Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2019, Vol. 45 ›› Issue (1): 37-45.doi: 10.3724/SP.J.1006.2019.84042


Quantitative trait loci mapping for branch angle and candidate gene screening in Brassica napus L.

Wen-Xiang WANG1(),Wen CHU1,De-Sheng MEI1,Hong-Tao CHENG1,Lin-Lin ZHU2,Li FU1,Qiong HU1,Jia LIU1,*()   

  1. 1 Oil Crops Research Institute, Chinese Academy of Agricultural Sciences / Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture and Rural Affairs, Wuhan 430062, Hubei, China
    2 Plant Protection Station of Nanzhang, Xiangyang 441500, Hubei, China
  • Received:2018-03-22 Accepted:2018-08-20 Online:2018-09-09 Published:2018-09-09
  • Contact: Jia LIU E-mail:wangwenxiang@caas.cn;liujia02@caas.cn
  • Supported by:
    This study was supported by the Science and Technology Innovation Project of Chinese Academy of Agricultural Sciences(Group No. 118);the China Agriculture Research System(CARS-12);the Hubei Agricultural Science and Technology Innovation Center, and the National Natural Science Foundation of China(31471535);the Hubei Agricultural Science and Technology Innovation Center, and the National Natural Science Foundation of China(31771842)


Branch angle is an important agronomic trait of plant architecture. In this study, 163 lines of a DH population derived from a cross between 1019B (compact type) and R2 (loose type) were genotyped by using 60K SNP array and a high-density genetic linkage map was constructed with 1442 bins inclusive of 9521 SNP markers to detect quantitative trait loic (QTL) for basal branch angle and top branch angle. The genetic map contained 19 lingkage groups with a total length of 2544.07 cM and an average distance between adjacent bin-markers of 1.76 cM. Totally, 17 QTL for branch angle were detected on chromosomes A01, A02, A03, A06, A09, C02, C03, C04, C06, and C08, respectively. The phenotypic variation accounted by a single locus was from 6.36% to 21.78%. Twelve candidate genes of branch angle were found underlying six QTL by comparing with homologous genes in Arabidopsis. Candidate gene VAMP714 was close to the peak position of A03 QTL confidence interval, which was identified on chromosome A03 in both environments. These QTL and candidate genes provide useful information for the genetic modification of rapeseed branch angle.

Key words: oilseed rape, branch angle, 60K SNP array, QTL mapping, candidate gene

Table 1

Branch angle traits of the two parents and DH population in two environments"

亲本 Parent Pt-test DH群体 DH population
1019B (o) R2 (o) 范围
Range (o)
Mean (o)
2014 BBA 28.13±5.45 42.34±4.43 6.09E-03 26.17-50.22 36.46 5.23 14.35 -0.777 -0.085
TBA 36.32±5.46 46.65±4.08 1.47E-02 22.98-56.37 37.74 5.41 14.33 0.515 0.080
2015 BBA 27.90±3.50 37.72±2.25 1.44E-05 20.76-45.64 32.68 5.54 16.94 -0.201 0.150
TBA 38.75±6.30 47.66±6.10 2.46E-03 26.30-63.99 40.43 6.70 16.57 1.364 0.625

Fig. 1

Frequency distribution of branch angle (BBA and TBA) in 1019B×R2 DH population planted in two environments"

Table 2

Correlation coefficient for branch angle traits of B. napus DH population in 2014 and 2015"

2015BBA 2014TBA 2015TBA
2014BBA 0.411** 0.542** 0.353**
2015BBA 0.432** 0.586**
2014TBA 0.362**

Fig. 2

Overview of genome-wide SNP density in the bin map of DH population The ordinate shows the genetic distance along each of the 19 linkage groups corresponding to B. napus genome."

