Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2020, Vol. 46 ›› Issue (3): 317-329.doi: 10.3724/SP.J.1006.2020.92036

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS •     Next Articles

Interactive effects of the photoperiod-/thermo-sensitive genic male sterile genes tms5 and pms3 in rice

Fang-Quan WANG1,2,Fang-Jun FAN1,2,Shi-Jian XIA1,Shou-Yu ZONG1,Tian-Qing ZHENG3,Jun WANG1,2,Wen-Qi LI1,2,Yang XU1,2,Zhi-Hui CHEN1,2,Yan-Jie JIANG1,2,Ya-Jun TAO1,2,Wei-Gong ZHONG1,2,Jie YANG1,2,*()   

  1. 1. Institute of Food Crops, Jiangsu Academy of Agricultural Sciences/Nanjing Branch of Chinese National Center for Rice Improvement/Jiangsu High Quality Rice R&D Center, Nanjing 210014, Jiangsu, China;
    2. Jiangsu Co-innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, Jiangsu, China
    3. Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
  • Received:2019-07-08 Accepted:2019-09-26 Online:2020-03-12 Published:2019-10-14
  • Contact: Jie YANG E-mail:yangjie168@aliyun.com
  • Supported by:
    This study was supported by the National Major Project for Developing New GM Crops(2018ZX08001-02B);the Jiangsu Province Natural Science Foundation(BK20171326);and the Jiangsu Province Key Research and Development Program (Modern Agriculture)(BE2018388);and the Jiangsu Province Key Research and Development Program (Modern Agriculture)(BE2017368)

Abstract:

The tms5 and pms3 are two photoperiod-/thermo-sensitive genic male sterile genes, and their functional sites are clarified. However, the interactive effects of tms5 and pms3 in two-line sterile lines are still unclear. In this study, the functional markers AS-TMS5 and CAPS-PMS3 were designed, according to the functional sites of tms5 and pms3 respectively. The three genotypes of tms5 and pms3 were accurately distinguished by AS-TMS5 and CAPS-PMS3. The relationship of the phenotype and genotype in the F2 population of Pei’ai 64S/9311, Guangzhan 63S/Xianghui 47 and Yueguang S/Ninghui 108 were analyzed respectively. The tms5 was the major gene in Guangzhan 63S and Yueguang S, while pms3 was a non-independent gene in Pei’ai 64S and Yueguang S. By the phenotype and genotype analysis of the F2:3 population of Yueguang S/Ninghui 108, the plants carrying pms3 almost were fertile, while the plants carrying tms5 showed sterility, and had higher transition temperature. Furthermore, the sterility of the plants carrying tms5 and pms3 might have lower transition temperature than those carrying tms5. Pyramiding of tms5 and pms3 provides an efficient scheme to breed photoperiod-/thermo-sensitive genic male sterile lines, which have lower transition temperature and safer production.

Key words: tms5, pms3, functional marker, photoperiod-sensitive male sterility, thermo-sensitive male sterility

Table 1

Primer of function marker for TMS5 and PMS3 genes"

分子标记
Molecular marker
引物名称
Primer name
引物序列
Primer sequence (5′-3′)
产物长度
Product length (bp)
AS-TMS5 T5n-F CCACCGGGTCGGCCGAAGGC 302
T5m-F CCACCGGGTCGGCCGAAGTA
T5-R AGCTCGAAGAGGCGCTCCAC
CAPS-PMS3 PMS3-F GCTTTCCCAGGATGCACATA 410
PMS3-R GTTTGCTCCATTGGTTAGGC

Fig. 1

Temperature chart of experimental plot in August and September of 2015"

Fig. 2

Detection of rice materials (lines) by AS-TMS5 and CAPS-PMS3 marker 1-24 represent Nipponbare, 9311, Nanjing 16, Xianghui 47, Ninghui 108, Nongken 58S, Annong S-1, Zhu 1S, Pei’ai 64S, Guangzhan 63S, Yueguang S, N111S, C815S, Y58S, 509S, Wuxiang S, Shen 08S, 1206S, 1208S, L126S, L128S, Feng 39S, 1892S, and L816S."

Fig. 3

Sequencing analysis of mutant site in TMS5 gene The polymorphic sites present in (a) and (b) are before the CDS of TMS5 gene; (c) site represents the start coding site; (d) site is the functional mutant site."

