Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2020, Vol. 46 ›› Issue (3): 341-353.doi: 10.3724/SP.J.1006.2020.94076

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

QTL analysis for relative contents of glycinin and β-conglycinin fractions from storage protein in soybean seeds under monoculture and relay intercropping

Dai-Ling LIU,Jun-Feng XIE,Qian-Rui HE,Si-Wei CHEN,Yue HU,Jia ZHOU,Yue-Hui SHE,Wei-Guo LIU,Wen-Yu YANG(),Xiao-Ling WU()   

  1. College of Agronomy, Sichuan Agricultural University / Sichuan Engineering Research Center for Crop Strip Intercropping System, Chengdu 611130, Sichuan, China
  • Received:2019-05-20 Accepted:2019-09-26 Online:2020-03-12 Published:2019-10-09
  • Contact: Wen-Yu YANG,Xiao-Ling WU E-mail:mssiyangwy@sicau.edu.cn;wulx@sicau.edu.cn
  • Supported by:
    the Crops Breeding Project in Sichuan Province(2017YFD0101500);the Crops Breeding Project in Sichuan Province(2016NYZ0031)

Abstract:

The relative contents of glycinin and β-conglycinin from storage protein are closely related to the quality and function of soybean seeds. However, it is not clear whether or how glycinin and β-conglycinin contents change in maize-soybean strip intercropping system. The glycinin and β-conglycinin relative contents of the recombinant inbred lines (RILs) derived from the cross of ‘Nandou 12’ and ‘Jiuyuehuang’ were measured under different environments (E1: 2017, Renshou; E2: 2017, Ya’an; E3: 2016, Renshou) and planting patterns (M: monoculture; RI: relay intercropping), among which the differences were significant or extremely significant in parents and RILs. Based on a genetic linkage map with 6366 SNP markers, we detected ten QTLs for glycinin and β-conglycinin relative contents which were distributed in nine linkage groups with the phenotypic variation of 5.63%-9.68%. According to the soybean genomic information, 65 candidate genes were screened in the region of above-mentioned QTLs. These results lay a theoretical foundation for soybean quality breeding.

Key words: Soybean (Glycine max L.), storage protein, shade, QTL mapping

Table 1

Glycinin and β-conglycinin relative content of ‘Nandou 12’ (ND12) and ‘Jiuyuehuang’ (JYH) under different environments and planting patterns"

性状
Trait
种植方式
Planting pattern
E1 E2 E3
南豆12
ND12
九月黄
JYH
Sig. 南豆12
ND12
九月黄
JYH
Sig. 南豆12
ND12
九月黄
JYH
Sig.
7S (%) M 20.18±0.22 b 24.47±0.30 a ** 21.77±1.28 a 21.55±0.63 a NS 22.84±0.20 a 22.96±0.47 a NS
RI 23.42±1.40 a 25.25±2.05 a NS 23.36±1.64 a 21.25±1.16 a NS 22.43±2.21 a 22.21±1.45 a NS
11S (%) M 33.74±0.29 a 42.47±0.31 A ** 36.80±2.06 a 38.05±0.97 a NS 37.99±0.69 a 36.08±0.76 a *
RI 35.57±1.64 a 36.63±0.30 B NS 38.09±1.37 a 35.35±1.02 b * 33.30±3.60 a 38.12±2.03 a NS
11S+7S (%) M 53.92±0.51 b 66.94±0.27 a ** 58.58±3.33 a 59.60±1.59 a NS 60.84±0.88 a 59.04±1.18 a NS
RI 58.99±3.04 a 61.88±2.16 b NS 61.45±1.01 a 56.60±2.15 a * 55.73±5.80 a 60.33±3.48 a NS
11S/7S M 1.67±0.00 a 1.74±0.03 A * 1.69±0.01 a 1.77±0.01 a ** 1.66±0.02 A 1.57±0.02 B **
RI 1.52±0.02 b 1.46±0.11 B NS 1.64±0.16 a 1.67±0.05 b NS 1.48±0.02 B 1.72±0.02 A **
α' (%) M 6.67±0.03 B 8.35±0.06 a ** 7.06±0.22 a 7.12±0.17 a NS 7.08±0.54 a 8.01±0.16 A *
RI 7.66±0.26 A 8.84±0.96 a NS 7.29±0.83 a 6.74±0.83 a NS 7.68±0.94 a 6.90±0.36 B NS
Α (%) M 6.84±0.18 a 9.49±0.28 a ** 7.92±0.75 a 7.63±0.69 a NS 8.38±0.50 a 8.14±0.81 a NS
RI 8.29±0.93 a 9.89±0.89 a NS 8.50±0.92 a 7.25±0.15 a NS 8.45±0.92 a 7.72±0.72 a NS
Β (%) M 6.67±0.20 B 6.63±0.42 a NS 6.80±0.38 b 6.81±0.12 b NS 7.39±0.91 a 6.81±0.30 b NS
RI 7.47±0.23 A 6.52±0.66 a NS 7.57±0.27 a 7.26±0.19 a NS 6.30±0.60 a 7.59±0.37 a *
A3 (%) M 5.27±0.15 a 7.43±0.76 a ** 5.04±0.71 a 4.79±0.11 a NS 5.61±0.23 a 5.28±1.24 a NS
RI 4.71±0.61 a 6.52±1.07 a NS 5.47±0.21 a 4.65±0.31 a * 5.37±0.15 a 6.00±0.46 a NS
Acid (%) M 13.01±0.88 a 17.17±0.78 a ** 15.79±2.58 a 14.68±1.07 a NS 17.46±1.65 a 15.77±1.65 a NS
RI 14.14±0.65 a 16.35±2.29 a NS 16.98±1.68 a 14.56±1.20 a NS 13.72±1.33 b 17.39±0.44 a **
Basic (%) M 8.65±0.44 a 12.48±1.28 a ** 8.93±0.08 B 9.82±0.57 a NS 8.27±0.47 a 8.66±0.11 a NS
RI 9.36±1.42 a 9.45±2.24 a NS 9.90±0.15 A 9.24±0.96 a NS 8.95±0.71 a 9.13±0.45 a NS
A5 (%) M 6.81±0.34 a 5.39±0.66 a * 7.04±0.91 a 8.75±1.31 a NS 6.71±2.71 a 6.37±1.59 a NS
RI 7.36±0.92 a 4.42±1.10 a * 5.74±0.58 a 6.9±0.94 a NS 5.27±2.86 a 5.60±1.65 a NS

