Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2019, Vol. 45 ›› Issue (11): 1664-1671.doi: 10.3724/SP.J.1006.2019.92003

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Mapping of QTLs for resistance to rice black-streaked dwarf disease

LIU Jiang-Ning1,2,WANG Chu-Xin1,2,ZHANG Hong-GEN1,2,*(),MIAO Yi-Xu1,2,GAO Hai-Lin1,2,XU Zuo-Peng1,2,LIU Qiao-Quan1,2,TANG Shu-Zhu1,2   

  1. 1 Jiangsu Key Laboratory of Crop Genetics and Physiology / Key Laboratory of Plant Functional Genomics of the Ministry of Education / Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou 225009, Jiangsu, China
    2 Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, Jiangsu, China
  • Received:2019-01-11 Accepted:2019-06-12 Online:2019-11-12 Published:2019-07-09
  • Contact: Hong-GEN ZHANG E-mail:zhg@yzu.edu.cn
  • Supported by:
    This study was supported by the National Major Project for Developing New GM Crops(2016ZX08001002-003);the National Natural Science Foundation of China(31771743);the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)

Abstract:

Rice black-streaked dwarf virus disease (RBSDV) may cause great loss of rice production, and breeding resistant varieties is an effective method to control RBSDV. To develop resistant varieties, it is important to screen germplasm that shows RBSDV resistance and to identify the genes/quantitative trait loci (QTLs) contained. In the present study, a set of 222 recombinant inbred lines (RILs) derived from the cross between L5494 (a susceptible japonica variety) and IR36 (a resistant indica variety) were constructed for RBSDV-resistant QTL mapping. With natural infection test, the RBSDV incidences of L5494 and IR36 were 84.26% and 28.70%, respectively, and the disease incidence of RILs was ranged from 11.21% to 89.81%. Using 134 polymorphic molecular markers, a linkage genetic map was constructed. The map covered a total length of 1475.97 cM with an average interval of 11. 1 cM between adjacent markers. Four RBSDV-resistant QTLs were discovered using QTL IciMapping 4.0 Software, of which, qRBSDV-1, qRBSDV-2, and qRBSDV-9 were from the resistant parent IR36, and qRBSDV-6 from the susceptible parent L5494. QTLs qRBSDV-1, qRBSDV-2, qRBSDV-6, and qRBSDV-9 were located on chromosomes 1, 2, 6, and 9, respectively, which explained 12.64%, 16.00%, 10.82%, and 8.43% of the phenotypic variations. Moreover, a RBSDV-resistant QTL from 93-11 (O. sativa spp. indica) at the qRBSDV-1 locus was confirmed by a near isogenic line that harbors qRBSDV-1 derived from 93-11 with the Nipponbare (O. sativa spp. japonica) genetic background. Our findings will be benefit for the marker assisted breeding of RBSDV-resistant varieties.

Key words: rice black-streaked dwarf viral disease, recombinant inbred line, QTL mapping

Fig. 1

Incidence of black-streaked dwarf disease in IR36, L5494 and a susceptible line from RIL population A: parent IR36; B: parent L5494; C: a susceptible line from RIL population."

Fig. 2

Frequency distribution of rice black-streaked dwarf virus disease resistance based on the disease percentage in RIL population"

Fig. 3

A molecular linkage map of rice based on L5494/IR36 RIL population"

Fig. 4

Locations of QTL for resistance to rice black-streaked dwarf virus disease on chromosomes"

Table 1

Parameters associated with QTL for rice black-streaked dwarf virus disease resistance identified in L5494/IR36 RIL population"

