Acta Agronomica Sinica ›› 2022, Vol. 48 ›› Issue (2): 353-366.doi: 10.3724/SP.J.1006.2022.14006
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
DONG Yan-Kun1(), HUANG Ding-Quan2, GAO Zhen2, CHEN Xu2,*()
[1] | Sauer M, Kleine-Vehn J. PIN-FORMED and PIN-LIKES auxin transport facilitators. Development, 2019, 146: dev168088. |
[2] | Friml J, Palme K. Polar auxin transport—old questions and new concepts? Plant Mol Biol, 2002,49:273-284. |
[3] | Benková E, Michniewicz M, Sauer M, Teichmann T, Seifertová D, Jürgens G, Friml J. Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell, 2003,115:591-602. |
[4] | Bohn-Courseau I. Auxin: a major regulator of organogenesis. C R Biol, 2010,333:290-296. |
[5] | Overvoorde P, Fukaki H, Beeckman T. Auxin control of root development. Cold Spring Harb Perspect Biol, 2010,2:a001537. |
[6] | Olatunji D, Geelen D, Verstraeten I. Control of endogenous auxin levels in plant root development. Int J Mol Sci, 2017,18:2587. |
[7] | Korasick D A, Enders T A, Strader L C. Auxin biosynthesis and storage forms. J Exp Bot, 2013,64:2541-2555. |
[8] | Band L R, Wells D M, Fozard J A, Ghetiu T, French A P, Pound M P, Wilson M H, Yu L, Li W, Hijazi H I, Oh J, Pearce S P, Perez-Amador M A, Yun J, Kramer E, Alonso J M, Godin C, Vernoux T, Hodgman T C, Pridmore T P, Swarup R, King J R, Bennett M J. Systems analysis of auxin transport in the Arabidopsis root apex. Plant Cell, 2014,26:862-875. |
[9] | Strader L C, Zhao Y. Auxin perception and downstream events. Curr Opin Plant Biol, 2016,33:8-14. |
[10] | Du Y, Scheres B. Lateral root formation and the multiple roles of auxin. J Exp Bot, 2018,69:155-167. |
[11] | Lareen A, Burton F, Schäfer P. Plant root-microbe communication in shaping root microbiomes. Plant Mol Biol, 2016,90:575-587. |
[12] | Lagunas B, Schäfer P, Gifford M L. Housing helpful invaders: the evolutionary and molecular architecture underlying plant root-mutualist microbe interactions. J Exp Bot, 2015,66:2177-2186. |
[13] | Nishida H, Suzaki T. Nitrate-mediated control of root nodule symbiosis. Curr Opin Plant Biol, 2018,44:129-136. |
[14] | Oldroyd G E, Murray J D, Poole P S, Downie J A. The rules of engagement in the legume-rhizobial symbiosis. Annu Rev Genet, 2011,45:119-144. |
[15] | Suzaki T, Yoro E, Kawaguchi M. Leguminous plants: inventors of root nodules to accommodate symbiotic bacteria. Int Rev Cell Mol Biol, 2015,316:111-158. |
[16] | Salvagiotti F, Cassman K G, Specht J E, Walters D T, Weiss A, Dobermann A. Nitrogen uptake, fixation and response to fertilizer N in soybeans: a review. Field Crops Res, 2008,108:1-13. |
[17] | Breakspear A, Liu C, Roy S, Stacey N, Rogers C, Trick M, Morieri G, Mysore K S, Wen J, Oldroyd G E, Downie J A, Murray J D. The root hair “infectome” of Medicago truncatula uncovers changes in cell cycle genes and reveals a requirement for auxin signaling in rhizobial infection. Plant Cell, 2014,26:4680-4701. |
[18] | Van Noorden G E, Kerim T, Goffard N, Wiblin R, Pellerone F I, Rolfe B G, Mathesius U. Overlap of proteome changes in Medicago truncatula in response to auxin and Sinorhizobium meliloti. Plant Physiol, 2007,144:1115-1131. |
[19] | Takanashi K, Sugiyama A, Yazaki K. Involvement of auxin distribution in root nodule development of Lotus japonicus. Planta, 2011,234:73-81. |
[20] | Suzaki T, Yano K, Ito M, Umehara Y, Suganuma N, Kawaguchi M. Positive and negative regulation of cortical cell division during root nodule development in Lotus japonicus is accompanied by auxin response. Development, 2012,139:3997-4006. |
[21] | Hirsch A M, Bhuvaneswari T V, Torrey J G, Bisseling T. Early nodulin genes are induced in alfalfa root outgrowths elicited by auxin transport inhibitors. Proc Natl Acad Sci USA, 1989,86:1244-1248. |