Fig. 1

SDS-PAGE results of storage protein subunits in soybean seeds 1: Nandou 12; 2: Jiuyuehuang; 3: RIL158; 4: RIL104. Abbreviations are the same as those given in Table 1."

Fig. 2

Frequency distribution profiles of glycinin and β-conglycinin from seed storage protein in RILs population Abbreviations are the same as those given in Table 1."

Table 2

Statistic analysis of the glycinin and β-conglycinin relative content of seed storage protein in RILs population"

性状
Trait
环境
E
种植方式
Planting
pattern
平均数±标准差
Mean±SD
最大值
Max.
最小值
Min.
极差
Range
变异系数
CV (%)
偏度
Skew.
峰度
Kurt.
P (S-W)
7S (%) E1 M 22.34±1.81 30.03 19.73 10.30 8.11 1.73 4.07 0.00
RI 24.30±2.67 29.35 19.17 10.18 10.99 -0.10 -1.30 0.00
E2 M 21.74±1.63 26.88 17.49 9.39 7.52 0.49 0.33 0.01
RI 22.44±1.45 26.24 18.16 8.08 6.45 0.03 0.06 0.74
E3 M 24.67±1.92 29.92 19.60 10.32 7.78 0.23 -0.37 0.21
RI 25.22±1.92 30.18 19.89 10.29 7.60 0.14 -0.04 0.35
11S (%) E1 M 36.16±2.68 42.62 30.03 12.59 7.42 0.14 -0.79 0.01
RI 35.65±2.27 41.83 29.24 12.59 6.37 0.15 -0.17 0.75
E2 M 37.73±2.05 42.69 32.39 10.30 5.43 0.26 -0.35 0.05
RI 36.57±2.30 44.09 29.91 14.18 6.28 0.25 0.52 0.20
E3 M 37.47±2.62 46.31 30.46 15.85 6.99 0.14 0.01 0.34
RI 36.22±2.74 44.36 30.87 13.49 7.56 0.81 0.48 0.00
11S+7S (%) E1 M 58.50±2.81 65.08 52.05 13.03 4.80 -0.03 -0.79 0.00
RI 59.95±2.85 67.16 53.25 13.91 4.76 -0.01 -0.30 0.59
E2 M 59.46±2.23 65.27 54.60 10.67 3.75 0.05 -0.74 0.04
RI 59.01±2.59 65.31 51.99 13.32 4.39 -0.04 0.01 0.30
E3 M 62.15±2.65 72.35 55.68 16.67 4.27 0.21 0.28 0.10
RI 61.45±2.76 69.69 55.35 14.34 4.49 0.66 0.08 0.00
11S/7S E1 M 1.63±0.19 2.10 1.10 1.00 11.67 -0.17 0.01 0.11
RI 1.49±0.22 2.03 1.06 0.97 14.67 0.29 -0.99 0.00
E2 M 1.75±0.18 2.37 1.32 1.05 10.36 0.26 0.35 0.06
RI 1.64±0.16 2.08 1.26 0.82 9.46 0.31 -0.13 0.22
E3 M 1.53±0.18 2.17 1.10 1.07 12.07 0.22 0.19 0.47
RI 1.45±0.18 1.93 1.09 0.84 12.32 0.30 -0.42 0.03
α' (%) E1 M 7.45±0.79 9.99 6.10 3.89 10.59 1.19 1.71 0.00
RI 8.35±1.22 11.12 6.02 5.10 14.61 -0.07 -1.06 0.00
E2 M 7.10±0.65 10.01 5.61 4.40 9.09 0.57 1.79 0.00
RI 7.43±0.61 9.87 5.81 4.06 8.18 0.24 1.72 0.00
