Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2009, Vol. 35 ›› Issue (7): 1344-1349.doi: 10.3724/SP.J.1006.2009.01344

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Effects of Phosphorus Deficiency on Growth and Nitrogen Fixation of Soybean after Nodule Formation

MIAO Shu-Jie,QIAO Yun-Fa,HAN Xiao-Zeng*,WANG Shu-Qi,LI Hai-Bo   

  1. Northeast Institute of Geography and Agro-exology,Chinese Academy of Sciences,Harbin 150081,China
  • Received:2008-12-20 Revised:2009-03-18 Online:2009-07-12 Published:2009-05-19
  • About author:E-mail: miaoshujie@126.com; Tel: 0451-86648128

Abstract:

Phosphorus had a key role in soybean growth, however, it is very different to separate the role in soybean growth from that in nodule function. The research was conducted to elucidate the effects of phosphorus deficiency on growth and nitrogen fixation after nodule formation in soybean. Soybean seedlings were cultivated in nutrient solution culture with normal phosphorus concentration (30 µmol L-1), which was shifted to 0 and 4 µmol L-1 after nodule formation resulting in phosphorus deficienct for soybean plants.The results showed that phosphorus deficiency negatively influenced soybean plant growth at the ninth day of phosphorus deficiency treatment and nitrogen fixation at the beginning of the treatnent. The nodule number increased by 11.8%, 15.4%, and 20.0%, respectively in 0, 4, and 30 µmol L-1 phosphorus treatments at the ninth of treatment (DOT) compared with that at the third DOT. Leghemoglobin concentration per gram of plant and per nodule biomass increased with phosphorus concentration increase. These suggested that phosphorus deficiency affected significantly nodule development and nitrogen fixation when soybean plants formed sufficient nodule.

Key words: Soybean, Phosphorus, Nodule, Nitrogen fixation

[1] Lu J-L(陆景陵), Zhang F-S(张福锁), Li C-J(李春俭), Zou C-Q(邹春琴), Cao Y-P(曹一平), Li X-L(李晓林), Mi G-H(米国华). Plant Nutrition (植物营养学). Beijing: China Agricultural University Press, 2003. pp 35-38 (in Chinese)
[2] Sa T M, Israel D W. Energy status and functioning of phosphorus-deficient soybean nodules. Plant Physiol, 1991, 97: 928-935

[3] Yang Y. The effects of phosphorus on nodule formation in the Casuarina-Frankia symbiosis. Plant Soil, 1995, 176: 161-169

[4] Reddell P, Yang Y, Shipton W A. Do Casuarina cunninghamiana seedlings dependent on symbiotic N2 fixation have higher phosphorus requirement than those supplied with adequate fertilizer nitrogen? Plant Soil, 1997, 189: 213-219

[5] Israel D W. Investigation of the role phosphorus in symbiotic dinitrogen fixation, Plant Physiol, 1987, 84: 835-840

[6] Israel D W. Symbiotic dinitrogen fixation and host-plant growth during development of and recovery from phosphorus deficiency. Physiol Plant, 1993, 88: 294-300

[7] Jakobsen I. The role of phosphorus in nitrogen fixation by young pea plants (Pisum sativum). Physiol Plant, 1985, 64: 190-196

[8] Ohwaki Y, Sugahara P. Active extrusion of protons and exudation of carboxylic acids in response to iron deficiency by roots of chickpea (Cicer arietinum L.). Plant Soil, 1997, 189: 49-55

[9] Tang C, Hinsinger P J, Drevon J J, Jaillard B. Phosphorus deficiency impairs early nodule functioning and enhances proton release in roots of Medicago truncatula L. Ann Bot, 2001, 88: 131-138
[10] Dong Z(董钻). Soybean Yield Physiology(大豆产量生理). Beijing: China Agriculture Press, 1999. pp 97-98 (in Chinese )
[11] Zuo Y-M(左元梅), Liu Y-X(刘永秀), Zhang F-S(张福锁). Effects of improvement of iron nutrition by mixed cropping with maize on nodule microstructure and leghemoglobin content of peanut. J Plant Physiol Mol Biol (植物生理与分子生物学学报). 2003, 29(1): 33-38 (in Chinese with English abstract)

