Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2020, Vol. 46 ›› Issue (01): 140-146.doi: 10.3724/SP.J.1006.2020.92022

• RESEARCH NOTES • Previous Articles     Next Articles

Identification of rice chromosome segment substitution Line Z747 with increased grain number and QTL mapping for related traits

WANG Da-Chuan,WANG Hui,MA Fu-Ying,DU Jie,ZHANG Jia-Yu,XU Guang-Yi,HE Guang-Hua,LI Yun-Feng,LING Ying-Hua,ZHAO Fang-Ming()   

  1. Rice Research Institute, Southwest University/Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
  • Received:2019-04-15 Accepted:2019-08-09 Online:2020-01-12 Published:2019-09-11
  • Contact: Fang-Ming ZHAO E-mail:zhaofangming2004@163.com
  • Supported by:
    This study was supported by the National Key Research and Development Program of China(2017YFD0100202);Project of Chongqing Science & Technology Commission(CSTC, 2016shms-ztzx0017);Fundamental Research Funds for the Central Universities(XDJK2017A004)

Abstract:

Increasing grain number per panicle is important for rice breeding for high yield. Its inheritance is very complex and controlled by many genes. Chromosome segment substitution lines can dissect complex traits controlled by many genes, and thus are ideal genetic research materials. Here, an excellent rice chromosome segment substitution line Z747 with increased grain number was identified from recipient Nipponbare and donor Xihui 18 through advanced backcrossing and inbreeding combined SSR marker-assisted selection. Z747 carried fifteen substitution segments with 4.49 Mb of average length. Compared with Nipponbare, Z747 had significantly increased spikelet number per panicle, number of primary branches, number of secondary branches, panicle length and grain length, and decreased grain width and seed setting rate. However, the seed setting rate in Z747 was still up to 81%. Furthermore, secondary F2 population from crosses between Nipponbare and Z747 was used to map QTL for related traits. A total of 46 QTLs distributed on chromosomes 1, 2, 3, 5, 6, 9, 11, and 12 were detected. Among them, 12 QTLs such as qGPP12, qPH-3-1, and qPH-3-2 etc. might be alleles of cloned genes, and the remaining 34 QTLs such as qSPP9 etc. might not be identified in the past. The spikelet number per panicle of Z747 was mainly controlled by two QTLs (qSPP3 and qSPP5) with effects of increasing spikelet number and one (qSPP9) with decreasing effects. These results are important for fine mapping and cloning of major QTL, and developing single-segment substitution lines carrying favorable QTLs.

Key words: rice, chromosome segment substitution lines, grain number, QTL mapping

Fig. 1

Substitution segments and detected QTL of Z747 Physical distances (Mb) and mapped QTL are marked at the left of each chromosome; Markers, substitution interval squared by frame, and substitution length (black arrow direction) are displayed at the right of each chromosome. PH: plant height; PL: panicle length; NPB: number of primary branches; NSB: number of secondary branches; GPP: grain number per panicle; SPP: spikelet number per panicle; SSR: seed setting rate; GL: grain length; GW: grain width; RLW: rate of length to width; GWT: 1000-grains weight. Partial QTL noted superscript [20]-[30] indicate that these QTLs are possible alleles with the cloned genes. [20]: OsRLCK102; [21]: HTD2; [22]: pbr2; [23]: JMJ703; [24]: ND1; [25]: DFO1; [26]: OsMCA1, [27]: OsFRDL1; [28]: PTB1; [29]: DCM1; [30]: OsVPE3."

Fig. 2

Phenotype of Nipponbare and Z747"

Table 1

Statistical parameters of different traits in Nipponbare, Z747, and the F2 population"

