Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2022, Vol. 48 ›› Issue (2): 342-352.doi: 10.3724/SP.J.1006.2022.02085

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Xian-geng identification by SNP markers in Oryza sativa L.

ZHENG Xiang-Hua1(), YE Jun-Hua2(), CHENG Chao-Ping1, WEI Xing-Hua2, YE Xin-Fu1,*(), YANG Yao-Long2,*()   

  1. 1Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350018, Fujian, China
    2State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, Zhejiang, China
  • Received:2020-12-01 Accepted:2021-04-26 Online:2022-02-12 Published:2021-06-16
  • Contact: YE Xin-Fu,YANG Yao-Long E-mail:zxhua57@126.com;yejunhua1994@qq.com;yexinfu@126.com;yangxiao182@126.com
  • Supported by:
    This study was supported by the Public Welfare Project of Fujian Province(2019R1023-3);This study was supported by the Public Welfare Project of Fujian Province(2020R1023007)

Abstract:

Asian cultivated rice (Oryza sativa L.) is divided into two subspecies of xian and geng. With the development of hybrid rice and utilization of interspecific heterosis, the boundaries between xian and geng are becoming more and more vague. In this study, based on the SNP-index value of 20 million single nucleotide polymorphism (SNP) loci from 3000 rice germplasm resources, we captured 4084 xian-geng specific SNP loci named as 4k-SNP and used the xian-geng index as an indicator for xian-geng identification. Furthermore, the 4k-SNP was reduced to 40-SNP (40 SNP loci) for indica/japonica identification by using the statistical analysis methods such as large-scale simple random sampling based on the dimensionality reduction algorithms. To verify the effectiveness of 40-SNP on xian-geng identification, 82 bred varieties were used in this study to compare the results of 40-SNP xian-geng identification and 4k-SNP identification. The result showed that the geng index obtained from 40-SNP and 4k-SNP were very close, and the correlation coefficient was 0.99. Moreover, a total of 49 varieties, belonging to six subgroups (indica, aus, rayada, aromatic, tropical japonica, and temperate japonica), were used to compare the xian-geng identification results of 40-SNP with those of 4k-SNP and Cheng’s index. And the correlation coefficients of xian-geng identifications between 40-SNP and 4k-SNP as well as between 40-SNP and Cheng’s index were above 0.98 and 0.86, respectively. These results verified the validity and accuracy of 40-SNP on xian-geng identification in Oryza sativa L. In addition, 40-SNP also had a good distinguishability for the six subgroups in rice, and the xian-geng index of indica, aus, rayada, aromatic, tropical japonica, and, temperate japonica was less than 0.20, 0.20-0.40, 0.60-0.85, more than 0.90, and 1.00, respectively. This study provides the data and theoretical basis for the differentiation of xian-geng and the utilization of heterosis and, formulation of seed management regulations.

Key words: rice (Oryza sativa L.), xian-geng identification, xian-geng index, crossing between xian-geng, SNP markers

Fig. 1

Acquisition of special xian-geng markers A: the calculation method of ΔSNP-index; B: the flow chart of specific xian-geng markers acquisition."

Table 1

Geng index and minimum number of SNPs in nine bred varieties"

名称
Variety name
类型
Type
粳型指数
Geng index
最小SNP数
Minimum number of SNPs
楚粳27 Chujing 27 粳稻 Japonica 0.933 35
秀水03 Xiushui 03 粳稻 Japonica 0.967 40
南粳46 Nanjing 46 粳稻 Japonica 0.979 35
扬两优6号 Yangliangyou 6 籼稻 Indica 0.052 35
丰两优1号 Fengliangyou 1 籼稻 Indica 0.088 40
荆两优10号 Jingliangyou 10 籼稻 Indica 0.050 45
甬优12 Yongyou 12 籼粳交 Indica-japonica hybridization 0.518 40
甬优1512 Yongyou 1512 籼粳交 Indica-japonica hybridization 0.466 35
甬优9号 Yongyou 9 籼粳交 Indica-japonica hybridization 0.514 40

Fig. 2

Determination of minimum number of SNPs A: scatter chart of geng index of different SNPs with 1000 repetitions; B: curve chart of standard deviation of geng index of different SNPs; C: statistical analysis for determining minimum SNPs. P-value was calculated from the t-test between the standard deviation of every five continuous SNP numbers and that of next five continuous SNP numbers. Red line indicates the threshold of P-value (P = 0.05), blue point indicates -log10(P) value, and red square indicates the average -log10(P) value of each five SNP numbers."

