Sinica, 2021, 47(7): 1205-1214. |
|