性状
Trait
平均值±标准差(亲本)
Mean±SD (parents)
F2群体
F2 population
日本晴
Nipponbare
Z747 平均值±标准差
Mean±SD
范围
Range
偏度
Skewness
峰度
Kurtosis
株高 Plant height (cm) 88.1±3.4 91.8±6.9 91.9±8.2 68.0-130.8 0.39 0.31
穗长Panicle length (cm) 19.7±1.2 23.3±1.3** 19.3±1.6 14.8-27.3 -0.18 0.57
有效穗数Panicle number 19.3±5.1 15.5±6.4 15.6±5.5 3.0-36.0 0.40 -0.03
一次枝梗数Number of primary branch 7.4±0.5 12.2±1.3** 8.5±1.1 6.9-13.4 -0.15 0.27
二次枝梗数Number of secondary branch 14.3±1.7 40.5±1.2** 15.1±4.3 7.4-45.6 0.03 0.71
每穗总粒数Spikelet number per panicle 110.7±16.4 173.0±49.6** 94.3±19.9 21.9-221.7 -0.19 0.39
每穗实粒数Grain number per panicle 101.4±16.5 139.8±41.2 79.4±15.6 10.1-142.5 -0.23 0.65
结实率Seed setting rate (%) 91.0±2.0 81.0±0.7** 85.1±12.9 10.9-96.3 -2.17 10.44
粒长Grain length (mm) 7.17±0.24 7.93±0.04** 7.45±0.47 6.61-10.05 0.36 1.81
粒宽Grain width (mm) 3.40±0.08 3.23±0.05* 3.34±0.13 2.38-3.52 -0.38 0.26
千粒重1000-grain weight (g) 24.6±1.6 25.5±0.7 25.5±1.8 21.0-32.3 0.28 1.27
单株产量Yield per plant (g) 38.6±9.8 40.9±5.3 31.7±12.4 2.4-72.5 0.45 0.20

Table 2

QTL for rice agronomically important traits detected in Z747"

