Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2018, Vol. 44 ›› Issue (11): 1612-1620.doi: 10.3724/SP.J.1006.2018.01612

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Development and Application of Functional Markers for Rice Blast Resistance Gene Bsr-d1 in Rice

Jun WANG1,2,Jie-Yu ZHAO3,Yang XU1,2,Fang-Jun FAN1,2,Jin-Yan ZHU1,2,Wen-Qi LI1,2,Fang-Quan WANG1,2,Yun-Yan FEI1,Wei-Gong ZHONG1,Jie YANG1,2,*()   

  1. 1 Institute of Food Crops, Jiangsu Academy of Agricultural Sciences / Nanjing Branch of Chinese National Center for Rice Improvement / Jiangsu High Quality Rice R&D Center, Nanjing 210014, Jiangsu, China;
    2 Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, Jiangsu, China
    3 College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, Jiangsu, China
  • Received:2018-03-28 Accepted:2018-07-20 Online:2018-11-12 Published:2018-07-25
  • Contact: Jie YANG E-mail:yangjie168@aliyun.com
  • Supported by:
    This study was supported by the National Key Research and Development Program(2017YFD0100400-3);the Exploratory Project of the Jiangsu Academy of Agricultural Sciences(ZX(17)2014);Jiangsu Province Key Research and Development Program Project(BE2017368)

Abstract:

Rice blast is one of the most serious rice diseases, breeding resistant cultivars is the most effective way to prevent this disease. Bsr-d1 is one vital non race-specific resistance gene for rice blast disease. To improve the selection efficiency of rice blast resistance gene Bsr-d1 in breeding, we selected different types of gene marker, CAPs5-1 and 3Bsr-d1/3bsr-d1, based on the single nucleotide polymorphism in the functional region of alleles Bsr-d1/bsr-d1. Furtherly confirmed by sequencing, we found both CAPs5-1 and 3Bsr-d1/3bsr-d1 could obviously distinguish different genetypes of Bsr-d1 locus. 3Bsr-d1/3bsr-d1 was employed to genotype 34 indica rice varieties, 110 japonica varieties certificated in Jiangsu Province, 13 japonica varieties certificated in different provinces, 148 local japonica cultivars and 19 local indica cultivars from Taihu Basin. There were only 11 indica varieties carrying Bsr-d1 gene, while Bsr-d1 gene was not detected in 271 japonica rice samples, indicating that Bsr-d1 mainly exists in indica germplasm, and is rarely found in japonica rice. This study facilitates the use of Bsr-d1 gene in rice blast resistance breeding and marker assisted selection.

Key words: rice (Oryza sativa L.), rice blast, Bsr-d1, functional marker, CAPs, allele specific PCR

Table 1

Functional markers and sequencing primers designed based on mutation site"

引物名称
Primer name
引物序列
Primer sequence (5'-3')
片段长度
Expected size (bp)
CAPs1F AGTCTAGCATCCACCGTTCCAC 313
CAPs1R GTAGGCAGGCAGTGGGATGA
CAPs2F TTTTATAGGACAGAGGGAATATGTA 368
CAPs2R GCAGTGGGATGAACCTGTAC
Bsr-d1-F AGTCTAGCATCCACCGTTCCAC
1Bsr-d1-R CTTTTCGCTTATACTTATATTTATCAGC 241
1bsr-d1-R CTTTTCGCTTATACTTATATTTATCAGT 241
2Bsr-d1-R CTTTTCGCTTATACTTATATTTATCgGC 241
2bsr-d1-R CTTTTCGCTTATACTTATATTTATCgGT 241
3Bsr-d1-R CTTTTCGCTTATACTTATATTTATCAaC 241
3Bsr-d1-R CTTTTCGCTTATACTTATATTTATCAaT 241
C1F AGTCTAGCATCCACCGTTCCAC 755
C1R ATGATTTGATGGGATTGATTGC
C2F TTTTATAGGACAGAGGGAATATGTA 983
C2R GCGAGGTACTCCTCCTTGTTGAT

Fig. 1

Gradient PCR amplification products of Digu using two new designed primersM: DL2000; Annealing temperature of 1-12: 45.1°C, 45.3°C, 45.9°C, 46.8°C, 47.9°C, 49.1°C, 50.4°C, 51.7°C, 52.8°C, 53.8°C, 54.5°C, 54.8°C."