Fig. 4

Sequencing analysis of mutant site in PMS3 gene"

Table 2

Relationship between genotype and fertility of Yueguang S/Ninghui 108 F2 population"

编号
No.
AS-
TMS5
CAPS-
PMS3
表型
Phenotype
编号
No.
AS-
TMS5
CAPS-
PMS3
表型
Phenotype
编号
No.
AS-
TMS5
CAPS-
PMS3
表型
Phenotype
Yueguang S + + S 26 * * F 54 - * F
Ninghui 108 - - F 27 * * F 55 * * F
F1 * * F 28 * - F 56 * * F
1 + * S 29 * * F 57 * + F
2 + * S 30 - + F 58 * * F
3 + * S 31 * * F 59 * * F
4 + * S 32 * * F 60 * * F
5 + + S 33 * - F 61 * + F
6 + * S 34 - - F 62 * + F
7 + * S 35 * - F 63 * * F
8 + - S 36 * * F 64 - * F
9 + * S 37 * * F 65 * - F
10 + * S 38 * * F 66 * + F
11 + * S 39 - * F 67 * + F
12 + + S 40 * * F 68 * * F
13 + + S 41 * - F 69 * + F
14 + - S 42 * - F 70 * - F
15 + * S 43 * * F 71 - + F
16 + + S 44 * * F 72 * - F
17 + - S 45 - + F 73 * * F
18 + + S 46 * + F 74 - - F
19 + * S 47 * - F 75 - * F
20 + * S 48 - - F 76 * + F
21 + * S 49 * * F 77 * - F
22 + * S 50 - * F 78 - * F
23 * - F 51 * - F 79 - - F
24 * - F 52 * - F
25 * * F 53 * * F

Fig. 5

Detection based on AS-TMS5 and CAPS-PMS3 markers for part of Yueguang S/Ninghui 108 F2 population P1: Yueguang S; P2: Ninghui 108; F1: hybrid of Yueguang S/Ninghui 108; 1-45: part of Yueguang S/Ninghui 108 F2 population."

Table 3

Fertility of Yueguang S/Ninghui 108 F2:3 population"

株系
Line
基因型
Genotype
第1期 Phase I 第2期 Phase II
抽穗期
Heading date
(month/day)
总数
Total number
不育株
No. of sterile plants
可育株
No. of fertile plants
抽穗期
Heading date
(month/day)
总数
Total
number
不育株
No. of sterile plants
可育株
No. of fertile plants
S1 TTPP 8/26 11 0 11 9/3 10 0 10
S2 TTPP 8/27 11 0 11 9/9 10 0 10
S3 TTPP 9/11 11 0 11 9/25 10 0 10
S4 TTpp 8/28 11 0 11 9/3 10 0 10
S5 TTpp 9/5 11 0 11 9/14 11 0 11
S6 TTpp 8/20 11 0 11 9/9 11 0 11
S7 TTpp 9/7 11 0 11 9/19 11 0 11
S8 TTpp 9/7 11 1 10 9/22 11 0 11
S9 ttPP 8/28 11 11 0 9/16 11 6 5
S10 ttPP 8/30 11 11 0 9/17 11 2 9
S11 ttPP 9/1 11 11 0 9/17 10 5 5
S12 ttpp 8/23 11 11 0 9/15 10 9 1
S13 ttpp 8/24 11 11 0 9/10 10 10 0
S14 ttpp 8/30 11 11 0 9/13 11 11 0
S15 ttpp 9/10 10 10 0 9/19 9 9 0

Fig. 6

Fertility of F2:3 population from Yueguang S/Ninghui 108 A: the anther morphology and pollen fertility; white bar, 1 mm; black bar, 100 μm; B: the fertility of panicle; bar, 2 cm."