性状
Trait
QTL 染色体
Chr.
连锁标记
Linked marker
加性效应
Additive effect
贡献率
Var. (%)
P
P-value
可能的等位基因
Possible alleles
株高 qPH-3-1 3 RM5474 -7.79 9.45 0.0004 OsRLCK102[20]
Plant height qPH-3-2 3 RM3417 5.74 5.15 0.0003 HTD2 [21]
qPH-3-3 3 RM6266 5.03 10.30 <0.0001
qPH5 5 RM5874 13.67 27.54 0.0003
qPH11 11 RM7120 5.31 4.39 0.0090
穗长 qPL3 3 RM6266 0.51 2.70 0.0020
Panicle length qPL11 11 RM7120 1.28 6.61 0.0012
一次枝梗数 qNPB2 2 RM1385 0.59 6.07 0.0002 Pbr2[22]
Number of primary branch qNPB3 3 RM3766 0.83 7.45 0.0012
qNPB9 9 RM24537 1.79 9.96 <0.0001
qNPB12 12 RM247 -1.07 8.14 0.0049
二次枝梗数 qNSB2 2 RM6378 2.33 1.65 0.0004
Number of secondary branch qNSB3 3 RM3766 3.86 7.83 0.0005
qNSB5 5 RM18067 3.59 5.92 0.0036 JMJ703[23]
qNSB6 6 RM494 -2.46 7.10 0.0004
qNSB-9-1 9 RM7048 -7.39 20.71 0.0007
qNSB-9-2 9 RM24537 6.29 6.05 0.0001
实粒数 qGPP2 2 RM1385 8.89 4.53 0.0014
Grain number per panicle qGPP-9-1 9 RM7048 -28.08 19.83 0.0008
qGPP-9-2 9 RM24537 18.49 3.66 0.0038
qGPP12 12 RM3331 -18.64 8.21 <0.0001 ND1[24]
总粒数 qSPP3 3 RM3766 20.73 9.66 0.0002
Spikelet number per panicle qSPP5 5 RM18067 20.07 7.90 0.0015
qSPP9 9 RM7048 -29.51 14.15 0.0044
结实率 qSSR1 1 RM259 -24.38 11.97 0.0001 DFO1[25]
Seed setting rate qSSR2 2 RM1385 4.65 1.19 0.0069
qSSR-3-1 3 RM5474 18.66 9.82 <0.0001 OsMCA1[26]
qSSR-3-2 3 RM3766 -10.38 3.58 0.0014 OsFRDL1[27]
qSSR5 5 RM5874 42.72 46.67 <0.0001 PTB1[28]
qSSR6 6 RM5371 -17.59 6.48 0.0013 DCM1[29]
qSSR-9-1 9 RM7048 -20.74 10.33 0.0004
qSSR-9-2 9 RM24537 23.28 5.24 <0.0001
qSSR12 12 RM3331 -14.58 4.80 <0.0001
粒长 qGL3 3 RM6266 0.40 63.73 <0.0001
Grain length qGL5 5 RM18067 0.24 9.29 0.0007
qGL12 12 RM3331 0.16 3.21 0.0047
粒宽 qGW2 2 RM1385 -0.07 5.59 0.0080 OsVPE3[30]
Grain width qGW5 5 RM18148 -0.08 6.05 0.0029
长宽比 qRLW2 2 RM1385 0.08 5.35 0.0004
Rate of length to width qRLW-3-1 3 RM3766 0.10 5.42 0.0047
qRLW-3-2 3 RM6266 0.13 19.74 <0.0001
qRLW5 5 RM18148 0.13 10.17 0.0002
qRLW6 6 RM494 -0.09 10.31 <0.0001
qRLW12 12 RM3331 0.15 7.70 <0.0001
千粒重 qGWT2 2 RM1385 -0.80 4.01 0.0048 OsVPE3[30]
1000-kernel weight qGWT3 3 RM6266 1.82 28.67 <0.0001
[1] Kotla A, Agarwal S, Yadavalli V R, Vishnu P V, Dhavala V N C, Neelamraju S . Quantitative trait loci and candidate genes for yield and related traits in Madhukar × Swarna RIL population of rice. J Crop Sci Biotechnol, 2013,16:35-44.
doi: 10.1007/s12892-012-0093-z
[2] 郭泽西, 马海燕, 马亚飞, 袁雪 . 水稻穗粒数遗传基础研究进展. 天津农业科学, 2017,23(7):94-98.
Guo Z X, Ma H Y, Ma Y F, Yuan X . Basal research progresses on the genetics of grains number per panicle in rice. J Tianjin Agric Sci, 2017,23(7):94-98 (in Chinese with English abstract).
[3] Ashikari M, Sakakibara H, Lin S, Yamamoto T, Takashi T, Nishimura A, Angeles E R, Qian Q, Kitano H, Matsuoka M . Cytokinin oxidase regulates rice grain production. Science, 2005,309:741-745.
doi: 10.1126/science.1113373 pmid: 15976269
[4] Wu Y, Wang Y, Mi X F, Shan J X, Li X M, Xu J L, Lin H X . The QTL GNP1 encodes GA20ox1, which increases grain number and yield by increasing cytokinin activity in rice panicle meristems. PLoS Genet, 2016,12:e1006386.
doi: 10.1371/journal.pgen.1006386 pmid: 27764111
[5] Luo J H, Liu H, Zhou T Y, Gu B G, Huang X H, Shang-Guan Y Y, Zhu J J, Li Y, Zhao Y, Wang Y C, Zhao Q, Wang A H, Wang Z Q, Sang T, Wang Z X, Han B . An-1 encodes a basic helix-loop-helix protein that regulates awn development, grain size, and grain number in rice. Plant Cell, 2013,25:3360-3376.