Fig. 2

Enzyme digestion results of PCR amplification products using CAPs5-1Left of M is PCR amplification products; Right of M is enzyme-digested products; M: DL2000; 1-6: Digu, Nipponbare, Nanjing 9108, Guanglu,ai 4, Wuyujing 3, Nanjing 45."

Fig. 3

Sequence alignment of Bsr-d1 functional domain for partial rice varieties"

Fig. 4

Molecular detection of partial rice varieties by CAPs5-1M: DL2000; 1-24: Digu, Nipponbare, Nanjing 1, Mianhui 501, Zhehui 7954, Yanhui 559, Zhenhui 084, BG90-2, Gui 630, Minghui 63, Qingsi’ai 16B, Fuhui 718, Yangdao 6, Gang 46B, Lucaihao, Minghui 78, IRBB21, Shuhui 527, Duohui 1, Guichao 2, Mianhui 725, Yuehui 188, Guanghui 128, Zhenshan 97B."

Fig. 5

Gradient PCR amplification products of Digu and Nipponbare using allelic-specific PCR markersM: DL2000; A: Gradient PCR amplification products by 1Bsr-d1; B: Gradient PCR amplification products by 1bsr-d1; C: Gradient PCR amplification products by 2Bsr-d1; D: Gradient PCR amplification products by 2bsr-d1; E: Gradient PCR amplification products by 3Bsr-d1; F: Gradient PCR amplification products by 3bsr-d1; 1-12: amplification products of Didu by different primers in annealing temperatures of 45.1°C, 45.3°C, 45.9°C, 46.8°C, 47.9°C, 49.1°C, 50.4°C, 51.7°C, 52.8°C, 53.8°C, 54.5°C, 54.8°C; and 13-24: amplification products of Nipponbare by different primers in annealing temperatures of 45.1°C, 45.3°C, 45.9°C, 46.8°C, 47.9°C, 49.1°C, 50.4°C, 51.7°C, 52.8°C, 53.8°C, 54.5°C, 54.8°C."

Fig. 6

PCR amplification products using allelic-specific PCR markers 3Bsr-d1 and 3bsr-d1M: DL2000; 1-6: Digu, Nipponbare, Nanjing 9108, Guanglu’ai 4, Wuyujing 3, Nanjing 45."

Fig. 7

Molecular detection of partial rice varieties by 3Bsr-d1 and 3bsr-d M: DL2000; 1-24: Digu, Nipponbare, Nanjing1, Mianhui 501, Zhehui 7954, Yanhui 559, Zhenhui 084, BG90-2, Gui 630, Minghui 63, Qingsi,ai 16B, Fuhui 718, Yangdao 6, Gang 46B, Lucaihao, Minghui 78, IRBB21, Shuhui 527, Duohui 1, Guichao 2, Mianhui 725, Yuehui 188, Guanghui 128, Zhenshan 97B."