E3 M 8.39±0.77 10.46 6.66 3.80 9.21 0.42 -0.32 0.00
RI 8.53±0.85 11.05 5.98 5.07 9.95 0.01 0.41 0.14
α (%) E1 M 8.12±0.73 11.71 6.81 4.90 9.00 1.91 5.37 0.00
RI 9.03±1.17 11.33 6.73 4.60 12.94 -0.17 -1.10 0.00
E2 M 7.92±0.72 10.24 6.20 4.04 9.09 0.60 0.36 0.00
RI 8.04±0.63 9.81 6.32 3.49 7.87 -0.03 -0.02 0.61
E3 M 9.28±0.89 11.93 6.81 5.12 9.59 0.22 -0.27 0.13
RI 9.43±0.94 12.60 6.97 5.63 9.98 0.29 0.47 0.14
β (%) E1 M 6.77±0.58 9.48 5.31 4.17 8.54 1.72 5.30 0.00
RI 6.92±0.61 8.33 4.97 3.36 8.78 0.07 0.08 0.02
E2 M 6.72±0.61 8.73 5.46 3.27 9.13 0.30 0.02 0.11
RI 6.97±0.60 8.95 5.49 3.46 8.63 0.46 0.80 0.01
E3 M 7.01±0.76 9.37 5.23 4.14 10.85 0.11 -0.05 0.75
RI 7.26±0.59 8.71 5.54 3.17 8.15 0.03 0.09 0.64
A3 (%) E1 M 5.50±0.38 6.48 4.25 2.23 6.92 -0.28 0.39 0.21
RI 5.06±0.55 6.25 3.71 2.54 10.89 -0.41 -0.24 0.00
E2 M 5.64±0.61 8.20 4.30 3.90 10.86 0.77 1.84 0.00
RI 5.35±0.54 7.02 3.16 3.86 10.11 -0.37 1.65 0.00
E3 M 5.42±0.62 7.15 3.45 3.70 11.35 -0.36 0.34 0.04
RI 5.60±0.72 7.56 3.94 3.62 12.85 0.33 -0.14 0.10

"

性状
Trait
环境
E
种植方式
Planting
pattern
平均数±标准差
Mean±SD
最大值
Max
最小值
Min
极差
Range
变异系数
CV (%)
偏度
Skew.
峰度
Kurt.
P (S-W)
Acid (%) E1 M 15.64±1.54 20.78 12.51 8.27 9.83 0.69 0.11 0.00
RI 14.38±1.52 17.99 8.70 9.29 10.57 -0.60 0.90 0.00
E2 M 15.86±1.92 21.60 11.33 10.27 12.10 0.50 0.26 0.01
RI 15.16±1.68 19.19 9.57 9.62 11.08 -0.07 0.07 0.43
E3 M 15.38±1.25 18.93 10.92 8.01 8.15 -0.29 0.98 0.04
RI 14.90±1.38 19.04 11.33 7.71 9.26 -0.19 -0.19 0.22
Basic (%) E1 M 10.36±1.95 16.15 6.46 9.69 18.79 0.56 -0.26 0.00
RI 10.18±2.83 20.32 5.35 14.97 27.78 0.84 1.50 0.00
E2 M 10.77±2.21 16.66 6.33 10.33 20.52 0.16 -0.62 0.03
RI 9.89±2.25 20.84 5.37 15.47 22.75 1.78 4.17 0.00
E3 M 8.82±2.31 23.59 4.81 18.78 26.24 1.90 7.63 0.00
RI 8.09±1.79 15.48 4.50 10.98 22.09 0.96 2.47 0.00
A5 (%) E1 M 4.66±1.53 11.43 2.88 8.55 32.86 1.95 4.15 0.00
RI 6.02±2.32 15.45 0.88 14.57 38.44 1.21 1.57 0.00
E2 M 5.45±1.63 11.61 3.01 8.60 29.84 1.22 1.56 0.00
RI 6.17±1.76 11.42 2.83 8.59 28.56 0.30 -0.21 0.00
E3 M 7.85±3.36 17.74 1.09 16.65 42.85 0.65 -0.13 0.00
RI 7.64±3.94 18.83 1.75 17.08 51.52 1.03 0.31 0.00