Supplementary table 1

The relationship between genotype and fertility of Pei’ai64S/9311 F2 population"

编号
No.
CAPS-
PMS3
表型
Phenotype
编号
No.
CAPS-
PMS3
表型
Phenotype
编号
No.
CAPS-
PMS3
表型
Phenotype
培矮64S Pei’ai 64S + S 20 * F 42 + F
9311 - F 21 * F 43 + F
F1 * F 22 + F 44 + F
1 + S 23 - F 45 * F
2 * S 24 * F 46 * F
3 + S 25 * F 47 + F
4 + S 26 * F 48 + F
5 * S 27 + F 49 * F
6 + S 28 * F 50 * F
7 * S 29 - F 51 - F
8 + S 30 * F 52 - F
9 + S 31 - F 53 * F
10 * F 32 - F 54 * F
11 - F 33 * F 55 * F

Supplementary table 1

The relationship between genotype and fertility of Pei’ai64S/9311 F2 population"

编号
No.
CAPS-
PMS3
表型
Phenotype
编号
No.
CAPS-
PMS3
表型
Phenotype
编号
No.
CAPS-
PMS3
表型
Phenotype
12 * F 34 * F 56 * F
13 + F 35 * F 57 * F
14 + F 36 - F 58 + F
15 * F 37 * F 59 - F
16 * F 38 + F 60 - F
17 + F 39 * F 61 * F
18 - F 40 - F 62 + F
19 + F 41 * F

Supplementary table 2

Relationship between genotype and fertility of Guangzhan 63S/Xianghui 47 F2 population"

编号
No.
AS-
TMS5
表型
Phenotype
编号
No.
AS-
TMS5
表型
Phenotype
编号
No.
AS-
TMS5
表型
Phenotype
广占63S Guangzhan 63S + S 29 + S 60 * F
湘恢47 Xianghui 47 - F 30 * F 61 * F
F1 * F 31 - F 62 * F
1 + S 32 * F 63 * F
2 + S 33 * F 64 * F
3 + S 34 - F 65 * F
4 + S 35 * F 66 - F
5 + S 36 - F 67 * F
6 + S 37 * F 68 * F
7 + S 38 - F 69 * F
8 + S 39 * F 70 - F
9 + S 40 * F 71 * F
10 + S 41 * F 72 * F
11 + S 42 * F 73 * F
12 + S 43 * F 74 - F
13 + S 44 * F 75 - F
14 + S 45 * F 76 * F
15 + S 46 * F 77 - F
16 + S 47 * F 78 * F
17 - S 48 * F 79 * F
18 + S 49 * F 80 - F
19 + S 50 * F 81 * F
20 + S 51 * F 82 * F
21 + S 52 * F 83 * F
22 + S 53 * F 84 * F
23 + S 54 - F 85 * F
24 + S 55 * F 86 - F
25 + S 56 - F 87 * F
26 + S 57 * F 88 - F
27 + S 58 * F 89 * F
28 + S 59 - F

Supplementary fig. 1

Sunshine time of experimental plot in August and September of 2015"