[1] 雷财林, 凌忠专, 王久林, 万建民 . 水稻抗病育种研究进展. 生物学通报, 2004,39(11):4-7
doi: 10.3969/j.issn.0006-3193.2004.11.002
Lei C L, Ling Z Z, Wang J L, Wan J M . Research advances in rice breeding for disease resistance. Bull Biol, 2004,39(11):4-7 (in Chinese with English abstract)
doi: 10.3969/j.issn.0006-3193.2004.11.002
[2] Ou S H . Rice Diseases. Commonwealth Mycological Institute, Kew, UK, 1985. pp 109-201
[3] Baker B, Zambryski P, Staskawicz B , Dinesh-Kumar S P . Signaling in plant-microbe interactions. Science, 1997,276:726-733
doi: 10.1126/science.276.5313.726 pmid: 9115193
[4] Shen M G, Lin J Y. The economic impact of rice blast disease in China. In: Rice Blast Disease. UK: Int Rice ResInst, 1994. pp 321-331
[5] Wang Z X, Yano M, Yamanouchi U, Iwamoto M, Monna L, Hayasaka H, Katayose Y, Sasaki T . ThePib gene for rice blast resistance belongs to the nucleotide binding and leucine-rich repeat class of plant disease resistance genes. Plant J, 1999,19:55-64
[6] Bryan G T, Wu K S, Farrall L, Jia Y, Hershey H P , McAdams S A, Faulk K N, Donaldson G K, Tarchini R, Valent B. A single amino acid difference distinguishes resistant and susceptible alleles of the rice blast resistance gene Pi-ta.Plant Cell, 2000,12:2033-2046
[7] Chen X, Shang J, Chen D, Lei C, Zou Y, Zhai W, Liu G, Xu J, Ling Z, Cao G, Ma B, Wang Y, Zhao X, Li S, Zhu L . A B-lectin receptor kinase gene conferring rice blast resistance. Plant J, 2006,46:794-804
doi: 10.1111/j.1365-313X.2006.02739.x pmid: 16709195
[8] Qu S H, Liu G F, Zhou B, Bellizzi M, Zeng L, Dai L, Han B, Wang G L . The broad-spectrum blast resistance genePi9 encodes a nucleotide-binding site-leucine-rich repeat protein and is a member of a multigene family in rice. Genetics, 2006,172:1901-1914
[9] Fukuoka S C, Saka N, Koga H, Ono K, Shimizu T, Ebana K, Hayashi N, Takahashi A, Hirochika H, Okuno K, Yano M . Loss of function of a proline-containing protein confers durable disease resistance in rice. Science, 2009,325:998-1001
doi: 10.1126/science.1175550 pmid: 19696351
[10] Hayashi N, Inoue H, Kato T, Funao T, Shirota M, Shimizu T, Kanamori H, Yamane H, Hayano-Saito Y, Matsumoto T, Yano M, Takatsuji H . Durable panicle blast-resistance gene Pb1 encodes an atypical CC-NBS-LRR protein and was generated by acquiring a promoter through local genome duplication. Plant J, 2010,64:498-510
[11] Li W, Zhu Z, Chern M, Yin J, Yang C, Ran L, Cheng M, He M, Wang K, Wang J, Zhou X, Zhu X, Chen Z, Wang J, Zhao W, Ma B, Qin P, Chen W, Wang Y, Liu J, Wang W, Wu X, Li P, Wang J, Zhu L, Li S, Chen X . A natural allele of a transcription factor in rice confers broad-spectrum blast resistance. Cell, 2017,170:114-126
doi: 10.1016/j.cell.2017.06.008 pmid: 28666113
[12] Sugiura N, Tsuji T, Fujii K, Izawa T, Saka N, Touyama T, Hayano-Saito Y, Izawa T . Molecular marker-assisted selection in a recurrent backcross breeding for the incorporation of resistance to rice stripe virus and panicle blast in rice (Oryza sativa L.). Breed Res, 2004,6:143-148