doi: 10.1105/tpc.113.113589
[6] Gao F, Wang K, Liu Y, Chen Y P, Chen P, Shi Z Y, Luo J, Jiang D Q, Fan F F, Zhu Y G, Li S Q . Blocking miR396 increases rice yield by shaping inflorescence architecture. Nat Plants, 2015,2:15196.
doi: 10.1038/nplants.2015.196 pmid: 27250748
[7] Zhao L, Tan L B, Zhu Z F, Xiao L T, Xie D X, Sun C Q . PAY1 improves plant architecture and enhances grain yield in rice. Plant J, 2015,83:528-536.
doi: 10.1111/tpj.12905 pmid: 26095647
[8] Huo X, Wu S, Zhu Z F, Liu F X, Fu Y C, Cai H W, Sun X Y, Gu P, Xie D X, Tan L B, Sun C Q . NOG1 increases grain production in rice. Nat Commun, 2017,8:1497.
doi: 10.1038/s41467-017-01501-8 pmid: 29133783
[9] Guo T, Chen K, Dong N Q, Shi C L, Ye W W, Gao J P, Shan J X, Lin H X . GRAIN SIZE AND NUMBER 1 negatively regulates the OsMKKK10-OsMKK4-OsMPK6 cascade to coordinate the trade-off between grain number per panicle and grain size in rice. Plant Cell, 2018,30:871-888.
doi: 10.1105/tpc.17.00959 pmid: 29588389
[10] Xue W Y, Xing Y Z, Weng X Y, Zhao Y, Tang W J, Wang L, Zhou H J, Yu S B, Xu C G, Li X H, Zhang Q F . Natural variation inGhd7 is an important regulator of heading date and yield potential in rice. Nat Genet, 2008,40:761-767.
doi: 10.1038/ng.143 pmid: 18454147
[11] Sheng P K, Wu F Q, Tan J J, Zhang H, Ma W W, Chen L P, Wang J C, Wang J, Zhu S S, Guo X P, Wang J L, Zhang X, Cheng Z J, Bao Y Q, Wu C Y, Liu X M, Wan J M . A CONSTANS-like transcriptional activator,OsCOL13, functions as a negative regulator of flowering downstream of OsphyB and upstream of Ehd1 in rice. Plant Mol Biol, 2016,92:209-222.
doi: 10.1007/s11103-016-0506-3 pmid: 27405463
[12] Deshmukh R, Singh A, Jain N, Anand S, Gacche R, Singh A, Gaikwad K, Sharma T, Mohapatra T, Singh N . Identification of candidate genes for grain number in rice (Oryza sativa L.). Funct Integr Genomics, 2010,10:339-347.
doi: 10.1007/s10142-010-0167-2 pmid: 20376514
[13] Xing Y Z, Tang W J, Xue W Y, Xu C G, Zhang Q F . Fine mapping of a major quantitative trait loci,qSSP7, controlling the number of spikelets per panicle as a single Mendelian factor in rice. Theor Appl Genet, 2008,116:789-796.
doi: 10.1007/s00122-008-0711-9
[14] Liu T M, Mao D H, Zhang S P, Xu C G, Xing Y Z . Fine mapping SPP1, a QTL controlling the number of spikelets per panicle, to a BAC clone in rice(Oryza sativa). Theor Appl Genet, 2009,118:1509-1517.
doi: 10.1007/s00122-009-0999-0
[15] Ren D Y, Xu Q K, Qiu Z N, Cui Y J, Zhou T T, Zeng D L, Guo L B, Qian Q . FON4 prevents the multi-floret spikelet in rice. Plant Biotechnol J, 2019,17:1007-1009.
doi: 10.1111/pbi.13083 pmid: 30677211
[16] Zhang T, Li Y F, Ma L, Sang X C, Ling Y H, Wang Y T, Yu P, Zhuang H, Huang J Y, Wang N, Zhao F M, Zhang C W, Yang Z L, Fang L K, He G H . LATERAL FLORET 1 induced the three-florets spikelet in rice. Proc Natl Acad Sci USA, 2017,114:9984-9989.
doi: 10.1073/pnas.1700504114 pmid: 28847935
[17] 赵芳明, 郭超, 魏霞, 杨正林, 凌英华, 桑贤春, 王楠, 张长伟, 李云峰, 何光华 . 日本晴与5个优良恢复系的多态性标记筛选及遗传差异分析. 西南大学学报(自然科学版), 2016,38(11):1-7.
Zhao F M, Guo C, Wei X, Yang Z L, Ling Y H, Sang X C, Wang N, Zhang C W, Li Y F, He G H . Polymorphic SSR markers screening and genetic difference analysis between Nipponbare and five excellent restorer lines. J Southwest Univ (Nat Sci Edn) , 2016,38(11):1-7 (in Chinese with English abstract).