数量性状位点
QTL
年份
Year
染色体
Chr.
左侧标记
Left marker
右侧标记
Right marker
临界值
LOD
表型贡献率
PVE (%)
加性效应值
Add.
qRBSDV-1 2015 Chr.1 AP-39.6 RM104 2.96 6.19 4.39
2016 Chr.1 AP-39.6 RM104 4.44 12.64 7.16
qRBSDV-2 2016 Chr.2 CHR2-4 RM341 6.89 16.00 7.61
qRBSDV-6 2013 Chr.6 RM19234 CHR-6-1 4.68 13.33 -2.61
2014 Chr.6 RM19234 CHR-6-1 2.91 11.00 -2.11
2016 Chr.6 RM19234 CHR-6-1 5.45 10.82 -6.20
qRBSDV-9 2013 Chr.9 RM242 RM160 3.30 8.71 2.10
2014 Chr.9 RM242 RM160 4.56 12.27 2.11
2015 Chr.9 RM242 RM160 3.48 6.62 4.31
2016 Chr.9 RM242 RM160 3.94 8.43 5.48

Fig. 5

Re-sequencing map for chromosome segment substitution line N9 Each blue line and red line represent single nucleotide polymorphisms of ‘Nipponbare’ and ‘93-11’, respectively. The red box in Chr.1 indicates a substituted fragment derived from 93-11."

Table 2

Incidence of rice black-streaked dwarf virus disease in Nipponbare, 93-11, and N9 (%)"

年份
Year
供试材料
Variety
重复1发病率
Repeat 1
重复2发病率
Repeat 2
重复3发病率
Repeat 3
平均发病率
Average
2017 日本晴Nipponbare 31.20 32.73 29.63 31.19
93-11 18.33 10.19 18.35 15.62**
N9 25.65 29.17 24.32 26.38*
2018 日本晴Nipponbare 8.00 18.00 13.00 10.33
93-11 0 3.00 3.00 2.00*
N9 4.00 1.00 1.02 2.01*

Fig. 6

Incidence of rice black-streaked dwarf virus disease in Nipponbare and N9 in 2017 A: Nipponbare; B: N9."