[12] Moez J, Mohamed E A, Helene P, Drevon J J. Nodule conductance varied among common bean (Phaseolus vulgaris) genotypes under phosphorus deficiency. J Plant Physiol, 2005, 162: 309-315
[13] Hellsten A, Huss-Danell K. Interaction effects on nitrogen and phosphorus on nodulation in red clover (Trifolium) patens (L.). Acta Afric Acan, 2001, 50: 135-142
[14] Shleev S V, Rozov F N, Topunov A F. A Method for producing multiple forms of metleghemoglobin reductaseand leghemoglobin components from lupine nodules. Appl Biochem Microbiol, 2001, 37: 195-200
[15] Oka-Kia E, Kawaguchi M. Long-distance signaling to control root nodule number. Plant Biol, 2006, 9: 1-7
[16] Sinclair T R, Serraj R. Legume nitrogen fixation and drought. Nature, 1995, 378: 344-347
[17] Katerina L R, Gautam S, Robert V K, Raularredondo P. Characterization of leghemoglobin from a mimosoid legume, Leucaena esculenta, root nodules. Brazil J Plant Physiol, 2000, 12: 37-44
[18] Sheokand S, Babber S, Swaraj K. Nodule structure and functioning in Cicer arietinum as affected by nitrate. Biol Plant, 1998, 41: 435-443
[19] Takashi S, Noriyasu O, Hiroyuki F, Norikuni O, Kuni S, Takuji O. Changes in four leghemoglobin components in nodules of hypernodulating soybean (Glycine max L. Merr.) mutant and its parent in the early nodule developmental stage. Plant Soil, 2001, 237: 129-135
[20] Wu M-C(吴明才), Xiao C-Z(肖昌珍), Zheng P-Y(郑普英). Study on the physiological function of phosphorus to soybean. Sci Agric Sci (中国农业科学), 1999, 32(3): 59-65 (in Chinese with English abstract)
[1] CHEN Ling-Ling, LI Zhan, LIU Ting-Xuan, GU Yong-Zhe, SONG Jian, WANG Jun, QIU Li-Juan. Genome wide association analysis of petiole angle based on 783 soybean resources (Glycine max L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1333-1345.
[2] YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487.
[3] YU Chun-Miao, ZHANG Yong, WANG Hao-Rang, YANG Xing-Yong, DONG Quan-Zhong, XUE Hong, ZHANG Ming-Ming, LI Wei-Wei, WANG Lei, HU Kai-Feng, GU Yong-Zhe, QIU Li-Juan. Construction of a high density genetic map between cultivated and semi-wild soybeans and identification of QTLs for plant height [J]. Acta Agronomica Sinica, 2022, 48(5): 1091-1102.
[4] LI A-Li, FENG Ya-Nan, LI Ping, ZHANG Dong-Sheng, ZONG Yu-Zheng, LIN Wen, HAO Xing-Yu. Transcriptome analysis of leaves responses to elevated CO2 concentration, drought and interaction conditions in soybean [Glycine max (Linn.) Merr.] [J]. Acta Agronomica Sinica, 2022, 48(5): 1103-1118.
[5] PENG Xi-Hong, CHEN Ping, DU Qing, YANG Xue-Li, REN Jun-Bo, ZHENG Ben-Chuan, LUO Kai, XIE Chen, LEI Lu, YONG Tai-Wen, YANG Wen-Yu. Effects of reduced nitrogen application on soil aeration and root nodule growth of relay strip intercropping soybean [J]. Acta Agronomica Sinica, 2022, 48(5): 1199-1209.
[6] WANG Hao-Rang, ZHANG Yong, YU Chun-Miao, DONG Quan-Zhong, LI Wei-Wei, HU Kai-Feng, ZHANG Ming-Ming, XUE Hong, YANG Meng-Ping, SONG Ji-Ling, WANG Lei, YANG Xing-Yong, QIU Li-Juan. Fine mapping of yellow-green leaf gene (ygl2) in soybean (Glycine max L.) [J]. Acta Agronomica Sinica, 2022, 48(4): 791-800.
[7] LI Rui-Dong, YIN Yang-Yang, SONG Wen-Wen, WU Ting-Ting, SUN Shi, HAN Tian-Fu, XU Cai-Long, WU Cun-Xiang, HU Shui-Xiu. Effects of close planting densities on assimilate accumulation and yield of soybean with different plant branching types [J]. Acta Agronomica Sinica, 2022, 48(4): 942-951.
[8] DU Hao, CHENG Yu-Han, LI Tai, HOU Zhi-Hong, LI Yong-Li, NAN Hai-Yang, DONG Li-Dong, LIU Bao-Hui, CHENG Qun. Improving seed number per pod of soybean by molecular breeding based on Ln locus [J]. Acta Agronomica Sinica, 2022, 48(3): 565-571.
[9] ZHOU Yue, ZHAO Zhi-Hua, ZHANG Hong-Ning, KONG You-Bin. Cloning and functional analysis of the promoter of purple acid phosphatase gene GmPAP14 in soybean [J]. Acta Agronomica Sinica, 2022, 48(3): 590-596.
[10] WANG Juan, ZHANG Yan-Wei, JIAO Zhu-Jin, LIU Pan-Pan, CHANG Wei. Identification of QTLs and candidate genes for 100-seed weight trait using PyBSASeq algorithm in soybean [J]. Acta Agronomica Sinica, 2022, 48(3): 635-643.
[11] DONG Yan-Kun, HUANG Ding-Quan, GAO Zhen, CHEN Xu. Identification, expression profile of soybean PIN-Like (PILS) gene family and its function in symbiotic nitrogen fixation in root nodules [J]. Acta Agronomica Sinica, 2022, 48(2): 353-366.
[12] ZHANG Guo-Wei, LI Kai, LI Si-Jia, WANG Xiao-Jing, YANG Chang-Qin, LIU Rui-Xian. Effects of sink-limiting treatments on leaf carbon metabolism in soybean [J]. Acta Agronomica Sinica, 2022, 48(2): 529-537.
[13] YU Tao-Bing, SHI Qi-Han, NIAN-Hai , LIAN Teng-Xiang. Effects of waterlogging on rhizosphere microorganisms communities of different soybean varieties [J]. Acta Agronomica Sinica, 2021, 47(9): 1690-1702.
[14] SONG Li-Jun, NIE Xiao-Yu, HE Lei-Lei, KUAI Jie, YANG Hua, GUO An-Guo, HUANG Jun-Sheng, FU Ting-Dong, WANG Bo, ZHOU Guang-Sheng. Screening and comprehensive evaluation of shade tolerance of forage soybean varieties [J]. Acta Agronomica Sinica, 2021, 47(9): 1741-1752.
[15] CAO Liang, DU Xin, YU Gao-Bo, JIN Xi-Jun, ZHANG Ming-Cong, REN Chun-Yuan, WANG Meng-Xue, ZHANG Yu-Xian. Regulation of carbon and nitrogen metabolism in leaf of soybean cultivar Suinong 26 at seed-filling stage under drought stress by exogenous melatonin [J]. Acta Agronomica Sinica, 2021, 47(9): 1779-1790.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!