Table 2

Information of 40 xian-geng specific SNPs"

编号
ID
染色体
Chr.
位置
Position
粳型SNP
Geng SNP
籼型SNP
Xian SNP
杂合型SNP
Hybrid SNP
ΔSNP-index SNP位置
SNP position
突变类型
Mutation type
IG1 1 12,556,378 A T A/T 0.757 Exonic 非同义突变 Non-synonymous SNV
IG2 1 17,768,964 C A C/A 0.715 Downstream
IG3 1 22,381,235 T G T/G 0.709 UTR3
IG4 1 28,913,384 C T C/T 0.746 Exonic 非同义突变 Non-synonymous SNV
IG5 2 12,079,928 A G A/G 0.752 Exonic 非同义突变 Non-synonymous SNV
IG6 2 20,225,356 T G T/G 0.749 Upstream
IG7 2 29,516,322 C G C/G 0.747 Exonic 非同义突变 Non-synonymous SNV
IG8 2 33,038,088 C A C/A 0.755 Exonic 非同义突变 Non-synonymous SNV
IG9 3 2,936,058 G A G/A 0.737 Intronic
IG10 3 3,461,333 T C T/C 0.730 Intergenic
IG11 3 4,109,581 C T C/T 0.745 Exonic 非同义突变 Non-synonymous SNV
IG12 3 32,716,455 A C A/C 0.793 Upstream
IG13 4 12,290,320 A G A/G 0.745 Exonic 非同义突变 Non-synonymous SNV
IG14 4 20,612,989 C T C/T 0.745 Intergenic
IG15 4 24,973,823 T C T/C 0.717 Exonic 非同义突变 Non-synonymous SNV
IG16 5 21,148,417 A C A/C 0.727 Upstream
IG17 5 25,953,822 C G C/G 0.788 UTR3
IG18 6 12,025,192 A G A/G 0.787 Downstream
IG19 6 20,502,262 G A G/A 0.769 Exonic 非同义突变 Non-synonymous SNV
IG20 6 31,049,929 C T C/T 0.702 Exonic 非同义突变 Non-synonymous SNV
IG21 7 8,962,741 C A C/A 0.736 Intergenic
IG22 7 14,923,259 A G A/G 0.778 Exonic 同义突变 Synonymous SNV
IG23 7 17,,136,369 T C T/C 0.722 Exonic 非同义突变 Non-synonymous SNV
IG24 7 28,782,595 C T C/T 0.740 Intronic
IG25 8 14,427,488 C A C/A 0.751 Intergenic
IG26 8 18,825,519 A G A/G 0.726 Exonic 非同义突变 Non-synonymous SNV
IG27 8 21,801,474 G A G/A 0.791 Upstream
IG28 8 28,268,656 T C T/C 0.749 Exonic 非同义突变 Non-synonymous SNV
IG29 9 3,099,717 T C T/C 0.794 Exonic 非同义突变 Non-synonymous SNV
IG30 9 4,396,038 C T C/T 0.732 Intergenic
IG31 9 14,812,651 T C T/C 0.756 Exonic 非同义突变 Non-synonymous SNV
IG32 9 16,775,838 G A G/A 0.743 Intergenic
IG33 10 14,820,587 T C T/C 0.782 Downstream
IG34 10 20,325,921 G A G/A 0.796 Downstream
IG35 10 21,759,092 G A G/A 0.723 Exonic 非同义突变 Non-synonymous SNV
IG36 11 808,969 A G A/G 0.761 Intergenic
IG37 11 5,533,977 G A G/A 0.737 Exonic 非同义突变 Non-synonymous SNV
IG38 12 18,352,099 C G C/G 0.746 Exonic 非同义突变 Non-synonymous SNV
IG39 12 24,494,788 A C A/C 0.736 Intronic
IG40 12 27,263,526 G T G/T 0.750 Upstream