Table 3

Putative QTLs for branch angle detected in two environments"

Confidence interval
2014 BBA qBBA.A02.1 A02 4.0 0-24.0 3.7 2.15 15.10
qBBA.A03.1 A03 11.1 7.9-15.0 2.8 1.74 9.31
qBBA.C08.1 C08 8.4 0-11.4 2.8 -1.94 8.85
2015 BBA qBBA.A01.1 A01 34.0 32.5-35.4 2.8 1.70 8.07
qBBA.A03.2 A03 11.8 10.2-14.9 3.9 2.03 11.79
qBBA.C03.1 C03 101.7 99.7-103.6 3.9 -2.12 12.66
2014 TBA qTBA.A06.1 A06 90.4 87.2-91.4 2.9 -1.44 8.20
qTBA.A09.1 A09 87.0 82.0-90.2 6.9 -2.35 21.78
qTBA.C03.1 C03 146.0 144.2-148.5 4.3 -1.79 12.73
qTBA.C08.1 C08 8.4 0-11.4 3.0 -1.69 8.78
2015 TBA qTBA.A03.1 A03 17.6 14.9-18.8 0.2 1.85 8.28
qTBA.A09.2 A09 3.1 0.9-4.2 4.1 -2.14 11.08
qTBA.C02.1 C02 47.3 45.8-49.2 2.8 1.61 6.39
qTBA.C02.2 C02 54.8 53.4-57.5 3.2 1.83 8.07
qTBA.C02.3 C02 65.5 64.5-71.6 2.8 1.65 6.43
qTBA.C04.1 C04 1.6 0-5.7 3.9 -2.13 10.24
qTBA.C06.1 C06 80.3 79.7-92.2 4.1 5.20 11.00

Fig. 3

Putative QTLs of basal branch angle and top branch angle on the genetic map"

Table 4

Candidate genes in QTL confidence interval of branch angle in B. napus by alignment with related genes in Arabidopsis thaliana"

