Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2022, Vol. 48 ›› Issue (7): 1822-1831.doi: 10.3724/SP.J.1006.2022.12021

• RESEARCH NOTES • Previous Articles     Next Articles

Comparison of grain heavy metal concentration between main and ratoon seasons of ratoon rice

YUAN Shen(), PENG Shao-Bing()   

  1. National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, MARA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
  • Received:2021-03-26 Accepted:2021-10-20 Online:2022-07-12 Published:2021-11-15
  • Contact: PENG Shao-Bing E-mail:syuan@mail.hzau.edu.cn;speng@mail.hzau.edu.cn
  • Supported by:
    Major International (Regional) Joint Research Project of National Natural Science Foundation of China(32061143038);Earmarked Fund for China Agriculture Research System (Rice, CARS-01-20)


Cadmium (Cd) and arsenic (As) pollution in rice has caused global concern. Ratoon rice has been traditionally practiced and is becoming more attractive to farmers. However, information on grain heavy metal concentration of ratoon rice is limited. Therefore, the objective of this study was to evaluate grain Cd and As concentrations of ratoon rice and to explore the differences in grain Cd and As concentrations between main and ratoon seasons. In this study, we determined Cd and As concentrations of rice grain in main and ratoon seasons, which were collected from farmers’ fields in 12 sample plots of Hubei province in 2016. In comparison with that of main season, grain Cd of ratoon season increased and decreased in 5 and 3 out of 12 sample plots, respectively, whereas there was no significant difference in grain Cd between main and ratoon seasons in the rest of 4 sample plots. Rice ratooning significantly reduced grain As contamination of ratoon season compared with main season in all sample plots. Grain As of ratoon season across 12 sample plots was between 68.6-147.4 μg kg-1, which was 36.5%-77.4% lower than that of main season. Notably, grain As of ratoon season in 12 sample plots were lower than that of the corresponding national standard (GB2762-2012). Overall, these results indicated that grain heavy metal contamination might occur in both main and ratoon seasons of ratoon rice. This study suggested that more research on the effects of rice variety, environment, crop management especially water management and/or their interactions on grain heavy metal concentration needs to be conducted for reducing grain heavy metal concentration of ratoon rice.

Key words: arsenic, cadmium, main season, ratoon season, ratoon rice

Fig. 1

Locations of 12 sample plots Map data are from the National Platform for Common GeoSpatial Information Services (http://www.tianditu.gov.cn/). ● indicate sample plots, including Qichun, Wuxue, Xishui, Tuanfeng, Huangzhou, Xianning, Honghu, Jianli, Jiangling, Jingzhou, Shashi, and Zhijiang."

Table 1

Rice varieties and fertilizer application rates in 12 sample plots"

Sample plot
Rice variety
N-P-K rate (kg hm-2)
1 蕲春Qichun 两优6326 Liangyou 6326 300-40-180
2 武穴Wuxue 黄华占 Huanghuazhan 322-40-184
3 浠水Xishui 深两优5814 Shenliangyou 5814 280-38-121
4 团风Tuanfeng 准两优199 Zhunliangyou 199 261-26-50
5 黄州Huangzhou 新两优223 Xinliangyou 223 347-52-100
6 咸宁Xianning 准两优608 Zhunliangyou 608 277-29-149
7 洪湖Honghu 丰两优香1号 Fengliangyouxiang 1 246-24-57
8 监利Jianli 丰优9918 Fengyou 9918 226-34-103
9 江陵Jiangling 丰两优香1号 Fengliangyouxiang 1 201-34-143
10 荆州Jingzhou 天两优616 Tianliangyou 616 229-34-103
11 沙市Shashi 丰两优香1号 Fengliangyouxiang 1 187-36-106
12 枝江Zhijiang 两优33 Liangyou 33 338-26-62

Fig. 2

Daily precipitation during ratoon rice growing period from sowing of main season to maturity of ratoon season in 12 sample plots Data on precipitation are from the National Meteorological Information Center of the China Meteorological Administration and the National Oceanic and Atmospheric Administration of the USA (NOAA)."