Fig. 3

Comparison of geng index between 40-SNP and 4k-SNP in 82 bred rice varieties"

Fig. 4

Accuracy of xian-geng identification for 40-SNP in 49 global rice varieties A: correlation analysis of geng index between 40-SNP and 4k-SNP; B: correlation analysis between geng index calculated by 40-SNP and Cheng’s index."

Fig. 5

Geng index distribution of six types of rice varieties aro: aromatic; aus: aus; ind: indica; ray: rayada; tej: temperate japonica; trj: tropical japonica."

Fig. 6

Heat map of xian-geng components of 49 rice varieties"

Table 3

ANOVA analysis of six types of rice varieties"

类型
Type
平均值±标准差
Mean ± SD
多重比较
Multiple comparison
(LSD, P=0.05)
多重比较
Multiple compariso
n (LSD, P=0.01)
F
F-value
P
P-value
tej 0.998 ± 0.005 a A 2.43 < 0.001
trj 0.953 ± 0.039 b A
aro 0.765 ± 0.077 c B
ray 0.676 ± 0.036 c B
aus 0.277 ± 0.082 d C
ind 0.030 ± 0.050 e D

Table 4

Identification of xian and gene subspecies using xian-geng index"

籼型指数
Xian index
粳型指数
Geng index
籼粳类型鉴定
Xian and geng subspecies identification
≥ 0.6 ≤ 0.4 籼稻 Indica
0.4-0.6 0.4-0.6 中间型 Intermediate type
≤ 0.4 ≥ 0.6 粳稻 Japonica
[1] 程侃声. 亚洲稻籼粳亚种的鉴别. 昆明: 云南科技出版社, 1993. pp 56-69.
Cheng K S. Identification of Asian Rice Indica and Japonica Subspecies. Kunming: Yunnan Science and Technology Press, 1993. pp 56-69(in Chinese).
[2] Chen J J, Ding J H, Ou-Yang Y D, Du H Y, Yang J Y, Cheng K, Zhao J, Qiu S Q, Zhang X L, Yao J L, Liu K D, Wang L, Xu C G, Li X H, Xue Y B, Xia M, Ji Q, Lu J F, Xu M L, Zhang Q F. A triallelic system of S5 is a major regulator of the reproductive barrier and compatibility of indica-japonica hybrids in rice. Proc Natl Acad Sci USA, 2008,105:11436-11441.
[3] Long Y M, Zhao L F, Niu B X, Su J, Wu H, Chen Y L, Zhang Q Y, Guo J X, Zhuang C X, Mei M T, Xia J X, Wang L, Wu H B, Liu Y G. Hybrid male sterility in rice controlled by interaction between divergent alleles of two adjacent genes. Proc Natl Acad Sci USA, 2008,105:18871-18876.
[4] Yang J Y, Zhao X B, Cheng K, Du H Y, Ouyang Y D, Chen J J, Qiu S Q, Huang J Y, Jiang Y H, Jiang L W, Ding J H, Wang J, Xu C G, Li X H, Zhang Q F. A killer-protector system regulates both hybrid sterility and segregation distortion in rice. Science, 2012,337:1336-1340.
[5] Cheng K S. A statistical evaluation of the classification of rice cultivars into hsien and keng subspecies. Rice Genet Newsl, 1985,2:46-48.
[6] 陈跃进, 丁效华, 杨长寿, 张桂权, 卢永根. 水稻粳型亲籼系籼粳型属性的程氏指数鉴定. 湖南农业大学学报(自然科学版), 2002,28:284-286.
Chen Y J, Ding X H, Yang C S, Zhang G Q, Lu Y G. Studies on japonica discrimination of indica-compatible japonica lines by Cheng’s indexes in rice (Oryza sativa L.). J Hunan Univ (Nat Sci Edn), 2002,28:284-286 (in Chinese with English abstract).
[7] 徐正进, 陈温福, 张龙步, 彭应财, 张俊国. 水稻穗颈维管束性状的类型间差异及其遗传的研究. 作物学报, 1996,22:l67-172.