Table 3

Analysis of variance of glycinin and β-conglycinin from seed storage protein in soybean"

性状
Trait
变异来源 Variability source
E P G E×P E×G P×G E×P×G
7S (%) 2719.17** 1130.16** 16.35** 198.05** 12.31** 15.24** 9.05**
11S (%) 232.79** 390.23** 9.34** 22.11** 9.01** 8.57** 6.90**
11S+7S (%) 577.47** 1.81 5.13** 90.72** 4.71** 4.39** 4.42**
11S/7S 3509.46** 3081.43** 34.63** 68.89** 29.83** 35.37** 20.09**
α' (%) 1534.95** 670.80** 10.08** 169.27** 6.65** 8.86** 6.62**
α (%) 1726.56** 423.291** 8.68** 181.27** 6.97** 7.90** 5.07**
β (%) 131.30** 162.88** 6.03** 4.20* 4.76** 4.04** 3.80**
A3 (%) 60.23** 91.30** 3.89** 93.41** 3.23** 2.47** 2.70**
Acid (%) 43.73** 324.46** 5.05** 26.16** 3.87** 3.09** 4.02**
Basic (%) 490.46** 116.33** 7.57** 14.65** 5.40** 5.82** 4.28**
A5 (%) 541.06** 97.84** 5.93** 52.02** 6.24** 5.73** 4.71**

Table 5

QTLs for glycinin and β-conglycinin from storage protein in soybean seeds"

环境
Environ.
种植方式
Planting pattern
QTL 标记区间
Marker interval
LOD 贡献率
PVE(%)
加性效应
Add. effect
置信区间
Confidence
interval
E1 M qAcid-6-131 Marker359561-Marker361355 5.63 8.06 0.53 130.5-131.5
qAcid-10-80 Marker584033-Marker584037 4.03 5.63 -0.46 79.5-80.5
qAcid-14-155 Marker713356-Marker710168 4.06 5.81 -0.47 153.5-158.0
RI qGpC-18-85 Marker1158309-Marker1157431 5.61 6.62 1.06 84.5-85.5
qBeta-19-5 Marker1175558-Marker1175562 4.03 9.01 -0.18 4.5-5.5
E2 M qBeta-1-135 Marker69562-Marker69768 3.21 7.49 -0.18 134.5-135.5
RI qAlpha-8-27 Marker460291-Marker460320 4.40 9.68 0.20 26.5-27.5
qBeta-1-13 Marker2130-Marker2656 3.22 7.14 -0.17 11.5-15.5
E3 M qAcid-4-67 Marker270606-Marker271196 3.68 8.20 -0.40 66.5-70.5
RI qGpC-20-110 Marker1242459-Marker1242433 3.65 8.60 0.82 109.5-110.5

Table 6

Candidate gene classification related to glycinin and β-conglycinin relative content from storage protein"