[18] 崔国庆, 王世明, 马福盈, 汪会, 向朝中, 李云峰, 何光华, 张长伟, 杨正林, 凌英华, 赵芳明 . 水稻高秆染色体片段代换系Z1377 的鉴定及重要农艺性状QTL 定位. 作物学报, 2018,44:1477-1484.
Cui G Q, Wang S M, Ma F Y, Wang H, Xiang C Z, Li Y F, He G H, Zhang C W, Yang Z L, Ling Y H, Zhao F M . Identification of rice chromosome segment substitution line Z1377 with increased plant height and QTL mapping for agronomic important traits. Acta Agron Sin, 2018,44:1477-1484 (in Chinese with English abstract).
[19] Paterson A H, Damon S, Hewitt J D, Zamir D, Rabinowitch H D, Lincoln S E, Lander E S, Tanksley S D . Mendelian factors underlying quantitative traits in tomato: comparison across species, generations, and environments. Genetics, 1991,127:181-197.
pmid: 1673106
[20] Wang J, Wu G W, Peng C F, Zhou X G, Li W T, He M, Wang J C, Yin J J, Yuan C, Ma W W, Ma B T, Wang Y P, Chen W L, Qin P, Li S G, Chen X W . The receptor-like cytoplasmic kinase OsRLCK102 regulatesXA21-mediated immunity and plant development in rice. Plant Mol Biol Rep, 2016,34:628-637.
doi: 10.1111/tpj.14093 pmid: 30222251
[21] Liu W Z, Wu C, Fu Y P, Hu G C, Si H M, Zhu L, Luan W J, He Z Q, Sun Z X . Identification and characterization ofHTD2: a novel gene negatively regulating tiller bud outgrowth in rice. Planta, 2009,230:649-658.
doi: 10.1007/s00425-009-0975-6
[22] Li C B, Zhou A L, Sang T . Genetic analysis of rice domestication syndrome with the wild annual species,Oryza nivara. New Phytol, 2006,170:185-193.
doi: 10.1111/j.1469-8137.2005.01647.x pmid: 16539615
[23] Cui X K, Jin P, Cui X, Gu L F, Lu Z K, Xue Y M, Wei L Y, Qi J F, Song X W, Luo M, An G, Cao X F . Control of transposon activity by a histone H3K4 demethylase in rice. Proc Natl Acad Sci USA, 2013,110:1953-1958.
doi: 10.1073/pnas.1217020110 pmid: 23319643
[24] Luan W J, Liu Y Q, Zhang F X, Song Y L, Wang Z Y, Peng Y K, Sun Z X . OsCD1 encodes a putative member of the cellulose synthase-like D sub-family and is essential for rice plant architecture and growth. Plant Biotechnol J, 2011,9:513-524.
doi: 10.1111/j.1467-7652.2010.00570.x
[25] Yan D W, Zhang X M, Zhang L, Ye S H, Zeng L J, Liu J Y, Li Q, He Z H . CURVWD CHIMERIC PALEA 1 encoding an EMF1-like protein maintains epigenetic repression of OsMADS58 in rice palea development. Plant J, 2015,82:12-24.
doi: 10.1111/tpj.12784 pmid: 25647350
[26] Liu Z W, Cheng Q, Sun Y F, Dai H X, Song G Y, Guo Z B, Qu X F, Jiang D M, Liu C, Wang W, Yang D C . A SNP inOsMCA1 responding for a plant architecture defect by deactivation of bioactive GA in rice. Plant Mol Biol, 2015,87:17-30.
doi: 10.1007/s11103-014-0257-y pmid: 25307286
[27] Yokosho K, Yamaji N, Ma J F . OsFRDL1 expressed in nodes is required for distribution of iron to grains in rice. J Exp Bot, 2016,67:5485-5494.
doi: 10.1093/jxb/erw314 pmid: 27555544
[28] Li S C, Li W B, Huang B, Cao X M, Zhou X Y, Ye S M, Li C B, Gao F Y, Zou T, Xie K L, Ren Y, Ai P, Tang Y F, Li X M, Deng Q M, Wang S Q, Zheng A P, Zhu J, Liu H N, Wang L X, Li P . Natural variation inPTB1 regulates rice seed setting rate by controlling pollen tube growth. Nat Commun, 2013,4:2793.
doi: 10.1038/ncomms3793 pmid: 24240868
[29] Zhang C, Shen Y, Tang D, Shi W Q, Zhang D M, Du G J, Zhou Y H, Liang G H, Li Y F, Cheng Z K . The zinc finger protein DCM1 is required for male meiotic cytokinesis by preserving callose in rice. PLoS Genet, 2018,14:e1007769.