[22] | Rightmyer A P, Long S R. Pseudonodule formation by wild-type and symbiotic mutant Medicago truncatula in response to auxin transport inhibitors. Mol Plant Microbe Interact, 2011,24:1372-1384. |
[23] | Wang Y, Yang W, Zuo Y, Zhu L, Hastwell A H, Chen L, Tian Y, Su C, Ferguson B J, Li X. GmYUC2a mediates auxin biosynthesis during root development and nodulation in soybean. J Exp Bot, 2019,70:3165-3176. |
[24] | Roy S, Robson F, Lilley J, Liu C W, Cheng X, Wen J, Walker S, Sun J, Cousins D, Bone C, Bennett M J, Downie J A, Swarup R, Oldroyd G, Murray J D. MtLAX2, a functional homologue of the Arabidopsis auxin influx transporter AUX1, is required for nodule organogenesis. Plant Physiol, 2017,174:326-338. |
[25] | Kohlen W, Ng J L P, Deinum E E, Mathesius U. Auxin transport, metabolism, and signalling during nodule initiation: indeterminate and determinate nodules. J Exp Bot, 2018,69:229-244. |
[26] | Liu H, Zhang C, Yang J, Yu N, Wang E. Hormone modulation of legume-rhizobial symbiosis. J Integr Plant Biol, 2018,60:632-648. |
[27] | Heckmann A B, Sandal N, Bek A S, Madsen L H, Jurkiewicz A, Nielsen M W, Tirichine L, Stougaard J. Cytokinin induction of root nodule primordia in Lotus japonicus is regulated by a mechanism operating in the root cortex. Mol Plant Microbe Interact, 2011,24:1385-1395. |
[28] | Peláez-Vico M A, Bernabéu-Roda L, Kohlen W, Soto M J, López-Ráez J A. Strigolactones in the Rhizobium-legume symbiosis: stimulatory effect on bacterial surface motility and down-regulation of their levels in nodulated plants. Plant Sci, 2016,245:119-127. |
[29] | Buhian W P, Bensmihen S. Mini-review: nod factor regulation of phytohormone signaling and homeostasis during rhizobia-legume symbiosis. Front Plant Sci, 2018,9:1247. |
[30] | Ferguson B J, Mathesius U. Phytohormone regulation of legume-rhizobia interactions. J Chem Ecol, 2014,40:770-790. |
[31] | Friml J. Auxin transport—shaping the plant. Curr Opin Plant Biol, 2003,6:7-12. |
[32] | Barbez E, Kubes M, Rolcik J, Beziat C, Pencik A, Wang B, Rosquete M R, Zhu J, Dobrev P I, Lee Y, Zazimalova E, Petrasek J, Geisler M, Friml J, Kleine-Vehn J. A novel putative auxin carrier family regulates intracellular auxin homeostasis in plants. Nature, 2012,485:119-122. |
[33] | Feraru E, Feraru M I, Barbez E, Waidmann S, Sun L, Gaidora A, Kleine-Vehn J. PILS6 is a temperature-sensitive regulator of nuclear auxin input and organ growth in Arabidopsis thaliana. Proc Natl Acad Sci USA, 2019,116:3893-3898. |
[34] | Beziat C, Barbez E, Feraru M I, Lucyshyn D, Kleine-Vehn J. Light triggers PILS-dependent reduction in nuclear auxin signalling for growth transition. Nat Plants, 2017,3:17105. |
[35] | Feraru E, Vosolsobe S, Feraru M I, Petrasek J, Kleine-Vehn J. Evolution and structural diversification of PILS putative auxin carriers in plants. Front Plant Sci, 2012,3:227. |
[36] | 叶梅霞, 刘军梅, 李昊, 崔东清, 王静澄, 张志毅, 安新民. amiRNAi-实现高效稳定的特异基因沉默新方法. 中国生物工程杂志, 2010,30(8):118-125. |
Ye M X, Liu J M, Li H, Cui D Q, Wang J C, Zhang Z Y, An X M,. amiRNAi: a new approach for highly specific and stable gene silencing. China Biotechnol, 2010,30(8):118-25 (in Chinese with English abstract). | |
[37] | Kereszt A, Li D, Indrasumunar A, Nguyen C D, Nontachaiyapoom S, Kinkema M, Gresshoff P M. Agrobacterium rhizogenes- mediated transformation of soybean to study root biology. Nat Protoc, 2007,2:948-952. |
[38] | Huang D, Sun Y, Ma Z, Ke M, Cui Y, Chen Z, Chen C, Ji C, Tran T M, Yang L, Lam S M, Han Y, Shu G, Friml J, Miao Y, Jiang L, Chen X. Salicylic acid-mediated plasmodesmal closure via remorin-dependent lipid organization. Proc Natl Acad Sci USA, 2019,116:21274-21284. |