分组
Group
生物过程
Biological process
基因ID (净作/套作)
Gene ID (Monoculture/Relay intercropping)
注释信息
Annotation description
I 激素调节
Regulation of
hormone
Glyma.01G179900; Glyma.14G193800, 060300, 195200, 195300, 196000, 196600, 197100, 197200, 197500, 197600, 198000, 198100, 198300, 198600, 199200, 200200, 202000, 202600, 202700, 203000 / Glyma.01G025300, 025400, 025500, 025600, 027400; Glyma.18G251800, 252200, 252300, 252400 脱落酸激活的信号通路、激素介导的信号通路、乙烯激活的信号通路、生长素反应、脱落酸反应
Abscisic acid-activated signaling pathway, hormone-mediated signaling pathway, ethylene-activated signaling pathway, response to auxin, response to abscisic acid
II 氨基酸合成
Amino acid
synthesis
Glyma.01G180100; Glyma.04G211400; Glyma.06G243800; Glyma.14G195300, 196600, 197100, 198700, 202000, 202700, 203000, 203700 / Glyma.01G025600, 027100, 027400, 028100, 028700; Glyma.08G210500; Glyma.18G250600, 251800 蛋白丝氨酸/苏氨酸激酶活性、丝氨酸家族氨基酸代谢过程
Protein serine/threonine kinase activity, serine family amino acid metabolic process
III 蛋白质磷酸化
Protein
phosphorylation
Glyma.06G243800; Glyma.14G195200, 196600, 202700, 203000 / Glyma.01G027100, 028000, 028700; Glyma.18G249400, 249700, 249900, 250500, 250600, 251800 蛋白质磷酸化、蛋白质丝氨酸/苏氨酸磷酸酶活性、蛋白质脱磷酸
Protein phosphorylation, protein serine/threonine phosphatase activity, protein dephosphorylation
IV 细胞器生物过程
Organelle
biological process
Glyma.04G212200, 212400; Glyma.14G194300, 194500, 196600, 197600, 198000, 198100, 198600, 199000, 202000, 202400, 203000 / Glyma.01G025200, 026000, 026200, 026700, 028100; Glyma.18G248400, 251300, 251800, 253200 内质网、液泡、内质网膜
E ndoplasmic reticulum, vacuole, endoplasmic reticulum membrane
V 种子发育
Seed development
Glyma.01G179800; Glyma.14G197100, 197500, 199000, 202100 / Glyma.01G025200, 025300, 025400, 026200, 027400; Glyma.18G249400, 249700, 249800, 250000, 250100, 250600, 250700, 251200, 251800 子叶发育、以种子休眠结束的胚胎发育
Cotyledon development, embryo development ending in seed dormancy

Table 7

Meteorological data for E1, E2, and E3 from June to October (℃)"