[1] 石明松 . 对光照长度敏感的隐性雄性不育水稻的发现与初步研究. 中国农业科学, 1985,18(2):44-48.
Shi M S . The discovery and study of the photosensitive recessive male-sterile rice (Oryza sativa L. subsp. japonica). Sci Agric Sin, 1985,18(2):44-48 (in Chinese with English abstract).
[2] 王智权, 肖宇龙, 王晓玲, 雷建国, 余传元 . 水稻杂种优势利用的研究进展. 江西农业学报, 2013,25(6):23-28.
Wang Z Q, Xiao Y L, Wang X L, Lei J G, Yu C Y . Research advances in rice heterosis utilization. Acta Agric Jiangxi, 2013,25(6):23-28 (in Chinese with English abstract).
[3] Chen L Y, Lei D Y, Tang W B, Xiao Y H . Thoughts and practice on some problems about research and application of two-line hybrid rice. Rice Sci, 2011,18:79-85.
[4] 孙宗修, 程式华, 闵绍楷, 熊振民, 应存山, 斯华敏, 杨仁崔, 梁康迳, 王乃元 . 光敏核不育水稻的光温反应研究. 作物学报, 1993,19:83-87.
Sun Z X, Cheng S H, Min S K, Xiong Z M, Ying C S, Si H M, Yang R C, Liang K J, Wang R Y . Studies on the response of photoperiod sensitive genic male sterile (PGMS) rice to photoperiod and temperature. Acta Agron Sin, 1993,19:83-87 (in Chinese with English abstract).
[5] 程式华, 孙宗修, 斯华敏, 卓丽圣 . 水稻两用核不育系育性转换光温反应型的分类研究. 中国农业科学, 1996,29(4):11-16.
Cheng S H, Sun Z X, Si H M, Zhuo L S . Classification of fertility response to photoperiod and temperature in dual-purpose genic male sterile lines (Oryza sativa L.). Sci Agric Sin, 1996,29(4):11-16 (in Chinese with English abstract).
[6] 陈立云, 肖应辉 . 水稻光温敏核不育机理设想及光温敏核不育系选育策略. 中国水稻科学, 2010,24:103-107.
Chen L Y, Xiao Y H . Mechanism of sterility and breeding strategies of photoperiod/thermo-sensitive genic male sterile rice. Chin J Rice Sci, 2010,24:103-107 (in Chinese with English abstract).
[7] 彭海峰, 陈雄辉, 葛艳艳, 万邦惠 . 不同光温敏核不育水稻对低温耐受度的差异比较研究. 华南农业大学学报, 2016,37(1):14-19.
Peng H F, Chen X H, Ge Y Y, Wan B H . A comparative study on the low temperature tolerability of different photo-thero sensitive genic male sterile lines in rice. J South Chin Agric Univ, 2016,37(1):14-19 (in Chinese with English abstract).
[8] Liu N, Shan Y, Wang F P, Xu C G, Peng K M, Li X H, Zhang Q . Identification of an 85-kb DNA fragment containing pms1, a locus for photoperiod-sensitive genic male sterility in rice. Mol Genet Genomics, 2001,266:271-275.
[9] Fan Y, Yang J, Mathioni S M, Yu J, Shen J, Yang X, Wang L, Zhang Q, Cai Z, Xu C, Li X, Xiao J, Meyers B C, Li X . PMS1T, producing phased small-interfering RNAs, regulates photoperiod-sensitive male sterility in rice. Proc Natl Acad Sci USA, 2016,113:15144-15149.
[10] Zhang Q, Shen B Z, Dai X K, Mei M H, Saghai Maroof M A, Li Z B. Using bulked extremes and recessive class to map genes for photoperiod-sensitive genic male sterility in rice. Proc Natl Acad Sci USA, 1994,91:8675-8679.
[11] Li X H, Lu Q, Wang F L, Xu C G, Zhang Q F . Separation of the two-locus inheritance of photoperiod sensitive genic male sterility in rice and precise mapping the pms3 locus. Euphytica, 2001,119:343-348.
[12] Lu Q, Li X H, Guo D, Xu C G, Zhang Q . Localization of pms3, a gene for photoperiod-sensitive genic male sterility, to a 28.4-kb DNA fragment. Mol Genet Genomics, 2005,273:507-511.
[13] Huang T Y, Wang Z, Hu Y G, Shi S P, Peng T, Chu X D, Shi J, Xiang Z F, Liu D Y . Genetic analysis and primary mapping of pms4, a photoperiod-sensitive genic male sterility gene in rice(Oryza sativa). Rice Sci, 2008,15:153-156.
[14] Wang B, Xu W W, Wang J Z, Wu W, Zheng H G, Yang Z Y, Ray J D, Nguyen H T . Tagging and mapping the thermo-sensitive genic male-sterile gene in rice (Oryza sativa L.) with molecular markers. Theor Appl Genet, 1995,91:1111-1114.