Physical interval
Gene prediction
拟南芥相关基因 Related genes in A. thaliana 参考文献Reference
基因名 Gene name 登录号 Accession number
BBA qBBA.A01.1 2,992,973-3,391,055 BnaA01g06910D ARF16 AT4G30080 Shen et al.[22]
qBBA.A03.1 3,256,156-4,877,684 BnaA03g08500D VAMP714 AT5G22360 Sun et al.[19]
TBA qTBA.A09.2 963,282-1,890,151 BnaA09g02390D ABCB19/PGP19 AT3G28860 Sun et al.[19]
BnaA09g02480D EXPA5 AT3G29030 Sun et al.[19]
qTBA.C03.1 26,692 780-33,111,760 BnaC03g46000D GH3-10, DFL2 AT4G03400 Shen et al.[22]
BnaC03g46010D GH3-10, DFL2 AT4G03400 Shen et al.[22]
BnaC03g46450D SAUR8 AT2G16580 Shen et al.[22]
BnaC03g46960D SAUR42 AT2G28085 Shen et al.[22]
qTBA.C04.1 1563-990,575 BnaC04g00310D WRK23 AT2G47260 Li et al.[21]
BnaC04g00780D TAC1 AT2G46640 Li et al.[21]
qTBA.C06.1 27,360,890-32,410,130 BnaC06g29230D IAR1 AT1G68100 Li et al.[21]
BnaC06g31170D IAR4 AT1G24180 Li et al.[21]
[1] 王汉中, 殷艳 . 我国油料产业形势分析与发展对策建议. 中国油料作物学报, 2014,36:414-421.
Wang H Z, Yin Y . Analysis and strategy for oil crop industry in China. Chin J Oil Crop Sci, 2014,36:414-421 (in Chinese with English abstract).
[2] Cai G Q, Yang Q Y, Chen H, Yang Q, Zhang C Y, Fan C C, Zhou Y M . Genetic dissection of plant architecture and yield-related traits in Brassica napus. Sci Rep, 2016,6:21625.
doi: 10.1038/srep21625 pmid: 26880301
[3] Wang Y H, Li J Y . Molecular basis of plant architecture. Annu Rev Plant Biol, 2008,59:253-279.
doi: 10.1109/83.760334 pmid: 18444901
[4] Chalhoub B, Denoeud F, Liu S Y, Parkin I A, Tang H B, Wang X Y, Chiquet J, Belcram H, Tong C B, Samans B, Corréa M, Da Silva C, Just J, Falentin C, Koh C S, Le Clainche I, Bernard M, Bento P, Noel B, Labadie K, Alberti A, Charles M, Arnaud D, Guo H, Daviaud C, Alamery S, Jabbari K, Zhao M X, Edger P P, Chelaifa H, Tack D, Lassalle G, Mestiri I, Schnel N, Le Paslier M C, Fan G, Renault V, Bayer P E, Golicz A A, Manoli S, Lee T H, Thi V H, Chalabi S, Hu Q, Fan C, Tollenaere R, Lu Y, Battail C, Shen J, Sidebottom C H, Wang X, Canaguier A, Chauveau A, Bérard A, Deniot G, Guan M, Liu Z, Sun F, Lim Y P, Lyons E, Town C D, Bancroft I, Wang X, Meng J, Ma J, Pires J C, King G J, Brunel D, Delourme R, Renard M, Aury J M, Adams K L, Batley J, Snowdon R J, Tost J, Edwards D, Zhou Y, Hua W, Sharpe A G, Paterson A H, Guan C, Wincker P . Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science, 2014,345:950-953.
[5] Sun F M, Fan G Y, Hu Q, Zhou Y M, Guan M, Tong C B, Li J N, Du D Z, Qi C K, Jiang L C, Liu W Q, Huang S M, Chen W B, Yu J Y, Mei D S, Meng J L, Zeng P, Shi J Q, Liu K D, Wang X, Wang X F, Long Y, Liang X M, Hu Z Y, Huang G D, Dong C H, Zhang H, Li J, Zhang Y L, Li L W, Shi C C, Wang J H, Lee M S, Guan C Y, Xu X, Liu S Y, Liu X, Chalhoub B, Hua W, Wang H Z . The high-quality genome of Brassica napus cultivar ‘ZS11’ reveals the introgression history in semi-winter morphotype. Plant J, 2017,92:452-468.
doi: 10.1111/tpj.13669 pmid: 28849613
[6] Liu L Z, Qu C M, Wittkop B, Yi B, Xiao Y, He Y J, Snowdon R J, Li J N . A high-density SNP map for accurate mapping of seed fibre QTL in Brassica napus L. PLoS One, 2013,8:e83052.
doi: 10.1371/journal.pone.0083052 pmid: 3873396