Xu Z J, Chen W F, Zhang L B, Peng Y C, Zhang J G. Study on the difference and heredity of rice panicle neck vascular bundle traits. Acta Agron Sin, 1996,22:l67-172 (in Chinese with Chinese abstract).
[8] Second G. Origin of the genetic diversity of cultivated rice (Oryza spp.): study of the polymorphism scored at 40 isozyme loci. Jpn J Genet, 1982,57:25-57.
[9] Glaszmann J C. Isozymes and classification of Asian rice varieties. Theor Appl Genet, 1987,74:21-30.
[10] Ni J, Colowit P M, Mackill D J. Evaluation of genetic diversity in rice subspecies using microsatellite markers. Crop Sci, 2002,42:601-607.
[11] Garris AJ, Tai T H, Coburn J, Kresovich S, McCouch S. Genetic structure and diversity in Oryza sativa L. Genetics, 2005,169:1631-1638.
[12] Wang C H, Zheng X M, Xu Q, Yuan X P, Huang L, Zhou H F, Wei X H, Ge S. Genetic diversity and classification of Oryza sativa with emphasis on Chinese rice germplasm. Heredity, 2014,112:489-496.
[13] Lu B R, Cai X X, Xin J. Efficient indica and japonica rice identification based on the InDel molecular method: its implication in rice breeding and evolutionary research. Prog Nat Sci, 2009,19:1241-1252.
[14] Takagi H, Abe A, Yoshida K, Kosugi S, Natsume S, Mitsuoka C, Uemura A, Utsushi H, Tamiru M, Takuno S, Innan H, Can L M, Kamoun S, Terauchi R. QTL-seq: rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations. Plant J, 2013,74:174-183.
[15] Ebana K, Yonemaru J, Fukuoka S, Iwata H, Kanamori H, Namiki N, Nagasaki H, Yano M. Genetic structure revealed by a whole-genome single-nucleotide polymorphism survey of diverse accessions of cultivated Asian rice (Oryza sativa L.). Breed Sci, 2010,60:390-397.
[16] Zhang M C, Wei Z H, Yuan X P, Wang C H, Wang S, Niu X J, Xu X, Xu Q, Feng Y, Yu H Y, Wang Y P, Zhu Z W, Zhai R R, Yang Y L, Wei X H. Genetic variation dissection of rice blast resistance using an indica population. Rice Sci, 2020,27:255-258.
[17] Huang X H, Zhao Y, Wei X H, Li C Y, Wang A, Zhao Q, Li W J, Guo Y L, Deng L W, Zhu C R, Fan D L, Lu Y Q, Weng Q J, Liu K Y, Zhou T Y, Jing Y F, Si L Z, Dong G J, Huang T, Lu T T, Feng Q, Qian Q, Li J Y, Han B. Genome-wide association study of flowering time and grain yield traits in a worldwide collection of rice germplasm. Nat Genet, 2012,44:32-53.
[18] 王彩红, 徐群, 于萍, 袁筱萍, 余汉勇, 王一平, 汤圣祥, 魏兴华. 亚洲栽培稻程氏指数与SSR标记分类的比较分析. 中国水稻科学, 2012,26:165-172.
Wang C H, Xu Q, Yu P, Yuan X P, Yu H Y, Wang Y P, Tang S X, Wei X H. Comparison of Cheng’s index and SSR markers- based classification of Asian cultivated rice. Chin J Rice Sci, 2012,26:165-172 (in Chinese with English abstract).
[19] Murray M G, Thompson W F. Rapid isolation of high molecular weight plant DNA. Nucl Acids Res, 1980,8:4321-4326.
[20] Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 2009,25:1754-1760.
[21] McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, DePristo M A. The genome analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genom Res, 2010,20:1297-1303.