[15] Yamagushi Y, Ikeda R, Hirasawa H, Minami M, Ujihara P . Linkage analysis of the thermo-sensitive genic male sterility gene tms2 in rice( Oryza sativa L.). Breed Sci, 1997,47:371-377.
[16] Lopez M T, Toojinda T, Vanavichit A, Tragoonrung S . Microsatellite markers flanking the tms2 gene facilitated tropical TGMS rice line development. Crop Sci, 2003,43:2267-2271.
[17] Subudhi P K, Borkakati R P, Virmani S S, Huang N . Molecular mapping of a thermosensitive genetic male sterility gene in rice using bulked segregant analysis. Genome, 1997,40:188-194.
[18] Dong N V, Subudhi P K, Luong P N, Quang V D, Quy T D, Zheng H G, Wang B, Nguyen H T . Molecular mapping of a rice gene conditioning thermo-sensitive genic male sterility using AFLP, RFLP and SSR techniques. Theor Appl Genet, 2000,100:727-734.
[19] Yang Q, Liang C, Zhuang W, Li J, Deng H, Deng Q, Wang B . Characterization and identification of the candidate gene of rice thermo-sensitive genic male sterile gene tms5 by mapping. Planta, 2007,225:321-330.
[20] Peng H F, Chen X H, Lu Y P, Peng Y F, Wan B H, Chen N D, Wu B, Xin S P, Zhang G Q . Fine mapping of a gene for non-pollen type thermo-ssensitive genic male sterility in rice (Oryza sativa L.). Theor Appl Genet, 2010,120:1013-1020.
[21] Lee D S, Chen L J, Suh H S . Genetic characterization and fine mapping of a novel thermo-sensitive genic male-sterile gene tms6 in rice( Oryza sativa L.). Theor Appl Genet, 2005,111:1271-1277.
[22] Liu X, Li X, Zhang X, Wang S . Genetic analysis and mapping of a thermo-sensitive genic male sterility gene, tms6(t), in rice(Oryza sativa L.). Genome, 2010,53:119-124.
[23] Zhou H, Zhou M, Yang Y, Li J, Zhu L, Jiang D, Dong J, Liu Q, Gu L, Zhou L, Feng M, Qin P, Hu X, Song C, Shi J, Song X, Ni E, Wu X, Deng Q, Liu Z, Chen M, Liu Y G, Cao X, Zhuang C . RNase ZS1 processes UbL40 mRNAs and controls thermosensitive genic male sterility in rice. Nat Commun, 2014,5:4884.
[24] 张华丽, 陈晓阳, 黄建中, 鄂志国, 龚俊义, 舒庆尧 . 中国两系杂交水稻光温敏核不育基因的鉴定与演化分析. 中国农业科学, 2015,48:1-9.
Zhang H L, Chen X Y, Huang J Z, Er Z G, Gong J Y, Shu Q Y . Identification and transition analysis of photo-/thermo-sensitive genic male sterile genes in two-line hybrid rice in China. Sci Agric Sin, 2015,48(1):1-9 (in Chinese with English abstract).
[25] 斯华敏, 付亚萍, 刘文真, 孙宗修, 胡国成 . 水稻光温敏雄性核不育系的系谱分析. 作物学报, 2012,38:394-407.
Si H M, Fu Y P, Liu W Z, Sun Z X, Hu G C . Pedigree analysis of photoperiod-thermo sensitive genic male sterile rice. Acta Agron Sin, 2012,38:394-407 (in Chinese with English abstract).
[26] Ding J, Lu Q, Ou-Yang Y, Mao H, Zhang P, Yao J, Xu C, Li X, Xiao J, Zhang Q . A long noncoding RNA regulates photoperiod-sensitive male sterility, an essential component of hybrid rice. Proc Natl Acad Sci USA, 2012,109:2654-2659.
[27] Zhou H, Liu Q, Li J, Jiang D, Zhou L, Wu P, Lu S, Li F, Zhu L, Liu Z, Chen L, Liu Y G, Zhuang C . Photoperiod- and thermo-sensitive genic male sterility in rice are caused by a point mutation in a novel noncoding RNA that produces a small RNA. Cell Res, 2012,22:649-660.
[28] Ding J, Shen J, Mao H, Xie W, Li X, Zhang Q . RNA-directed DNA methylation is involved in regulating photoperiod-sensitive male sterility in rice. Mol Plant, 2012,5:1210-1216.
[29] 柏斌, 吴俊, 庄文, 姚栋萍, 李莺歌, 邓启云 . 广适性光温敏不育系Y58S幼穗分化期耐冷性表现及生理机制. 植物遗传资源学报, 2017,18:646-652.