[7] Wang N, Li F, Chen B Y, Xu K, Yan G X, Qiao J W, Li J, Gao G Z, Bancroft L, Meng J L, King G, Wu X M . Genome-wide investigation of genetic changes during modern breeding of Brassica napus. Theor Appl Genet, 2014,127:1817-1829.
doi: 10.1007/s00122-014-2343-6 pmid: 24947439
[8] 张凤启, 刘越英, 程晓辉, 童超波, 董彩华, 唐敏强, 黄军艳, 刘胜毅 . 利用高密度 SNP 标记定位甘蓝型油菜株高 QTL. 中国油料作物学报, 2014,36:695-700.
doi: 10.7505/j.issn.1007-9084.2014.06.001
Zhang Q F, Liu Y Y, Cheng X H, Tong C B, Dong C H, Tang M Q, Huang J Y, Liu S Y . QTL mapping of plant height using high density SNP markers in Brassica napus. Chin J Oil Crop Sci, 2014,36:695-700 (in Chinese with English abstract).
doi: 10.7505/j.issn.1007-9084.2014.06.001
[9] Xu L P, Hu K N, Zhang Z Q, Guan C Y, Shen S, Hua W, Li J N, Wen J, Yi B, Shen J X, Ma C Z, Tu J X, Fu T D . Genome-wide association study reveals the genetic architecture of flowering time in rapeseed (Brassica napus L.). DNA Res, 2015,23:43-52.
doi: 10.1093/dnares/dsv035 pmid: 26659471
[10] Li F, Chen B Y, Xu K, Gao G Z, Yan G X, Qiao J W, Li J, Li H, Li L X, Xiao X, Zhang T Y, Nishio T, Wu X M . A genome-wide association study of plant height and primary branch number in rapeseed (Brassica napus). Plant Sci, 2016,242:169-177.
doi: 10.1016/j.plantsci.2015.05.012 pmid: 26566834
[11] Liu J, Wang J, Wang H, Wang W X, Zhou R J, Mei D S, Chen H T, Yang J, Raman H, Hu Q . Multigenic control of pod shattering resistance in Chinese rapeseed germplasm revealed by genome-wide association and linkage analyses. Front Plant Sci, 2016,7:1058.
doi: 10.3389/fpls.2016.01058 pmid: 4954820
[12] Luo X, Ma C Z, Yue Y, Hu K N, Li Y Y, Duan Z Q, Wu M, Tu J X, Shen J X, Yi B, Fu T D . Unravelling the complex trait of harvest index in rapeseed (Brassica napus L.) with association mapping. BMC Genomics, 2015,16:379.
doi: 10.1186/s12864-015-1607-0 pmid: 25962630
[13] Lu K, Peng L, Zhang C, Lu J H, Yang B, Xiao Z C, Liang Y, Xu X F, Qu C M, Zhang K, Liu L Z, Zhu Q L, Fu M L, Yuan X Y, Li J N . Genome-wide association and transcriptome analyses reveal candidate genes underlying yield-determining traits in Brassica napus. Front Plant Sci, 2017,8:206.
doi: 10.3389/fpls.2017.00206 pmid: 5309214
[14] Liu S, Fan C C, Li J N, Cai G Q, Yang Q Y, Wu J, Yi X Q, Zhang C Y, Zhou Y M . A genome-wide association study reveals novel elite allelic variations in seed oil content of Brassica napus. Theor Appl Genet, 2016,129:1203-1215.
doi: 10.1007/s00122-016-2697-z pmid: 26912143
[15] Sun C M, Wang B Q, Yan L, Hu K N, Liu S, Zhou Y M, Guan C Y, Zhang Z Q, Li J N, Chen S, Wen J, Ma C Z, Tu J X, Shen J X, Fu T D, Yi B . Genome-wide association study provides insight into the genetic control of plant height in rapeseed (Brassica napus L.). Front Plant Sci, 2016,7:1102.
doi: 10.3389/fpls.2016.01102 pmid: 4961929
[16] Fu Y, Wei D Y, Dong H L, He Y J, Cui Y X, Mei J Q, Wan H F, Li J N, Snowdon R, Friedt W, Li R X, Qian W . Comparative quantitative trait loci for silique length and seed weight in Brassica napus. Sci Rep, 2015,5:14407.
doi: 10.1038/srep14407 pmid: 4585775