[22] Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res, 2010,38:e164.
[23] Kato S, Kosaka H, Hara S. On the affinity of rice varieties as shown by the fertility of hybrid plants. Bull Sci Fac Agric Kyushu Univ, 1928,3:132-147.
[24] Matsuo T. Genecological studies on cultivated rice. Bull Natl Inst Agric Sci, 1952,D3:1-111 (in Japanese).
[25] Morinaga T, Kuriyama H. Intermediate type of rice in the subcontinent of India and Java. Jpn J Breed, 1958,7:253-259.
[26] Oka H I. Intervarietal variation and classification of cultivated rice. Indian J Genet Plant Breed, 1958,18:79-89.
[27] 丁颖. 中国水稻栽培学. 北京: 中国农业出版社, 1961. pp 83-184.
Ding Y. Rice Production in China. Beijing: China Agriculture Press, 1961. pp 83-184(in Chinese).
[28] Garris A J, Tat T H, Coburn J, Kresovich S, McCouch S. Genetic structure and diversity in Oryza sativa L. Genetics, 2005,169:1631-1638.
[29] Long Y M, Zhao L F, Niu B X, Su J, Wu H, Chen Y L, Zhang Q Y, Guo J X, Zhuang C X, Mei M T, Xia J X, Wang L, Wu H B, Liu Y G. Hybrid male sterility in rice controlled by interaction between divergent alleles of two adjacent genes. Proc Natl Acad Sci USA, 2008,105:18871-18876.
[30] Xie Y Y, Niu B X, Long Y M, Li G S, Tang J T, Zhang Y L, Ren D, Liu Y G, Chen L T. Suppression or knockout of SaF/SaM overcomes the Sa-mediated hybrid male sterility in rice. J Integr Plant Biol, 2017,59:669-679.
[31] Hu B, Wang W, Ou S J, Tang J Y, Li H, Che R H, Zhang Z H, Chai X Y, Wang H R, Wang Y Q, Liang C Z, Liu L C, Piao Z Z, Deng Q Y, Deng K, Xu C, Liang Y, Zhang L H, Li L G, Chu C C. Variation in NRT1.1B contributes to nitrate-use divergence between rice subspecies. Nat Genet, 2015,47:834-838.
[32] Fan X R, Feng H M, Tan Y W, Xu Y L, Miao Q S, Xu G H. A putative 6-transmembrane nitrate transporter OsNRT1.1b plays a key role in rice under low nitrogen. J Integr Plant Biol, 2016,58:590-599.
[1] TIAN Tian, CHEN Li-Juan, HE Hua-Qin. Identification of rice blast resistance candidate genes based on integrating Meta-QTL and RNA-seq analysis [J]. Acta Agronomica Sinica, 2022, 48(6): 1372-1388.
[2] ZHENG Chong-Ke, ZHOU Guan-Hua, NIU Shu-Lin, HE Ya-Nan, SUN wei, XIE Xian-Zhi. Phenotypic characterization and gene mapping of an early senescence leaf H5(esl-H5) mutant in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1389-1400.
[3] LIU Dan, ZHOU Cai-E, WANG Xiao-Ting, WU Qi-Meng, ZHANG Xu, WANG Qi-Lin, ZENG Qing-Dong, KANG Zhen-Sheng, HAN De-Jun, WU Jian-Hui. Rapid identification of adult plant wheat stripe rust resistance gene YrC271 using high-throughput SNP array-based bulked segregant analysis [J]. Acta Agronomica Sinica, 2022, 48(3): 553-564.
[4] WANG Yan, CHEN Zhi-Xiong, JIANG Da-Gang, ZHANG Can-Kui, ZHA Man-Rong. Effects of enhancing leaf nitrogen output on tiller growth and carbon metabolism in rice [J]. Acta Agronomica Sinica, 2022, 48(3): 739-746.