[1] Milne R G, Lovisolo O . Maize rough dwarf and related viruses. Adv Virus Res, 1977,21:267-341.
[2] Azuhata F, Uyeda I, Kimura I, Shikata E . Close similarity between genome structures of rice black-streaked dwarf and maize rough dwarf viruses. J Gen Virol, 1993,74:1227-1232.
[3] Wang Z H, Fang S G, Xu J L, Sun L Y, Li D W, Yu J L . Sequence analysis of the complete genome of rice black-streaked dwarf virus isolated from maize with rough dwarf disease. Virus Genes, 2003,27:163-168.
[4] Zhang H M, Chen J P, Lei J L, Adama M J . Sequence analysis shows that a dwarfing disease on rice, wheat and maize in China is caused by rice black-streaked dwarf virus. Eur J Plant Pathol, 2001,107:563-567.
[5] 王朝辉, 周益军, 范永坚, 程兆榜, 张文荟 . 江苏水稻黑条矮缩病毒 S10 的cDNA克隆序列分析. 中国病毒学, 2002,17(2):142-144.
Wang C H, Zhou Y J, Fan Y J, Cheng Z B, Zhang W H . cDNA clone and sequence analysis of segment 10 of rice black-streaked dwarf Fijivirus in Jiangsu. Virol Sin, 2002,17(2):142-144 (in Chinese with English abstract).
[6] 李德葆, 王拱辰, 盛方镜 . 浙江省水稻病毒病的发生规律和防治. 植物病理学报, 1979,9:73-87.
Li D B, Wang Z C, Sheng F J . Epidemological study on rice virus disease and their control in Zhejiang province. Acta Phytopathol Sin, 1979,9:73-87 (in Chinese with English abstract).
[7] Wang H D, Chen J P, Wang A G, Jiang X H, Adama M J . Studies on the epidemiology and yield losses from rice black-streaked dwarf disease in a recent epidemic in Zhejiang province, China. Plant Pathol, 2009,58:815-825.
[8] 陈声祥, 吴惠玲, 廖璇刚, 吕永平, 沈升法, 王藕芳, 金梅松 . 水稻黑条矮缩病在浙中的回升流行原因分析. 浙江农业科学, 2000, ( 6):287-289.
Chen S X, Wu H L, Liao X G, Lyu Y P, Shen S F, Wang O F, Jin M S . The prevalent reason of rice black-streaked dwarf viral disease in the middle of Zhejiang. Zhejiang Agric Sci, 2000, ( 6):287-289 (in Chinese with English abstract).
[9] 孙枫, 徐秋芳, 程兆榜, 范永坚, 周益军 . 中国水稻黑条矮缩病研究进展. 江苏农业学报, 2013,29:195-201.
Sun F, Xu Q F, Cheng Z B, Fan Y J, Zhou Y J . Advances in rice black-streaked dwarf disease in China. Jiangsu J Agric Sci, 2013,29:195-201 (in Chinese with English abstract).
[10] 任应党, 鲁传涛, 王锡锋 . 水稻黑条矮缩病暴发流行原因分析——以河南开封为例. 植物保护, 2016,42(3):8-16.
Ren Y D, Lu C T, Wang X F . Analysis of the reason for the outbreak epidemics of the rice black-streaked dwarf disease: Kaifeng in Henan Province as an example. Plant Prot, 2016,42(3):8-16 (in Chinese with English abstract).
[11] 王宝祥, 江玲, 陈亮明, 卢百关, 王琦, 黎光泉, 樊继伟, 程遐年, 翟虎渠, 徐大勇, 万建民 . 水稻黑条矮缩病抗性资源的筛选和抗性QTL的定位. 作物学报, 2010,36:1258-1264.
Wang B X, Jiang L, Chen L M, Lu B G, Wang Q, Li G Q, Fan J W, Cheng X N, Zhai H Q, Xu D Y, Wan J M . Screening of rice resources against rice black-streaked dwarf virus and mapping of resistant QTL. Acta Agron Sin, 2010,36:1258-1264 (in Chinese with English abstract).
[12] 李爱宏, 戴正元, 季红娟, 张小祥, 李育红, 潘存红, 张洪熙, 潘学彪 . 不同基因型水稻种质对黑条矮缩病抗性的初步分析. 扬州大学学报(农业与生命科学版), 2008,29(3):18-22.
Li A H, Dai Z Y, Ji H J, Zhang X X, Li Y H, Pan C H, Zhang H X, Pan X B . Preliminary analysis on resistance of rice black-streaked dwarf viral visease for germplasms with different gene-types. J Yangzhou Univ(Agric & Life Sci Edn), 2008,29(3):18-22 (in Chinese with English abstract).