doi: 10.1371/journal.pgen.1007769 pmid: 30419020
[30] Lu W Y, Deng M J, Guo F, Wang M Q, Zeng Z H, Han N, Yang Y N, Zhu M Y, Bian H W . Suppression ofOsVPE3 enhances salt tolerance by attenuating vacuole rupture during programmed cell death and affects stomata development in rice. Rice, 2016,9:65.
doi: 10.1186/s12284-016-0138-x pmid: 27900724
[31] Zhao F M, Tan Y, Zheng L Y, Zhou K, He G H, Ling Y H, Zhang L H, Xu S Z . Identification of rice chromosome segment substitution line Z322-1-10 and mapping QTL for agronomic traits from the F3 population. Cereal Res Commun, 2016,44:370-380.
doi: 10.1556/0806.44.2016.022
[32] 徐建军, 梁国华 . 水稻染色体片段代换系群体的构建及应用研究进展. 安徽农业科学, 2011,39:1935-1938.
Xu J J, Liang G H . Research progress of construction and application of rice ( Oryza stativa L.) chromosome segment substitution lines. J Anhui Agric Sci, 2011,39:1935-1938 (in Chinese with English abstract).
[33] Wang M, Zhang T, Peng H, Luo S, Tan J J, Jiang K F, Heng Y Q, Zhang X, Guo X P, Zheng J K, Cheng Z J . RicePremature Leaf Senescence 2, encoding a glycosyltransferase (GT), is involved in leaf senescence. Front Plant Sci, 2018,9:560.
doi: 10.3389/fpls.2018.00560 pmid: 29755498
[34] Marri P R, Sarla N, Reddy L V, Siddiq E A . Identification and mapping of yield and yield related QTLs from an Indian accession ofOryza rufipogon. BMC Genet, 2005,6:1-14.
doi: 10.1186/1471-2156-6-1
[35] Thangasamy S, Guo C L, Chuang M H, Lai M H, Chen J, Jauh G Y . RiceSIZ1, a SUMO E3 ligase, controls spikelet fertility through regulation of anther dehiscence. New Phytol, 2011,189:869-882.
doi: 10.1111/j.1469-8137.2010.03538.x pmid: 21083564
[36] Liu J F, Chen J, Zheng X M, Wu F Q, Lin Q B, Heng Y Q, Tian P, Cheng Z J, Yu X W, Zhou K N, Zhang X, Guo X P, Wang J L, Wang H Y, Wan J M . GW5 acts in the brassinosteroid signalling pathway to regulate grain width and weight in rice. Nat Plants, 2017,3:17043.
doi: 10.1038/nplants.2017.43 pmid: 28394310
[37] Huang X Z, Qian Q, Liu Z B, Sun H Y, He S Y, Luo D, Xia G M, Chu C C, Li J Y, Fu X D . Natural variation at theDEP1 locus enhances grain yield in rice. Nat Genet, 2009,41:494-497.
doi: 10.1038/ng.352 pmid: 19305410
[38] Qi P, Lin Y S, Song X J, Shen J B, Huang W, Shan J X, Zhu M Z, Jiang L W, Gao J P, Lin H X . The novel quantitative trait locusGL3.1 controls rice grain size and yield by regulating Cyclin-T1;3. Cell Res, 2012,22:1666-1680.
doi: 10.1038/cr.2012.151
[1] TIAN Tian, CHEN Li-Juan, HE Hua-Qin. Identification of rice blast resistance candidate genes based on integrating Meta-QTL and RNA-seq analysis [J]. Acta Agronomica Sinica, 2022, 48(6): 1372-1388.
[2] ZHENG Chong-Ke, ZHOU Guan-Hua, NIU Shu-Lin, HE Ya-Nan, SUN wei, XIE Xian-Zhi. Phenotypic characterization and gene mapping of an early senescence leaf H5(esl-H5) mutant in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1389-1400.
[3] ZHOU Wen-Qi, QIANG Xiao-Xia, WANG Sen, JIANG Jing-Wen, WEI Wan-Rong. Mechanism of drought and salt tolerance of OsLPL2/PIR gene in rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1401-1415.
[4] ZHENG Xiao-Long, ZHOU Jing-Qing, BAI Yang, SHAO Ya-Fang, ZHANG Lin-Ping, HU Pei-Song, WEI Xiang-Jin. Difference and molecular mechanism of soluble sugar metabolism and quality of different rice panicle in japonica rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1425-1436.