[17] 汪文祥, 胡琼, 梅德圣, 李云昌, 王会, 王军, 付丽, 刘佳 . 基于图像处理的油菜分枝及角果着生角度测量方法. 中国油料作物学报, 2015,37:566-570.
doi: 10.7505/j.issn.1007-9084.2015.04.020
Wang W X, Hu Q, Mei D S, Li Y C, Wang H, Wang J, Fu L, Liu J . Evaluation of branch and pod angle measurement based on digital images from Brassica napus L. Chin J Oil Crop Sci, 2015,37:566-570 (in Chinese with English abstract).
doi: 10.7505/j.issn.1007-9084.2015.04.020
[18] Liu J, Wang W, Mei D, Wang H, Fu L, Liu D, Li Y, Hu Q . Characterising variation of branch angle and genome-wide association mapping in rapeseed (Brassica napus L.). Front Plant Sci, 2016,7:21.
doi: 10.3389/fpls.2016.00021 pmid: 26870051
[19] Sun C, Wang B, Wang X . Genome-wide association study dissecting the genetic architecture underlying the branch angle trait in rapeseed (Brassica napus L.). Sci Rep, 2016,6:33673.
doi: 10.1038/srep33673 pmid: 5028734
[20] Wang H, Cheng H T, Wang W X, Liu J, Hao M Y, Mei D S, Zhou R J, Fu L, Hu Q . Identification of BnaYUCCA6 as a candidate gene for branch angle in Brassica napus by QTL-seq. Sci Rep, 2016,6:38493.
[21] Li H G, Zhang L P, Hu J H, Zhang F G, Chen B Y, Xu K, Gao G Z, Li H, Zhang T Y, Li Z Y, Wu X M . Genome-wide association mapping reveals the genetic control underlying branch angle in rapeseed (Brassica napus L.). Front Plant Sci, 2017,8:1054.
doi: 10.3389/fpls.2017.01054 pmid: 5474488
[22] Shen Y S, Yang Y, Xu E S, Ge X H, Xiang Y, Li Z Y . Novel and major QTL for branch angle detected by using DH population from an exotic introgression in rapeseed (Brassica napus L.). Theor Appl Genet, 2018,131:67-78.
doi: 10.1007/s00122-017-2986-1 pmid: 28942459
[23] 张倩 . 甘蓝型油菜主要株型性状的遗传分析和QTL初步定位 . 西南大学硕士学位论文, 重庆, 2013.
Zhang Q . Genetic Effects Analysis and QTL Mapping of Major Plant-type Traits in Brassica napus L. MS Thesis of Southwest University, Chongqing,China, 2013 (in Chinese with English abstract).
[24] 汪文祥, 胡琼, 梅德圣, 李云昌, 周日金, 王会, 成洪涛, 付丽, 刘佳 . 甘蓝型油菜分枝角度主基因+多基因混合遗传模型及遗传效应. 作物学报, 2016,42:1103-1111.
doi: 10.3724/SP.J.1006.2016.01103
Wang W X, Hu Q, Mei D S, Li Y C, Zhou R J, Wang H, Cheng H T, Fu L, Liu J . Genetic effects of branch angle using mixture model of major gene plus polygene in Brassica napus L. Acta Agron Sin, 2016,42:1103-1111 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2016.01103
[25] Wu Y H, Bhat P R, Close T J, Lonardi S . Efficient and accurate construction of genetic linkage maps from the minimum spanning tree of a graph. PLoS Genet, 2008,4:e1000212.
doi: 10.1371/journal.pgen.1000212
[26] Van Ooijen J W. JoinMap version 4.0: software for the calculation of genetic linkage maps in experimental populations. Netherlands: Wageningen University, 2006.
[27] Wang S C, Basten C J, Zeng Z B. Windows QTL Cartographer 2.5. Raleigh, NC, USA: Department of Statistics, North Carolina State University, 2012. Windows QTL Cartographer 2.5. Raleigh, NC, USA: Department of Statistics, North Carolina State University, 2012. .
[28] Voorrips R E . MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered, 2002,93:77-78.
doi: 10.1093/jhered/93.1.77 pmid: 12011185