[13] 陈学伟, 李仕贵, 马玉清, 黎汉云, 周开达, 朱立煌 . 水稻抗稻瘟病基因Pi-d(t) 1Pi-bPi-ta 2的聚合及分子标记选择 . 生物工程学报, 2004,20:708-713
Chen X W, Li S G, Ma Y Q, Li H Yun, Zhou K D, Zhu L H . Marker-assisted selection and pyramiding for three blast resistance genes, Pi-d(t) 1, Pi-b, Pi-ta 2, in rice. Chin J Biotech , 2004,20:708-713 (in Chinese with English abstract)
[14] 陈红旗, 陈宗祥, 倪深, 左示敏, 潘学彪, 朱旭东 . 利用分子标记技术聚合3个稻瘟病基因改良金23B的稻瘟病抗性. 中国水稻科学, 2008,22:23-27
doi: 10.3321/j.issn:1001-7216.2008.01.004
Chen H Q, Chen Z X, Ni S, Zuo S M, Pan X B, Zhu X D . Pyramiding three gene with resistance blast by marker-assisted selection to improve rice blast resistance of Jin 23B. Chin J Rice Sci, 2011,37:975-981 (in Chinese with English abstract)
doi: 10.3321/j.issn:1001-7216.2008.01.004
[15] 王军, 杨杰, 陈志德, 范方军, 朱金燕, 杨金欢, 仲维功 . 利用分子标记辅助选择聚合水稻抗病基因Pi-taPi-bStv-b i . 作物学报, 2011,37:975-981
doi: 10.3724/SP.J.1006.2011.00975
Wang J, Yang J, Chen Z D, Fan F J, Zhu J Y, Yang J H, Zhong W G . Pyramiding resistance gene Pi-ta, Pi-b and Stv-b i by marker- assisted selection in rice ( Oryza sativa L.). Acta Agron Sin, 2011,37:975-981 (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2011.00975
[16] Jiang H, Feng Y, Bao L, Li X, Gao G, Zhang Q, Xiao J, Xu C, He Y . Improving blast resistance of Jin 23B and its hybrid rice by marker-assisted gene pyramiding. Mol Breed, 2012,30:1679-1688
doi: 10.1007/s11032-012-9751-6
[17] Andersen J R, Lübberstedt T . Functional markers in plants. Trends Plant Sci, 2003,8:554-560
doi: 10.1016/j.tplants.2003.09.010
[18] 毛艇, 李旭, 李振宇, 徐正进 . 水稻Wx复等位基因基于PCR 的功能标记开发与利用. 作物学报, 2017,43:1715-1723
Mao T, Li X, Li Z Y, Xu Z J . Development of PCR functional markers for multiple alleles of Wx and their application in rice. Acta Agron Sin, 2017,43:1715-1723 (in Chinese with English abstract)
[19] 王军, 杨杰, 徐祥, 朱金燕, 范方军, 李文奇, 王芳权, 仲维功 . 水稻千粒重基因TGW6的功能标记的开发与利用. 中国水稻科学, 2014,28:473-478
Wang J, Yang J, Xu X, Zhu J Y, Fan F J, Li W Q, Wang F Q, Zhong W G . Development and application of a functional marker for grain weight gene TGW6 in rice. Chin J Rice Sci, 2014,28:473-478 (in Chinese with English abstract)
[20] 杨杰, 王军, 曹卿, 陈志德, 仲维功 . 水稻广亲和基因S5-n的功能标记开发及其应用. 作物学报, 2009,35:2000-2007
doi: 10.3724/SP.J.1006.2009.02000
Yang J, Wang J, Cao Q, Chen Z D, Zhong W G . Development and application of a functional marker for wide compatibility gene S5-n of rice. Acta Agron Sin, 2009,35:2000-2007 (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2009.02000
[21] 杨杰, 曹卿, 王军, 范方军, 张玉琼, 仲维功 . 水稻多酚氧化酶基因功能标记的开发与应用. 中国水稻科学, 2011,25:37-42
doi: 10.3969/j.issn.1001-7216.2011.01.006
Yang J, Cao Q, Wang J, Fan F J, Zhang Y Q, Zhong W G . Development and application of functional marker for polyphenol oxidase (PPO) alleles in rice. Chin J Rice Sci, 2011,25:37-42 (in Chinese with English abstract)
doi: 10.3969/j.issn.1001-7216.2011.01.006