[13] 李爱宏, 潘存红, 戴正元, 肖宁, 余玲, 李育红, 张小祥, 张洪熙, 潘学彪 . 以标记辅助选择改良江苏主栽粳稻品种“淮稻5号”黑条矮缩病抗性. 作物学报, 2012,38:1775-1781.
Li A H, Pan C H, Dai Z Y, Xiao N, Yu L, Li Y H, Zhang X X, Zhang H X, Pan X B . Using marker-assisted selection to improve the resistance to rice black-streaked dwarf viral disease of Huaidao 5, an elite japonica rice cultivar in Jiangsu. Acta Agron Sin, 2012,38:1775-1781 (in Chinese with English abstract).
[14] 王宝祥, 胡金龙, 孙志广, 宋兆强, 卢百关, 周振玲, 樊继伟, 秦德荣, 刘裕强, 江铃, 徐大勇, 万建民 . 水稻黑条矮缩病抗性评价方法及抗性资源筛选. 作物学报, 2014,40:1521-1530.
Wang B X, Hu J L, Sun Z G, Song Z Q, Lu B G, Zhou Z L, Fan J W, Qin D R, Liu Y Q, Jiang L, Xu D Y, Wan J M . An evaluation system for rice black-streaked dwarf virus disease and screening for resistant rice germplasm. Acta Agron Sin, 2014,40:1521-1530 (in Chinese with English abstract).
[15] 潘存红, 李爱宏, 陈宗祥, 吴林波, 戴正元, 张洪熙, 黄年生, 陈夕军, 张亚芳, 左示敏, 潘学彪 . 水稻黑条矮缩病抗性QTL分析. 作物学报, 2009,35:2213-2217.
Pan C H, Li A H, Chen Z X, Wu L B, Dai Z Y, Zhang H X, Huang N S, Chen X J, Zhang Y F, Zuo S M, Pan X B . Detection of QTL for resistance to rice black-streaked dwarf viral disease. Acta Agron Sin, 2009,35:2213-2217 (in Chinese with English abstract).
[16] Li A H, Pan C H, Wu L B, Dai Z Y, Zuo S M, Xiao N, Yu L, Li Y H, Zhang X X, Xue W X, Zhang H X, Pan X B . Identification and fine mapping of qRBSDV-6MH, a major QTL for resistance to rice black-streaked dwarf virus disease. Mol Breed, 2013,32:1-13.
[17] Sun Z G, Liu Y Q, Xiao S Z, Hu J L, Pan G, He J, Xu T T, Huang J, Qiu Z Y, Fan D J, Zhang L, Liu L L, Jiang L, Cheng X N, Zhai H Q, Wan J M . Identification of quantitative trait loci for resistance to rice black-streaked dwarf virus disease and small brown planthopper in rice. Mol Breed, 2017,37:72.
[18] Zhou T, Du L L, Wang L J, Wang Y, Gao C Y, Lan Y, Sun F, Fan Y J, Wang G L, Zhou Y J . Genetic analysis and molecular mapping of QTLs for resistance to rice black-streaked dwarf disease in rice. Sci Rep, 2015,5:10509.
[19] Zhang H G, Ge Y S, Wang M Y, Liu J N, Si H, Zhang L J, Liang G H, Gu M H, Tang S Z . Mapping QTLs conferring resistance to rice black-streaked dwarf disease in rice (Oryza sativa L.). Euphytica, 2016,212:323-330.
[20] 王英 . 水稻对黑条矮缩病的抗性遗传分析及基因定位. 南京农业大学硕士学位论文,江苏南京, 2011.
Wang Y . Genetic Analysis and Molecular Mapping of QTL for Rice Black Streaked-dwarf Disease Resistance in Rice. MS Thesis of Nanjing Agricultural University, Nanjing, Jiangsu, China, 2011 (in Chinese with English abstract).
[21] Zheng T Q, Yang J, Zhong W G, Zhai H Q, Zhu L H, Fan F J, Juahar A, Yang J H, Wang J, Zhu J Y, Veronica U, Xu J L, Li Z K . Novel loci for field resistance to black-streaked dwarf and stripe viruses identified in a set of reciprocal introgression lines of rice (Oryza sativa L.). Mol Breed, 2012,29:925-938.
[22] Xu Z P, Li S C, Zhang C Q, Zhang B C, Zhu K Z, Zhou Y H, Liu Q Q . Genetic connection between cell-wall composition and grain yield via parallel QTL analysis in indica and japonica subspecies. Sci Rep, 2017,7:12561.