Month

Ten-day periods
日平均温度
Daily mean temperature
日最高温度
Daily maximum temperature
日最低温度
Daily minimum temperature
E1 E2 E3 E1 E2 E3 E1 E2 E3
6月
June
上旬 The first ten days 25.40 23.13 25.80 30.47 28.02 31.86 21.59 19.87 20.99
中旬 The middle ten days 23.94 22.68 27.40 28.07 26.92 32.54 21.12 19.82 22.43
下旬 The last ten days 25.77 24.24 25.90 30.39 29.45 30.41 22.08 20.61 22.53
7月
July
上旬 The first ten days 27.83 26.09 27.20 33.93 31.38 31.26 23.67 22.73 23.57
中旬 The middle ten days 29.23 27.78 27.80 35.00 34.31 32.80 24.45 23.50 23.20
下旬 The last ten days 30.41 28.08 27.90 36.13 35.23 32.84 25.88 24.15 24.23
8月
August
上旬 The first ten days 29.41 28.11 27.00 35.17 34.20 31.98 25.55 24.43 23.79
中旬 The middle ten days 27.71 26.10 30.40 32.25 31.20 35.66 24.23 23.24 26.33
下旬 The last ten days 26.16 24.36 28.20 29.99 28.63 33.05 23.40 21.88 24.72
9月
September
上旬 The first ten days 23.95 22.54 23.10 27.66 27.38 27.12 21.31 19.81 20.43
中旬 The middle ten days 23.68 22.29 22.00 27.40 26.03 25.40 21.22 20.30 19.82
下旬 The last ten days 23.04 21.55 22.30 26.43 25.89 25.95 20.94 19.24 19.88
10月
October
上旬 The first ten days 19.97 18.77 22.00 23.73 23.03 25.59 17.70 16.85 19.47
中旬 The middle ten days 17.07 15.75 18.30 19.41 18.36 20.94 15.65 14.28 16.55
下旬 The last ten days 16.02 14.97 17.70 18.60 17.70 20.75 14.33 13.58 15.76
[1] Li C, He X, Zhu S, Zhou H, Wang Y, Li Y, Yang J, Fan J, Yang J, Wang G, Long Y, Xu J, Tang Y, Zhao G, Yang J, Liu L, Sun Y, Xie Y, Wang H, Zhu Y . Crop diversity for yield increase. PLoS One, 2009,4:e8049.
[2] 鲍韵, 吴昌南 . 我国大豆产业安全预警系统构建. 江西社会科学, 2013, ( 4):48-53.
Bao Y, Wu C N . Construction of soybean industry safety early warning system in China. Jiangxi Social Sci, 2013, ( 4):48-53 (in Chinese).
[3] 刘丽君, 赵贵兴, 高明杰, 吴俊江, 陈霞 . 大豆加工品质的资源筛选和遗传改良的研究: II. 豆腐、酱油、毛豆、大豆加工原料的筛选. 大豆科学, 2004,23:184-187.
Liu L J, Zhao G X, Gao M J, Wu J J, Chen X . Study on resource screen and inheritance improvement for processing quality of soybean: II. Screening of soybean varieties for Tofu, sauce processing and fresh soybean. Soybean Sci, 2004,23:184-187 (in Chinese with English abstract).
[4] 李冬冬 . 大豆营养与人体健康分析. 中国卫生标准管理, 2015,6(5):5-6.
Li D D . The analysis of soybean nutrition and physical health. China Health Standard Manage, 2015,6(5):5-6 (in Chinese with English abstract).
[5] Fukushima D . Structures of plant storage proteins and their functions. Food Rev Int, 1991,3:353-379.
[6] Panthee D R, Kwanyuen P, Sams C E, West D R, Saxton A, Pantalone V R . Quantitative trait loci for β-conglycinin (7S) and glycinin (11S) fractions of soybean storage protein. J Am Oil Chem Soc, 2004,81:1005-1012.
[7] Ma Y, Kan G, Zhang X, Wang Y, Zhang W, Du H, Yu D . Quantitative trait loci (QTL) mapping for glycinin and β-conglycinin contents in soybean (Glycine max L. Merr.). J Agric Food Chem, 2016,64:3473-3483.
[8] 刘顺湖, 周瑞宝, 喻德跃, 陈受宜, 盖钧镒 . 大豆蛋白质有关性状的QTL定位. 作物学报, 2009,35:2139-2149.
Liu S H, Zhou R B, Yu D Y, Chen S Y, Gai J Y . QTL mapping of protein related traits in soybean [Glycine max(L.) Merr.]. Acta Agron Sin, 2009,35:2139-2149 (in Chinese with English abstract).
[9] 简爽, 文自翔, 李海朝, 袁道华, 李金英, 张辉, 叶永忠, 卢为国 . 运用关联分析定位栽培大豆蛋白11S、7S组分的相关基因位点. 作物学报, 2012,38:820-828.
Jian S, Wen Z X, Li H C, Yuan D H, Li J Y, Zhang H, Ye Y Z, Lu W G . Identification of QTLs for glycinin (11S) and β-conglycinin (7S) fractions of seed storage protein in soybean by association mapping. Acta Agron Sin, 2012,38:820-828 (in Chinese with English abstract).
[10] 罗庆明 . 不同生态区域套作大豆生长势、产量和品质的比较研究. 四川农业大学硕士学位论文, 四川成都, 2010.
Luo Q M . The Comparative Study on Growth Potential, Yield and Quality of Relay Cropping Soybean in Different Ecological Regions. MS Thesis of Sichuan Agricultural University, Chengdu, China, 2010 (in Chinese with English abstract).