[22] Hayashi K, Yoshida H, Ashikawa I . Development of PCR-based allele-specific and InDel marker sets for nine rice blast resistance genes. Theor Appl Genet, 2006,113:251-260
doi: 10.1007/s00122-006-0290-6
[23] Jia Y L, Wang Z H, Singh P . Development of dominant rice blastPi-ta resistance gene markers. Crop Sci, 2002,42:2145-2149
doi: 10.2135/cropsci2002.2145
[24] 王忠华, 贾育林, 吴殿星, 夏英武 . 水稻抗稻瘟病基因Pi-ta的分子标记辅助选择. 作物学报, 2004,30:1259-1265
doi: 10.3321/j.issn:0496-3490.2004.12.015
Wang Z H, Jia Y L, Wu D X, Xia Y W . Molecular markers assisted selection of the rice blast resistance genePi-ta. Acta Agron Sin, 30:1259-1265 (in Chinese with English abstract)
doi: 10.3321/j.issn:0496-3490.2004.12.015
[25] Fjellstrom R , Conaway-Bormans C A, McClung A M, Marchetti M A, Robert S A, Park W D. Development of DNA markers suitable for marker assisted selection of three Pi genes conferring resistance to multiple Pyricularia grisea pathotypes. Crop Sci, 2004,44:1790-1798
[26] 刘洋, 徐培洲, 张红宇, 徐建第, 吴发强, 吴先军 . 水稻抗稻瘟病Pib基因的分子标记辅助选择与应用. 中国农业科学, 2008,41:9-14
Liu Y, Xu P Z, Zhang H Y, Xu J D, Wu F Q, Wu X J . Marker-assisted selection and application of blast resistant gene Pib in Rice. Sci Agric Sin, 2008,41:9-14 (in Chinese with English abstract)
[27] Wang H M, Chen J, Shi Y F, Pan G, Shen H C, Wu J L . Development and validation of CAPS markers for marker-assisted selection of rice blast resistance gene Pi25. Acta Agron Sin, 2012,38:1960-1968.
[28] 王军, 杨杰, 朱金燕, 范方军, 李文奇, 王芳权, 黄转运, 仲维功 . 稻瘟病抗病基因Pi-k h功能标记的开发及江苏粳稻品种中Pi-k h的变异 . 中国水稻科学, 2014,28:141-147
doi: 10.3969/j.issn.10017216.2014.02.005
Wang J, Yang J, Zhu J Y, Fan F J, Li W Q, Wang F Q, Huang Z Y, Zhong W G . Development of a functional marker for rice blast resistance gene Pi-k h and natural variation at Pi-k h locus japonica rice Jiangsu province, China. Chin J Rice Sci , 2014,28:141-147 (in Chinese with English abstract)
doi: 10.3969/j.issn.10017216.2014.02.005
[1] TIAN Tian, CHEN Li-Juan, HE Hua-Qin. Identification of rice blast resistance candidate genes based on integrating Meta-QTL and RNA-seq analysis [J]. Acta Agronomica Sinica, 2022, 48(6): 1372-1388.
[2] ZHENG Chong-Ke, ZHOU Guan-Hua, NIU Shu-Lin, HE Ya-Nan, SUN wei, XIE Xian-Zhi. Phenotypic characterization and gene mapping of an early senescence leaf H5(esl-H5) mutant in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1389-1400.
[3] DENG Zhao, JIANG Nan, FU Chen-Jian, YAN Tian-Zhe, FU Xing-Xue, HU Xiao-Chun, QIN Peng, LIU Shan-Shan, WANG Kai, YANG Yuan-Zhu. Analysis of blast resistance genes in Longliangyou and Jingliangyou hybrid rice varieties [J]. Acta Agronomica Sinica, 2022, 48(5): 1071-1080.
[4] YANG De-Wei, WANG Xun, ZHENG Xing-Xing, XIANG Xin-Quan, CUI Hai-Tao, LI Sheng-Ping, TANG Ding-Zhong. Functional studies of rice blast resistance related gene OsSAMS1 [J]. Acta Agronomica Sinica, 2022, 48(5): 1119-1128.