[23] Zhu K Z, Zhang H, Liu X Y, Hu B, Zhang C Q, Gu M H, Liu Q Q . Development and high-throughput genotyping of substitution lines carrying the chromosome segments of indica 9311 in the background of japonica Nipponbare. J Genet Genomics, 2011,38:603-611.
[24] 周彤, 吴丽娟, 王英, 程兆榜, 季英华, 范永坚, 周益军 . 水稻对黑条矮缩病感病生育期研究初报. 华北农学报, 2010,25(6):128-131.
doi: 10.7668/hbnxb.2010.06.024
Zhou T, Wu L J, Wang Y, Cheng Z B, Ji Y H, Fan Y J, Zhou Y J . Preliminary report on the susceptible growth stages of rice to rice black-streaked dwarf disease. Acta Agric Boreali Sin, 2010,25(6):128-131 (in Chinese with English abstract).
doi: 10.7668/hbnxb.2010.06.024
[25] Rogers S O, Bendich A J. Extraction of DNA from plant tissues. In: Gelvin S B, Schilperoort R A, Verma D P S, eds. Plant Molecular Biology Manual. Dordrecht: Springer, 1989. pp 73-83.
[26] Meng L, Li H H, Zhang L Y, Wang J K . QTL IciMapping: integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. Crop J, 2015,3:269-283.
[27] McCouch S R, Cho Y G, Yano M, Paul E, Blinstrub M, Morishima H, Kinoshita T . Report on QTL nomenclature. Rice Genet Newsl, 1997,14:11-13.
[28] 周彤, 王英, 吴丽娟, 范永坚, 周益军 . 水稻品种抗黑条矮缩病人工接种鉴定方法. 植物保护学报, 2011,38:301-305.
Zhou T, Wang Y, Wu L J, Fan Y J, Zhou Y J . Method of artificial inoculation identification of rice cultivar resistance to rice black-streaked dwarf. Acta Phytophy Sin, 2011,38:301-305 (in Chinese with English abstract).
[29] 王宝祥, 谭维娜, 卢百关, 宋兆强, 徐大勇 . 水稻品种‘连粳7号’对黑条矮缩病的抗性分析. 中国农学通报, 2014,30(12):51-56.
Wang B X, Tan W N, Lu B G, Song Z Q, Xu D Y . Resistance analysis of the rice cultivar ‘Lianjing 7’ to rice black-streaked dwarf disease. Chin Agric Sci Bull, 2014,30(12):51-56 (in Chinese with English abstract).
[30] Wang Q, Liu Y Q, Hu J L, Zhang Y X, Xie K, Wang B X, Le Quang T, Song Z Q, Wu H, Liu Y L, Jiang L, Liu S J, Cheng X N, Wang C M, Zhai H Q, Wan J M . Detection of quantitative trait loci (QTLs) for resistances to small brown planthopper and rice stripe virus in rice using recombinant inbred lines. Int J Mol Sci, 2013,14:8406-8421.
[31] Wang B X, Wen Y B, Liu Y, Wang K J, Dai H M, Liu J B, Pu H C, Xu D Y . Correlation analysis of rice resistance against black-streaked dwarf virus disease (RBSDV) and small brown planthopper (Laodelphax striatellus Fallen). Plant Diseases Pests, 2016,7(3):1-5.
[1] ZHANG Bo, PEI Rui-Qing, YANG Wei-Feng, ZHU Hai-Tao, LIU Gui-Fu, ZHANG Gui-Quan, WANG Shao-Kui. Mapping and identification QTLs controlling grain size in rice (Oryza sativa L.) by using single segment substitution lines derived from IAPAR9 [J]. Acta Agronomica Sinica, 2021, 47(8): 1472-1480.
[2] ZHOU Xin-Tong, GUO Qing-Qing, CHEN Xue, LI Jia-Na, WANG Rui. Construction of a high-density genetic map using genotyping by sequencing (GBS) for quantitative trait loci (QTL) analysis of pink petal trait in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(4): 587-598.
[3] LI Shu-Yu, HUANG Yang, XIONG Jie, DING Ge, CHEN Lun-Lin, SONG Lai-Qiang. QTL mapping and candidate genes screening of earliness traits in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(4): 626-637.