[5] YAN Jia-Qian, GU Yi-Biao, XUE Zhang-Yi, ZHOU Tian-Yang, GE Qian-Qian, ZHANG Hao, LIU Li-Jun, WANG Zhi-Qin, GU Jun-Fei, YANG Jian-Chang, ZHOU Zhen-Ling, XU Da-Yong. Different responses of rice cultivars to salt stress and the underlying mechanisms [J]. Acta Agronomica Sinica, 2022, 48(6): 1463-1475.
[6] YANG Jian-Chang, LI Chao-Qing, JIANG Yi. Contents and compositions of amino acids in rice grains and their regulation: a review [J]. Acta Agronomica Sinica, 2022, 48(5): 1037-1050.
[7] DENG Zhao, JIANG Nan, FU Chen-Jian, YAN Tian-Zhe, FU Xing-Xue, HU Xiao-Chun, QIN Peng, LIU Shan-Shan, WANG Kai, YANG Yuan-Zhu. Analysis of blast resistance genes in Longliangyou and Jingliangyou hybrid rice varieties [J]. Acta Agronomica Sinica, 2022, 48(5): 1071-1080.
[8] YANG De-Wei, WANG Xun, ZHENG Xing-Xing, XIANG Xin-Quan, CUI Hai-Tao, LI Sheng-Ping, TANG Ding-Zhong. Functional studies of rice blast resistance related gene OsSAMS1 [J]. Acta Agronomica Sinica, 2022, 48(5): 1119-1128.
[9] ZHU Zheng, WANG Tian-Xing-Zi, CHEN Yue, LIU Yu-Qing, YAN Gao-Wei, XU Shan, MA Jin-Jiao, DOU Shi-Juan, LI Li-Yun, LIU Guo-Zhen. Rice transcription factor WRKY68 plays a positive role in Xa21-mediated resistance to Xanthomonas oryzae pv. oryzae [J]. Acta Agronomica Sinica, 2022, 48(5): 1129-1140.
[10] WANG Xiao-Lei, LI Wei-Xing, OU-YANG Lin-Juan, XU Jie, CHEN Xiao-Rong, BIAN Jian-Min, HU Li-Fang, PENG Xiao-Song, HE Xiao-Peng, FU Jun-Ru, ZHOU Da-Hu, HE Hao-Hua, SUN Xiao-Tang, ZHU Chang-Lan. QTL mapping for plant architecture in rice based on chromosome segment substitution lines [J]. Acta Agronomica Sinica, 2022, 48(5): 1141-1151.
[11] WANG Ze, ZHOU Qin-Yang, LIU Cong, MU Yue, GUO Wei, DING Yan-Feng, NINOMIYA Seishi. Estimation and evaluation of paddy rice canopy characteristics based on images from UAV and ground camera [J]. Acta Agronomica Sinica, 2022, 48(5): 1248-1261.
[12] KE Jian, CHEN Ting-Ting, WU Zhou, ZHU Tie-Zhong, SUN Jie, HE Hai-Bing, YOU Cui-Cui, ZHU De-Quan, WU Li-Quan. Suitable varieties and high-yielding population characteristics of late season rice in the northern margin area of double-cropping rice along the Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(4): 1005-1016.
[13] CHEN Yue, SUN Ming-Zhe, JIA Bo-Wei, LENG Yue, SUN Xiao-Li. Research progress regarding the function and mechanism of rice AP2/ERF transcription factor in stress response [J]. Acta Agronomica Sinica, 2022, 48(4): 781-790.
[14] WANG Lyu, CUI Yue-Zhen, WU Yu-Hong, HAO Xing-Shun, ZHANG Chun-Hui, WANG Jun-Yi, LIU Yi-Xin, LI Xiao-Gang, QIN Yu-Hang. Effects of rice stalks mulching combined with green manure (Astragalus smicus L.) incorporated into soil and reducing nitrogen fertilizer rate on rice yield and soil fertility [J]. Acta Agronomica Sinica, 2022, 48(4): 952-961.
[15] QIN Qin, TAO You-Feng, HUANG Bang-Chao, LI Hui, GAO Yun-Tian, ZHONG Xiao-Yuan, ZHOU Zhong-Lin, ZHU Li, LEI Xiao-Long, FENG Sheng-Qiang, WANG Xu, REN Wan-Jun. Characteristics of panicle stem growth and flowering period of the parents of hybrid rice in machine-transplanted seed production [J]. Acta Agronomica Sinica, 2022, 48(4): 988-1004.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!