[5] WANG Yan, CHEN Zhi-Xiong, JIANG Da-Gang, ZHANG Can-Kui, ZHA Man-Rong. Effects of enhancing leaf nitrogen output on tiller growth and carbon metabolism in rice [J]. Acta Agronomica Sinica, 2022, 48(3): 739-746.
[6] ZHENG Xiang-Hua, YE Jun-Hua, CHENG Chao-Ping, WEI Xing-Hua, YE Xin-Fu, YANG Yao-Long. Xian-geng identification by SNP markers in Oryza sativa L. [J]. Acta Agronomica Sinica, 2022, 48(2): 342-352.
[7] JIANG Jian-Hua, ZHANG Wu-Han, DANG Xiao-Jing, RONG Hui, YE Qin, HU Chang-Min, ZHANG Ying, HE Qiang, WANG De-Zheng. Genetic analysis of stigma traits with genic male sterile line by mixture model of major gene plus polygene in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2021, 47(7): 1215-1227.
[8] ZHANG Fu-Yan, CHENG Zhong-Jie, CHEN Xiao-Jie, WANG Jia-Huan, CHEN Feng, FAN Jia-Lin, ZHANG Jian-Wei, YANG Bao-An. Molecular identification and breeding application of allelic variation of grain weight gene in wheat from the Yellow-Huai-River Valley [J]. Acta Agronomica Sinica, 2021, 47(11): 2091-2098.
[9] TAO Ai-Fen,YOU Zi-Yi,XU Jian-Tang,LIN Li-Hui,ZHANG Li-Wu,QI Jian-Min,FANG Ping-Ping. Development and verification of CAPS markers based on SNPs from transcriptome of jute (Corchorus L.) [J]. Acta Agronomica Sinica, 2020, 46(7): 987-996.
[10] HAN Zhan-Yu,GUAN Xian-Yue,ZHAO Qian,WU Chun-Yan,HUANG Fu-Deng,PAN Gang,CHENG Fang-Min. Individual and combined effects of air temperature at filling stage and nitrogen application on storage protein accumulation and its different components in rice grains [J]. Acta Agronomica Sinica, 2020, 46(7): 1087-1098.
[11] Fang-Quan WANG,Fang-Jun FAN,Shi-Jian XIA,Shou-Yu ZONG,Tian-Qing ZHENG,Jun WANG,Wen-Qi LI,Yang XU,Zhi-Hui CHEN,Yan-Jie JIANG,Ya-Jun TAO,Wei-Gong ZHONG,Jie YANG. Interactive effects of the photoperiod-/thermo-sensitive genic male sterile genes tms5 and pms3 in rice [J]. Acta Agronomica Sinica, 2020, 46(3): 317-329.
[12] HAO Zhi-Ming,GENG Miao-Miao,WEN Shu-Min,YAN Gui-Jun,WANG Rui-Hui,LIU Gui-Ru. Development and validation of markers linked to genes resistant to Sitodiplosis mosellana in wheat [J]. Acta Agronomica Sinica, 2020, 46(02): 179-193.
[13] Wen-Jie SI,Lin-Nan WU,Li-Jian GUO,Meng-Die ZHOU,Xiang-Li LIU,Meng MA,Hui-Xian ZHAO. Development and validation of the functional marker of grain weight-related gene TaCYP78A5 in wheat (Triticum aestivum L.) [J]. Acta Agronomica Sinica, 2019, 45(12): 1905-1911.
[14] ZHANG Hong-Juan,LI Yu-Ying,MIAO Li-Li,WANG Jing-Yi,LI Chao-Nan,YANG De-Long,MAO Xin-Guo,JING Rui-Lian. Transcription factor gene TaNAC67 involved in regulation spike length and spikelet number per spike in common wheat [J]. Acta Agronomica Sinica, 2019, 45(11): 1615-1627.
[15] Ya-Ping CHEN,Rong MIAO,Xi LIU,Ben-Jia CHEN,Jie LAN,Teng-Fei MA,Yi-Hua WANG,Shi-Jia LIU,Ling JIANG. Identification and mapping of round seed related gene in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2019, 45(1): 1-9.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!