Bai B, Wu J, Zhuang W, Yao D P, Li Y G, Deng Q Y . Studies on cold tolerance of widely adaptable ptgms line Y58S and its physiological mechanism at the booting stage. J Plant Genet Resour, 2017,18:646-652 (in Chinese with English abstract).
[30] 雷东阳, 林勇, 陈立云 . 水稻两用核不育系的研究现状与发展策略. 湖南农业大学学报(自然科学版), 2019,45(3):225-230.
Lei D Y, Lin Y, Chen L Y . The research progress and countermeasures of dual-purpose genic male sterile line. J Hunan Agric Univ(Nat Sci), 2019,45(3):225-230 (in Chinese with English abstract).
[31] Zhang H L, Huang J Z, Liu Q L, Nawaz Z, Lu H P, Gong J Y, Zhu Y J, Yan W, Shu Q Y . Characterization of an RNase Z nonsense mutation identified exclusively in environment-conditioned genic male sterile rice. Mol Breed, 2014,34:481-489.
[32] 李丁, 赵迎曦, 夏玉梅, 袁隆平, 高婧, 沈春修, 方真, 李祺, 曹孟良 . 水稻光温敏核不育系不育基因的分子检测. 杂交水稻, 2013,28(1):68-71.
Li D, Zhao Y X, Xia Y M, Yuan N P, Gao J, Shen C X, Fang Z, Li Q, Cao M L . The SNP detection of p/tms12-1 and tms5 genes in rice PTGMS lines by PCR-PFLP and sequencing techniques. Hybrid Rice, 2013,28(1):68-71 (in Chinese with English abstract).
[33] 李军, 李白, 高荣村 . 利用四引物扩增受阻突变体系PCR技术检测水稻光温敏核不育基因p/tms12-1. 中国水稻科学, 2014,28:442-446.
Li J, Li B, Gao R C . Deletion of gene p/tms12-1 for photoperiod- and thermo-sensitive genic male sterility by tetra-primer amplication refractory mutation system PCR in rice. Chin J Rice Sci, 2014,28:442-446 (in Chinese with English abstract).
[34] 何强, 陈立云, 邓华凤, 唐文邦, 肖应辉, 袁隆平 . 水稻C815S及其同源株系的育性光温特性. 作物学报, 2007,33:262-268.
He Q, Chen L Y, Deng H F, Tang W B, Xiao Y H, Yuan L P . Fertility photo-thermo characteristics in PTGMS rice C815S and its homologous plant lines. Acta Agron Sin, 2007,33:262-268 (in Chinese with English abstract).
[35] Wen J, Wang L, Wang J, Zeng Y, Xu Y, Li S . The transcription factor OsbHLH138 regulates thermo-sensitive genic male sterility in rice via activation of TMS5. Theor Appl Genet, 2019,132:1721-1732.
[36] Zhou H, He M, Li J, Chen L, Huang Z, Zheng S, Zhu L, Ni E, Jiang D, Zhao B, Zhuang C . Development of commercial thermo-sensitive genic male sterile rice accelerates hybrid rice breeding using the CRISPR/Cas9-mediated TMS5 editing system. Sci Rep, 2016,6:37395.
[37] Barman H N, Sheng Z, Fiaz S, Zhong M, Wu Y, Cai Y, Wang W, Jiao G, Tang S, Wei X, Hu P . Generation of a new thermo-sensitive genic male sterile rice line by targeted mutagenesis of TMS5 gene through CRISPR/Cas9 system. BMC Plant Biol, 2019,19:109.
[38] 黄忠明, 周延彪, 唐晓丹, 赵新辉, 周在为, 符星学, 王凯, 史江伟, 李艳锋, 符辰建, 杨远柱 . 基于CRISPR/Cas9技术的水稻温敏不育基因tms5突变体的构建. 作物学报, 2018,44:844-851.
Huang Z M, Zhou Y B, Tang X D, Zhao X H, Zhou Z W, Fu X X, Wang K, Shi J W, Li Y F, Fu C J, Yang Y Z . Construction of tms5 mutants in rice based on CRISPR/Cas9 technology. Acta Agron Sin, 2018,44:844-851 (in Chinese with English abstract).
[39] 吴明基, 林艳, 刘华清, 陈建民, 付艳萍, 杨绍华, 王锋 . 利用CRISPR/Cas-9技术创制水稻温敏核不育系. 福建农业学报, 2018,33:1011-1015.
Wu M J, Lin Y, Liu H Q, Chen J M, Fu Y P, Yang S H, Wang F . Development of thermo-sensitive male sterile rice with CRISPR/Cas9 technology. Fujian J Agric Sci, 2018,33:1011-1015 (in Chinese with English abstract).
[1] CHEN Ri-Rong,ZHOU Yan-Biao,WANG Dai-Jun,ZHAO Xin-Hui,TANG Xiao-Dan,XU Shi-Chong,TANG Qian-Ying,FU Xing-Xue,WANG Kai,LIU Xuan-Ming,YANG Yuan-Zhu. CRISPR/Cas9-mediated editing of the thermo-sensitive genic male-sterile gene TMS5 in rice [J]. Acta Agronomica Sinica, 2020, 46(8): 1157-1165.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!