[29] Parkin I A P, Gulden S M, Sharpe A G, Lukens L, Trick M, Osborn T C, Lydiate D J . Segmental structure of the Brassica napus genome based on comparative analysis with Arabidopsis thaliana. Genetics. 2005,171:765-781.
[30] Wang W X, Hu Q, Mei D S, Wang J, Cheng H T, Wang H, Fu L, Liu J . Identification of compact germplasm resources suitable for high density cultivation in Brassica napus L. Oil Crop Sci, 2018,3:33-41.
[31] Li H T, Younas M, Wang X F, Li X M, Chen L, Zhao B, Chen X, Xu J S, Hou F, Hong B H, Liu G, Zhao H Y, Wu X L, Du H Z, Wu J S, Liu K D . Development of a core set of single-locus SSR markers for allotetraploid rapeseed (Brassica napus L.). Theor Appl Genet, 2013,126:937-947.
[32] Shi J Q, Huang S M, Zhan J P, Yu J Y, Wang X F, Hua W, Liu S Y, Liu G H, Wang H Z . Genome-wide microsatellite characterization and marker development in the sequenced Brassica crop species. DNA Res, 2014,21:53-68.
doi: 10.1093/dnares/dst040 pmid: 3989493
[33] Mason A S, Higgins E E, Snowdon R J, Batley J, Stein A, Werner C, Parkin I A . A user guide to the Brassica 60K Illumina Infinium™ SNP genotyping array. Theor Appl Genet, 2017,130:621-633.
doi: 10.1007/s00122-016-2849-1 pmid: 28220206
[34] Dehiwala-Liyanage C K . Functional Analysis of AtVAMP714 Gene in Arabidopsis . PhD Dissertation of Durham University, Durham,UK, 2011.
[35] Yu B S, Lin Z W, Li H X, Li X J, Li J Y, Wang Y H, Zhang X, Zhu Z F, Zhai W X, Wang X K, Xie D X, Sun C Q . TAC1, a major quantitative trait locus controlling tiller angle in rice. Plant J, 2007,52:891-898.
doi: 10.1111/j.1365-313X.2007.03284.x pmid: 17908158
[36] Ku L X, Wei X M, Zhang S F, Zhang J, Guo S L, Chen Y H . Cloning and characterization of a putative TAC1 ortholog associated with leaf angle in maize(Zea mays L.). PLoS One, 2011,6:e20621.
doi: 10.1371/journal.pone.0020621 pmid: 3110200
[37] Dardick C, Callahan A, Horn R, Ruiz K, Zhebentyayeva T, Hollender C, Whitaker M, Abbott A, Scorza R . PpeTAC1 promotes the horizontal growth of branches in peach trees and is a member of a functionally conserved gene family found in diverse plants species. Plant J, 2013,75:618-630.
doi: 10.1111/tpj.12234 pmid: 23663106
[1] TIAN Tian, CHEN Li-Juan, HE Hua-Qin. Identification of rice blast resistance candidate genes based on integrating Meta-QTL and RNA-seq analysis [J]. Acta Agronomica Sinica, 2022, 48(6): 1372-1388.
[2] YU Chun-Miao, ZHANG Yong, WANG Hao-Rang, YANG Xing-Yong, DONG Quan-Zhong, XUE Hong, ZHANG Ming-Ming, LI Wei-Wei, WANG Lei, HU Kai-Feng, GU Yong-Zhe, QIU Li-Juan. Construction of a high density genetic map between cultivated and semi-wild soybeans and identification of QTLs for plant height [J]. Acta Agronomica Sinica, 2022, 48(5): 1091-1102.
[3] SHI Yu-Qin, SUN Meng-Dan, CHEN Fan, CHENG Hong-Tao, HU Xue-Zhi, FU Li, HU Qiong, MEI De-Sheng, LI Chao. Genome editing of BnMLO6 gene by CRISPR/Cas9 for the improvement of disease resistance in Brassica napus L [J]. Acta Agronomica Sinica, 2022, 48(4): 801-811.
[4] ZENG Wei-Ying, LAI Zhen-Guang, SUN Zu-Dong, YANG Shou-Zhen, CHEN Huai-Zhu, TANG Xiang-Min. Identification of the candidate genes of soybean resistance to bean pyralid (Lamprosema indicata Fabricius) by BSA-Seq and RNA-Seq [J]. Acta Agronomica Sinica, 2021, 47(8): 1460-1471.