[39] | David K A, Apte S K, Banerji A, Thomas J. Acetylene reduction assay for nitrogenase activity: gas chromatographic determination of ethylene per sample in less than one minute. Appl Environ Microbiol, 1980,39:1078-1080. |
[40] | Li X, Zheng J, Yang Y, Liao H. INCREASING NODULE SIZE1 expression is required for normal rhizobial symbiosis and nodule development. Plant Physiol, 2018,178:1233-1248. |
[41] | 王益军, 吕燕萍, 谢秦, 邓德祥, 卞云龙. 高粱全基因组生长素原初响应基因Aux/IAA的序列特征分析. 作物学报, 2010,36:688-694. |
Wang Y J, Lyu Y P, Xie Q, Deng D X, Bian Y L. Whole-genome sequence characterization of primary auxin-responsive Aux/IAA gene family in Sorghum (Sorghum bicolor L.). Acta Agron Sin, 2010,36:688-694 (in Chinese with English abstract). | |
[42] | Dubrovsky J G, Sauer M, Napsucialy-Mendivil S, Ivanchenko M G, Friml J, Shishkova S, Celenza J, Benková E. Auxin acts as a local morphogenetic trigger to specify lateral root founder cells. Proc Natl Acad Sci USA, 2008,105:8790-8794. |
[43] | Krupinski P, Jönsson H. Modeling auxin-regulated development. Cold Spring Harb Perspect Biol, 2010,2:a001560. |
[44] | Mohanta T K, Mohanta N, Bae H. Identification and expression analysis of PIN-Like (PILS) gene family of rice treated with auxin and cytokinin. Genes (Basel), 2015,6:622-640. |
[45] | Laxmi A, Pan J, Morsy M, Chen R. Light plays an essential role in intracellular distribution of auxin efflux carrier PIN2 in Arabidopsis thaliana. PLoS One, 2008,3:e1510. |
[46] | Halliday K J, Martínez-García J F, Josse E M. Integration of light and auxin signaling. Cold Spring Harb Perspect Biol, 2009,1:a001586. |
[47] | Leyser O. Dynamic integration of auxin transport and signalling. Curr Biol, 2006,16:R424-433. |
[48] | Muday G K, Murphy A S. An emerging model of auxin transport regulation. Plant Cell, 2002,14:293-299. |
[49] | Zazímalová E, Murphy A S, Yang H, Hoyerová K, Hosek P. Auxin transporters—why so many? Cold Spring Harb Perspect Biol, 2010,2:a001552. |
[50] | Petrásek J, Friml J. Auxin transport routes in plant development. Development, 2009,136:2675-2688. |
[51] | Alemneh A A, Zhou Y, Ryder M H, Denton M D. Mechanisms in plant growth-promoting rhizobacteria that enhance legume- rhizobial symbioses. J Appl Microbiol, 2020,129:1133-1156. |
[52] | Hasan S A, Hayat S, Ali B, Ahmad A. A comparative effect of IAA and 4-Cl-IAA on growth, nodulation and nitrogen fixation in Vigna radiate(L.) Wilczek. Acta Physiol Plant, 2008,30:35-41. |
[53] | Kaneshiro T, Kwolek W F. Stimulated nodulation of soybeans by Rhizobium japonicum mutant (B-14075) that catabolizes the conversion of tryptophan to indol-3yl-acetic acid. Plant Sci, 1985,42:141-146. |
[54] | Eli Y, Yaacov O, Amos D. Possible mode of action of Azospirillum brasilense strain Cd on the root morphology and nodule formation in burr medic(Medicago polymorpha). Can J Microbiol, 1990,36:10-14. |
[55] | Chakrabarti J, Chatterjee S, Ghosh S, Chatterjee N C, Dutta S. Synergism of VAM and Rhizobium on production and metabolism of IAA in roots and root nodules of Vigna mungo. Curr Microbiol, 2010,61:203-209. |
[56] | Ghosh P K, Saha P, Mayilraj S, Maiti T K. Role of IAA metabolizing enzymes on production of IAA in root, nodule of Cajanus cajan and its PGP Rhizobium sp. Biocatal Agric Biotechnol, 2013,2:234-239. |
[57] | Hunter W J. Influence of 5-methyltryptophan-resistant Bradyrhizobium japonicum on soybean root nodule indole-3-acetic acid content. Appl Environ Microbiol, 1987,53:1051-1055. |
[58] | Kretovich V L, Alekseeva I I, Tsivina N Z. Content of beta-indolylacetic in root nodules and roots of lupine. Sov Plant Physiol, 1972,19:421-424. |