[4] SHEN Wen-Qiang, ZHAO Bing-Bing, YU Guo-Ling, LI Feng-Fei, ZHU Xiao-Yan, MA Fu-Ying, LI Yun-Feng, HE Guang-Hua, ZHAO Fang-Ming. Identification of an excellent rice chromosome segment substitution line Z746 and QTL mapping and verification of important agronomic traits [J]. Acta Agronomica Sinica, 2021, 47(3): 451-461.
[5] Dai-Ling LIU,Jun-Feng XIE,Qian-Rui HE,Si-Wei CHEN,Yue HU,Jia ZHOU,Yue-Hui SHE,Wei-Guo LIU,Wen-Yu YANG,Xiao-Ling WU. QTL analysis for relative contents of glycinin and β-conglycinin fractions from storage protein in soybean seeds under monoculture and relay intercropping [J]. Acta Agronomica Sinica, 2020, 46(3): 341-353.
[6] WU Hai-Tao, ZHANG Yong, SU Bo-Hong, Lamlom F Sobhi, QIU Li-Juan. Development of molecular markers and fine mapping of qBN-18 locus related to branch number in soybean (Glycine max L.) [J]. Acta Agronomica Sinica, 2020, 46(11): 1667-1677.
[7] WANG Cun-Hu,LIU Dong,XU Rui-Neng,YANG Yong-Qing,LIAO Hong. Mapping of QTLs for leafstalk angle in soybean [J]. Acta Agronomica Sinica, 2020, 46(01): 9-19.
[8] YANG Xiao-Meng, LI Xia, PU Xiao-Ying, DU Juan, Muhammad Kazim Ali, YANG Jia-Zhen, ZENG Ya-Wen, YANG Tao. QTL mapping for total grain anthocyanin content and 1000-kernel weight in barley recombinant inbred lines population [J]. Acta Agronomica Sinica, 2020, 46(01): 52-61.
[9] WANG Da-Chuan,WANG Hui,MA Fu-Ying,DU Jie,ZHANG Jia-Yu,XU Guang-Yi,HE Guang-Hua,LI Yun-Feng,LING Ying-Hua,ZHAO Fang-Ming. Identification of rice chromosome segment substitution Line Z747 with increased grain number and QTL mapping for related traits [J]. Acta Agronomica Sinica, 2020, 46(01): 140-146.
[10] Li-Juan WEI,Rui-Ying LIU,Li ZHANG,Zhi-You CHEN,Hong YANG,Qiang HUO,Jia-Na LI. Detection of stem height QTL and integration of the loci for plant height- related traits in B. napus [J]. Acta Agronomica Sinica, 2019, 45(6): 818-828.
[11] YAN Chao,ZHENG Jian,DUAN Wen-Jing,NAN Wen-Bin,QIN Xiao-Jian,ZHANG Han-Ma,LIANG Yong-Shu. Locating QTL controlling yield traits in overwintering cultivated rice [J]. Acta Agronomica Sinica, 2019, 45(4): 522-537.
[12] ZHANG Chun-Xiao,LI Shu-Fang,JIN Feng-Xue,LIU Wen-Ping,LI Wan-Jun,LIU Jie,LI Xiao-Hui. QTL mapping of salt and alkaline tolerance-related traits at the germination and seedling stage in maize (Zea mays L.) using three analytical methods [J]. Acta Agronomica Sinica, 2019, 45(4): 508-521.
[13] Wen-Xiang WANG,Wen CHU,De-Sheng MEI,Hong-Tao CHENG,Lin-Lin ZHU,Li FU,Qiong HU,Jia LIU. Quantitative trait loci mapping for branch angle and candidate gene screening in Brassica napus L. [J]. Acta Agronomica Sinica, 2019, 45(1): 37-45.
[14] Chao LI,Zhi-Kun LI,Qi-Shen GU,Jun YANG,Hui-Feng KE,Li-Qiang WU,Guo-Ning WANG,Yan ZHANG,Jin-Hua WU,Gui-Yin ZHANG,Yuan-Yuan YAN,Zhi-Ying MA,Xing-Fen WANG. Molecular Evaluation for Chromosome Segment Substitution Lines of Gossypium barbadense and QTL Mapping for Fiber Quality and Yield [J]. Acta Agronomica Sinica, 2018, 44(8): 1114-1126.
[15] Ji-Chi DONG,Jing YANG,Tao GUO,Li-Kai CHEN,Zhi-Qiang CHEN,Hui WANG. QTL Mapping for Heading Date in Rice Using High-density Bin Map [J]. Acta Agronomica Sinica, 2018, 44(6): 938-946.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!