[5] ZHANG Bo, PEI Rui-Qing, YANG Wei-Feng, ZHU Hai-Tao, LIU Gui-Fu, ZHANG Gui-Quan, WANG Shao-Kui. Mapping and identification QTLs controlling grain size in rice (Oryza sativa L.) by using single segment substitution lines derived from IAPAR9 [J]. Acta Agronomica Sinica, 2021, 47(8): 1472-1480.
[6] CHEN Can, NONG Bao-Xuan, XIA Xiu-Zhong, ZHANG Zong-Qiong, ZENG Yu, FENG Rui, GUO Hui, DENG Guo-Fu, LI Dan-Ting, YANG Xing-Hai. Genome-wide association study of blast resistance loci in the core germplasm of rice landraces from Guangxi [J]. Acta Agronomica Sinica, 2021, 47(6): 1114-1123.
[7] ZHOU Xin-Tong, GUO Qing-Qing, CHEN Xue, LI Jia-Na, WANG Rui. Construction of a high-density genetic map using genotyping by sequencing (GBS) for quantitative trait loci (QTL) analysis of pink petal trait in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(4): 587-598.
[8] LI Shu-Yu, HUANG Yang, XIONG Jie, DING Ge, CHEN Lun-Lin, SONG Lai-Qiang. QTL mapping and candidate genes screening of earliness traits in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(4): 626-637.
[9] SHEN Wen-Qiang, ZHAO Bing-Bing, YU Guo-Ling, LI Feng-Fei, ZHU Xiao-Yan, MA Fu-Ying, LI Yun-Feng, HE Guang-Hua, ZHAO Fang-Ming. Identification of an excellent rice chromosome segment substitution line Z746 and QTL mapping and verification of important agronomic traits [J]. Acta Agronomica Sinica, 2021, 47(3): 451-461.
[10] ZENG Jian, XU Xian-Chao, XU Yu-Fei, WANG Xiu-Cheng, YU Hai-Yan, FENG Bei-Bei, XING Guang-Nan. Utilization of dynamic transcriptomics analysis for candidate gene mining of 100-seed weight in soybean [J]. Acta Agronomica Sinica, 2021, 47(11): 2121-2133.
[11] XIE Lei, REN Yi, ZHANG Xin-Zhong, WANG Ji-Qing, ZHANG Zhi-Hui, SHI Shu-Bing, GENG Hong-Wei. Genome-wide association study of pre-harvest sprouting traits in wheat [J]. Acta Agronomica Sinica, 2021, 47(10): 1891-1902.
[12] LIU Chang, MENG Yun, LIU Jin-Dong, WANG Ya-Mei, Guoyou Ye. Combining QTL-seq and linkage analysis to identify the QTL of mesocotyl elongation in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2021, 47(10): 2036-2044.
[13] LI Jing-Cai, WANG Qiang-Lin, SONG Wei-Wu, HUANG Wei, XIAO Gui-Lin, WU Cheng-Jin, GU Qin, SONG Bo-Tao. Association analysis of dormancy QTL in tetraploid potato via candidate gene markers [J]. Acta Agronomica Sinica, 2020, 46(9): 1380-1387.
[14] WANG Rui-Li,WANG Liu-Yan,YE Sang,Gao Huan-Huan,LEI Wei,WU Jia-Yi,YUAN Fang,MENG Li-Jiao,TANG Zhang-Lin,LI Jia-Na,ZHOU Qing-Yuan,CUI Cui. QTL mapping of seed germination-related traits in Brassica napus L. under aluminum toxicity stress [J]. Acta Agronomica Sinica, 2020, 46(6): 832-843.
[15] Dai-Ling LIU,Jun-Feng XIE,Qian-Rui HE,Si-Wei CHEN,Yue HU,Jia ZHOU,Yue-Hui SHE,Wei-Guo LIU,Wen-Yu YANG,Xiao-Ling WU. QTL analysis for relative contents of glycinin and β-conglycinin fractions from storage protein in soybean seeds under monoculture and relay intercropping [J]. Acta Agronomica Sinica, 2020, 46(3): 341-353.
Full text



No Suggested Reading articles found!