[59] | Hunter W J. Indole-3-acetic acid production by bacteroids from soybean root nodules. Physiol Plant, 2010,76:31-36. |
[60] | Defez R, Andreozzi A, Dickinson M, Charlton A, Tadini L, Pesaresi P, Bianco C. Improved drought stress response in alfalfa plants nodulated by an IAA over-producing Rhizobium strain. Front Microbiol, 2017,8:2466. |
[61] | Defez R, Andreozzi A, Romano S, Pocsfalvi G, Fiume I, Esposito R, Angelini C, Bianco C. Bacterial IAA-delivery into Medicago root nodules triggers a balanced stimulation of C and N metabolism leading to a biomass increase. Microorganisms, 2019,7:403. |
[1] | PENG Xi-Hong, CHEN Ping, DU Qing, YANG Xue-Li, REN Jun-Bo, ZHENG Ben-Chuan, LUO Kai, XIE Chen, LEI Lu, YONG Tai-Wen, YANG Wen-Yu. Effects of reduced nitrogen application on soil aeration and root nodule growth of relay strip intercropping soybean [J]. Acta Agronomica Sinica, 2022, 48(5): 1199-1209. |
[2] | ZHANG Xue-Cui, SUN Su-Li, LU Wei-Guo, LI Hai-Chao, JIA Yan-Yan, DUAN Can-Xing, ZHU Zhen-Dong. Identification of resistance gene against phytophthora root rot in new soybean lines breeded in Henan province [J]. Acta Agronomica Sinica, 2021, 47(2): 275-284. |
[3] | QIN Xiao-Min, PAN Hao-Nan, XIAO Jing-Xiu, TANG Li, ZHENG Yi. Effects of maize and soybean intercropping on nodule growth, nitrogen fixation of soybean under low phosphorus condition [J]. Acta Agronomica Sinica, 2021, 47(11): 2268-2277. |
[4] | ZHANG Xue-Cui,ZHONG Chao,DUAN Can-Xing,SUN Su-Li,ZHU Zhen-Dong. Fine mapping of Phytophthora resistance gene RpsZheng in soybean cultivar Zheng 97196 [J]. Acta Agronomica Sinica, 2020, 46(7): 997-1005. |
[5] | LI Guo-Ji, ZHU Lin, CAO Jin-Shan, WANG You-Ning. Cloning and functional analysis of GmNRT1.2a and GmNRT1.2b in soybean [J]. Acta Agronomica Sinica, 2020, 46(7): 1025-1032. |
[6] | Dai-Ling LIU,Jun-Feng XIE,Qian-Rui HE,Si-Wei CHEN,Yue HU,Jia ZHOU,Yue-Hui SHE,Wei-Guo LIU,Wen-Yu YANG,Xiao-Ling WU. QTL analysis for relative contents of glycinin and β-conglycinin fractions from storage protein in soybean seeds under monoculture and relay intercropping [J]. Acta Agronomica Sinica, 2020, 46(3): 341-353. |
[7] | KE Dan-Xia,PENG Kun-Peng. Screening of NFR1α-interactive proteins in soybean using yeast two hybrid system [J]. Acta Agronomica Sinica, 2020, 46(01): 31-39. |
[8] | CHEN Ying,ZHANG Sheng-Rui,WANG Lan,WANG Lian-Zheng,LI Bin,SUN Jun-Ming. Characteristics of oil components and its relationship with domestication of oil components in wild and cultivated soybean accessions [J]. Acta Agronomica Sinica, 2019, 45(7): 1038-1049. |
[9] | Dan-Xia KE,Kun-Peng PENG,Meng-Ke ZHANG,Yan JIA,Jing-Jing WANG. Cloning and Salt Resistance Function Identification of GmHDL57 Gene from Glycine max [J]. Acta Agronomica Sinica, 2018, 44(9): 1347-1356. |
[10] | Dan-Xia KE,Kun-Peng PENG,Yan JIA,Shuo ZENG,Ying-Zhi WANG,Jing-Yi ZHANG. Functional Characterization of Soybean Cystatins Gene GmCYS2 [J]. Acta Agronomica Sinica, 2018, 44(8): 1159-1168. |
[11] | MIAO Shu-Jie,QIAO Yun-Fa,HAN Xiao-Zeng*,WANG Shu-Qi,LI Hai-Bo. Effects of Phosphorus Deficiency on Growth and Nitrogen Fixation of Soybean after Nodule Formation [J]. Acta Agron Sin, 2009, 35(7): 1344-1349. |
[12] | HAN Shan-Hua;GU Su-Fang;ZHANG Hong. Nuclear Ultrastructural Changes of Infected Cell during the Development of Root Nodules [J]. Acta Agron Sin, 2004, 30(07): 719-722. |
[13] | Luo Wenxi; Yu Guohua; Qing Huimin; Yin Xisheng. Studies on the Nitrate Reductase Activity (NRA) and the Nitrogenase Activity (NA) in the Nodules of Groundnut (A.hypogaea L.) [J]. Acta Agron Sin, 1991, 17(03): 220-227. |
|