[11] 蒋涛, 杨文钰, 刘卫国, 王凤 . 套作大豆贮藏蛋白、氨基酸组成分析及营养评价. 食品科学, 2012,33(21):275-279.
Jiang T, Yang W Y, Liu W G, Wang F . Storage protein and amino acid composition analysis and nutrition evaluation of relay- cropped soybean. Food Sci, 2012,33(21):275-279 (in Chinese with English abstract)
[12] 蔡凌, 刘卫国, 李奇, 吴雨珊, 方萍, 刘春燕, 杨文钰 . 玉米-大豆带状套作对大豆蛋白特性的影响. 中国油料作物学报, 2016,38:328-335.
Cai L, Liu W G, Li Q, Wu Y S, Fang P, Liu C Y, Yang W Y . Effect of maize-soybean relay strip intercropping on protein characteristics of soybean. Chin J Oil Crop Sci, 2016,38:328-335 (in Chinese with English abstract).
[13] 王显生, 麻浩, 向世鹏, 张国正, 崔国贤 . 不同SDS-PAGE分离胶浓度条件下大豆贮藏蛋白亚基的分辨效果. 中国油料作物学报, 2004,26:75-80.
Wang X S, Ma H, Xiang S P, Zhang G Z, Cui G X . The resolving effect of soybean storage protein subunits under different separation gel concentrations of SDS-PAGE. Chin J Oil Crop Sci, 2004,26:75-80 (in Chinese with English abstract).
[14] Bradford M . A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem, 1976,72:248-254.
[15] Liu D L, Chen S W, Liu X C, Yang F, Liu W G, She Y H, Du J B, Liu C Y, Yang W Y, Wu X L . Genetic map construction and QTL analysis of leaf-related traits in soybean under monoculture and relay intercropping. Sci Rep, 2019,9:2716.
[16] McCouch S R, Cho Y G, Yano P E, Blinstrub M, Morishima H, Kinoshita T . Report on QTL nomenclature. Rice Genet Newsl, 1997,14:11-13.
[17] 卢为国, 王树峰, 李卫东, 梁慧珍, 耿臻, 范彦英, 刘亚非, 王庭峰, 张辉, 李金英 . 大豆籽粒贮藏蛋白11S/7S比值与生态因子相关关系的研究. 中国农业科学, 2005,38:1059-1064.
Lu W G, Wang S F, Li W D, Liang H Z, Geng Z, Fan Y Y, Liu Y F, Wang T F, Zhang H, Li J Y . Effects of eco-physiological factors on storage protein 11S/7S ratio in soybean seeds. Sci Agric Sin, 2005,38:1059-1064 (in Chinese with English abstract).
[18] 刘香英, 康立宁, 田志刚, 张井勇, 杨春明, 王景会, 姜媛媛, 张莉 . 东北大豆品种贮藏蛋白7S和11S组分及其亚基相对含量分析. 大豆科学, 2009,28:985-989.
Liu X Y, Kang L N, Tian Z G, Zhang J Y, Yang C M, Wang J H, Jiang Y Y, Zhang L . Analysis of 7S and 11S globulin and subunit content of soybean in northeast China. Soybean Sci, 2009,28:985-989 (in Chinese with English abstract).
[19] Ogawa T, Tayama E, Kitamura K, Kaizuma N . Genetic improvement of seed storage proteins using three variant alleles of 7S globulin subunits in soybean (Glycine max L.). Jpn J Breed, 1989,39:137-147.
[20] Krishnan H B . Engineering soybean for enhanced sulfur amino acid content. Crop Sci, 2005,45:454-461.
[21] Salleh M R B, Maruyama N, Takahashi K, Yagasaki K, Higasa T, Matsumura Y, Utsumi S . Gelling properties of soybean beta-conglycinin having different subunits compositions. Biosci Biotechnol Biochem, 2004,68:1091-1096.
[22] Thanos G, Gerard B, Gilles C, Yvette H, Emile M, Bruno S, Emmanuelle J . Protein tyrosine kinases and protein tyrosine phosphatases are involved in abscisic acid-dependent processes in Arabidopsis seeds and suspension cells1. Plant Physiol, 2008,148:1668-1680.
[23] Palmer C E . The effect of abscisic acid on amino nitrogen and protein content of potato plants in relation to the inhibition of nitrate reductase activity. Plant Cell Physiol, 1985,26:1083-1091.
[24] Zhao X Q, Nie X L, Xiao X G . Over-expression of a tobacco nitrate reductase gene in wheat (Triticum aestivum L.) increases seed protein content and weight without augmenting nitrogen supplying. PLoS One, 2013,8:e74678.
[25] Ohkama-Ohtsu N, Radwan S, Peterson A G, Zhao P, Badr A F, Xiang C B, Oliver D J . Characterization of the extracellular γ-glutamyl transpeptidases, GGT1 and GGT2, in Arabidopsis. Plant J, 2007,49:865-877.
[26] Awazuhara M, Kim H, Hayashi H, Chino M, Kim S G, Fujiwara T . Composition of seed storage proteins changed by glutathione treatment of soybeans. Biosci Biotechnol Biochem, 2002,66:1751-1754.
[1] SONG Li-Jun, NIE Xiao-Yu, HE Lei-Lei, KUAI Jie, YANG Hua, GUO An-Guo, HUANG Jun-Sheng, FU Ting-Dong, WANG Bo, ZHOU Guang-Sheng. Screening and comprehensive evaluation of shade tolerance of forage soybean varieties [J]. Acta Agronomica Sinica, 2021, 47(9): 1741-1752.