[5] JIANG Jian-Hua, ZHANG Wu-Han, DANG Xiao-Jing, RONG Hui, YE Qin, HU Chang-Min, ZHANG Ying, HE Qiang, WANG De-Zheng. Genetic analysis of stigma traits with genic male sterile line by mixture model of major gene plus polygene in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2021, 47(7): 1215-1227.
[6] HAN Zhan-Yu,GUAN Xian-Yue,ZHAO Qian,WU Chun-Yan,HUANG Fu-Deng,PAN Gang,CHENG Fang-Min. Individual and combined effects of air temperature at filling stage and nitrogen application on storage protein accumulation and its different components in rice grains [J]. Acta Agronomica Sinica, 2020, 46(7): 1087-1098.
[7] Fang-Ping YANG,Jin-Dong LIU,Ying GUO,Ao-Lin JIA,Wei-E WEN,Kai-Xiang CHAO,Ling WU,Wei-Yun YUE,Ya-Chao DONG,Xian-Chun XIA. QTL mapping of adult-plant resistance to stripe rust in wheat variety holdfast [J]. Acta Agronomica Sinica, 2019, 45(12): 1832-1840.
[8] Ya-Ping CHEN,Rong MIAO,Xi LIU,Ben-Jia CHEN,Jie LAN,Teng-Fei MA,Yi-Hua WANG,Shi-Jia LIU,Ling JIANG. Identification and mapping of round seed related gene in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2019, 45(1): 1-9.
[9] Sai-Sai XIA,Yu CUI,Feng-Fei LI,Jia TAN,Yuan-Hua XIE,Xian-Chun SANG,Ying-Hua LING. Phenotypic characterizing and gene mapping of a lesion mimic and premature senescence 1 (lmps1) mutant in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2019, 45(1): 46-54.
[10] Jun WANG,Jie-Yu ZHAO,Yang XU,Fang-Jun FAN,Jin-Yan ZHU,Wen-Qi LI,Fang-Quan WANG,Yun-Yan FEI,Wei-Gong ZHONG,Jie YANG. Development and Application of Functional Markers for Rice Blast Resistance Gene Bsr-d1 in Rice [J]. Acta Agronomica Sinica, 2018, 44(11): 1612-1620.
[11] Yi-Ran TAO,Yu-Zhen XIONG,Jia XIE,Wei-Jiang TIAN,Xiao-Qiong ZHANG,Xiao-Bo ZHANG,Qian ZHOU,Xian-Chun SANG,Xiao-Wen WANG. Identification and Gene Mapping of sdb1 Mutant with a Semi-dwarfism and Bigger Seed in Rice [J]. Acta Agronomica Sinica, 2018, 44(11): 1621-1630.
[12] Fang-Quan WANG, Jie YANG, Fang-Jun FAN, Wen-Qi LI, Jun WANG, Yang XU, Jin-Yan ZHU, Yun-Yan FEI, Wei-Gong ZHONG. Development and Application of the Functional Marker for Imidazolinone Herbicides Resistant ALS Gene in Rice [J]. Acta Agronomica Sinica, 2018, 44(03): 324-331.
[13] Xian-Cheng YAN, Li-Kai CHEN, Yu-Hua LUO, Wen-Long LUO, Hui WANG, Tao GUO, Zhi-Qiang CHEN. Identification and Gene Mapping of a Floral Organ Number Mutant mf2 in Rice (Oryza sativa) [J]. Acta Agronomica Sinica, 2018, 44(02): 169-176.
[14] XIAO Yong-Gui, LI Si-Min, LI Fa-Ji, ZHANG Hong-Yan, CHEN Xin-Min, WANG De-Sen, XIA Xian-Chun, HE Zhong-Hu. Genetic Analysis of Yield and Physiological Traits in Elite Parent Jing 411 and Its Derivatives under Two Fertilization Environments [J]. Acta Agron Sin, 2015, 41(09): 1333-1342.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!