[2] ZHANG Bo, PEI Rui-Qing, YANG Wei-Feng, ZHU Hai-Tao, LIU Gui-Fu, ZHANG Gui-Quan, WANG Shao-Kui. Mapping and identification QTLs controlling grain size in rice (Oryza sativa L.) by using single segment substitution lines derived from IAPAR9 [J]. Acta Agronomica Sinica, 2021, 47(8): 1472-1480.
[3] ZHOU Xin-Tong, GUO Qing-Qing, CHEN Xue, LI Jia-Na, WANG Rui. Construction of a high-density genetic map using genotyping by sequencing (GBS) for quantitative trait loci (QTL) analysis of pink petal trait in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(4): 587-598.
[4] LI Shu-Yu, HUANG Yang, XIONG Jie, DING Ge, CHEN Lun-Lin, SONG Lai-Qiang. QTL mapping and candidate genes screening of earliness traits in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(4): 626-637.
[5] SHEN Wen-Qiang, ZHAO Bing-Bing, YU Guo-Ling, LI Feng-Fei, ZHU Xiao-Yan, MA Fu-Ying, LI Yun-Feng, HE Guang-Hua, ZHAO Fang-Ming. Identification of an excellent rice chromosome segment substitution line Z746 and QTL mapping and verification of important agronomic traits [J]. Acta Agronomica Sinica, 2021, 47(3): 451-461.
[6] HAN Zhan-Yu,GUAN Xian-Yue,ZHAO Qian,WU Chun-Yan,HUANG Fu-Deng,PAN Gang,CHENG Fang-Min. Individual and combined effects of air temperature at filling stage and nitrogen application on storage protein accumulation and its different components in rice grains [J]. Acta Agronomica Sinica, 2020, 46(7): 1087-1098.
[7] WU Hai-Tao, ZHANG Yong, SU Bo-Hong, Lamlom F Sobhi, QIU Li-Juan. Development of molecular markers and fine mapping of qBN-18 locus related to branch number in soybean (Glycine max L.) [J]. Acta Agronomica Sinica, 2020, 46(11): 1667-1677.
[8] WANG Cun-Hu,LIU Dong,XU Rui-Neng,YANG Yong-Qing,LIAO Hong. Mapping of QTLs for leafstalk angle in soybean [J]. Acta Agronomica Sinica, 2020, 46(01): 9-19.
[9] YANG Xiao-Meng, LI Xia, PU Xiao-Ying, DU Juan, Muhammad Kazim Ali, YANG Jia-Zhen, ZENG Ya-Wen, YANG Tao. QTL mapping for total grain anthocyanin content and 1000-kernel weight in barley recombinant inbred lines population [J]. Acta Agronomica Sinica, 2020, 46(01): 52-61.
[10] WANG Da-Chuan,WANG Hui,MA Fu-Ying,DU Jie,ZHANG Jia-Yu,XU Guang-Yi,HE Guang-Hua,LI Yun-Feng,LING Ying-Hua,ZHAO Fang-Ming. Identification of rice chromosome segment substitution Line Z747 with increased grain number and QTL mapping for related traits [J]. Acta Agronomica Sinica, 2020, 46(01): 140-146.
[11] Li-Juan WEI,Rui-Ying LIU,Li ZHANG,Zhi-You CHEN,Hong YANG,Qiang HUO,Jia-Na LI. Detection of stem height QTL and integration of the loci for plant height- related traits in B. napus [J]. Acta Agronomica Sinica, 2019, 45(6): 818-828.
[12] YAN Chao,ZHENG Jian,DUAN Wen-Jing,NAN Wen-Bin,QIN Xiao-Jian,ZHANG Han-Ma,LIANG Yong-Shu. Locating QTL controlling yield traits in overwintering cultivated rice [J]. Acta Agronomica Sinica, 2019, 45(4): 522-537.
[13] ZHANG Chun-Xiao,LI Shu-Fang,JIN Feng-Xue,LIU Wen-Ping,LI Wan-Jun,LIU Jie,LI Xiao-Hui. QTL mapping of salt and alkaline tolerance-related traits at the germination and seedling stage in maize (Zea mays L.) using three analytical methods [J]. Acta Agronomica Sinica, 2019, 45(4): 508-521.
[14] LIU Jiang-Ning,WANG Chu-Xin,ZHANG Hong-GEN,MIAO Yi-Xu,GAO Hai-Lin,XU Zuo-Peng,LIU Qiao-Quan,TANG Shu-Zhu. Mapping of QTLs for resistance to rice black-streaked dwarf disease [J]. Acta Agronomica Sinica, 2019, 45(11): 1664-1671.
[15] Wen-Xiang WANG,Wen CHU,De-Sheng MEI,Hong-Tao CHENG,Lin-Lin ZHU,Li FU,Qiong HU,Jia LIU. Quantitative trait loci mapping for branch angle and candidate gene screening in Brassica napus L. [J]. Acta Agronomica Sinica, 2019, 45(1): 37-45.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!