Fig. 3

Grain cadmium (Cd) concentration of main and ratoon seasons in 12 sample plots Dotted blue line represents the food standard limit of 200 μg Cd kg-1 for rice in China (GB2762-2012). Means followed by different uppercase letters are significantly different between main and ratoon seasons on average at P < 0.05 according to LSD. Different lowercase letters above the bars in each sample plot indicate significant difference between main and ratoon seasons in each sample plot at P < 0.05 according to LSD."

Fig. 4

Grain arsenic (As) concentration of main and ratoon seasons in 12 sample plots Dotted blue line represents the food standard limit of 200 μg As kg-1 for rice in China (GB2762-2012). Means followed by different uppercase letters are significantly different between main and ratoon seasons on average at P < 0.05 according to LSD. Different lowercase letters above the bars in each sample plot indicate significant difference between main and ratoon seasons in each sample plot at P < 0.05 according to LSD."

Table 2

Correlations of grain cadmium (Cd) concentration of main and ratoon seasons with climatic conditions and soil physical and chemical properties"

pH 土壤容重
Bulk density
头季 Main -0.02ns 0.20ns 0.39ns 0.63* -0.36ns -0.51ns -0.38ns 0.29ns
再生季 Ratoon -0.16ns 0.02ns 0.24ns 0.38ns -0.56* 0.58* 0.25ns 0.36ns
[1] GRiSP (Global Rice Science Partnership). Rice Almanac, 4th edn. Los Baños (Philippines): International Rice Research Institute, 2013. p283.
[2] Tilman D, Balzer C, Hill J, Befort B L. Global food demand and the sustainable intensification of agriculture. Proc Natl Acad Sci USA, 2011, 108: 20260-20264.
doi: 10.1073/pnas.1116437108
[3] Alexandratos N, Bruinsma J. World Agriculture Towards 2030/ 2050: the 2012 revision. Roman, Food and Agriculture Organization of the United Nations, 2012. pp 59-131.
[4] FAOSTAT. Crop Production. 2021 [2021-03-20]. http://www.fao.org/faostat/en/#data .
[5] Ray D K, Foley J A. Increasing global crop harvest frequency: recent trends and future directions. Environ Res Lett, 2013, 8: 044041.
doi: 10.1088/1748-9326/8/4/044041
[6] Dong H, Chen Q, Wang W, Peng S, Huang J, Cui K, Nie L. The growth and yield of a wet-seeded rice-ratoon rice system in central China. Field Crops Res, 2017, 208: 55-59.
doi: 10.1016/j.fcr.2017.04.003
[7] Harrell D L, Bond J A, Blanche S. Evaluation of main-crop stubble height on ratoon rice growth and development. Field Crops Res, 2009, 114: 396-403.
doi: 10.1016/j.fcr.2009.09.011
[8] 何爱斌, 于朋超, 陈乾, 姜广磊, 王慰亲, 聂立孝. 甬优4949和超优1000在华中地区再生稻种植的氮肥运筹研究. 中国水稻科学, 2019, 33: 47-56.
He A B, Yu P C, Chen Q, Jiang G L, Wang W Q, Nie L X. Optimizing the nitrogen management for Yongyou 4949 and Chaoyou 1000 in ratoon rice system in central China. Chin J Rice Sci, 2019, 33: 47-56. (in Chinese with English abstract)
[9] Yuan S, Cassman K G, Huang J, Peng S, Grassini P. Can ratoon cropping improve resource use efficiencies and profitability of rice in central china? Field Crops Res, 2019, 234: 66-72.
doi: 10.1016/j.fcr.2019.02.004
[10] Negalur R B, Yadahalli G S, Chittapur B M, Guruprasad G S, Narappa G. Ratoon rice: a climate and resource smart technology. Int J Curr Microb Appl Sci, 2017, 6: 1638-1653.
[11] Faruq G, Taha R M, Prodhan Z H. Rice ratoon crop: a sustainable rice production system for tropical hill agriculture. Sustainability, 2014, 6: 5785-5800.
doi: 10.3390/su6095785
[12] 赵正洪, 戴力, 黄见良, 潘晓华, 游艾青, 赵全志, 陈光辉, 周政, 胡文彬, 纪龙. 长江中游稻区水稻产业发展现状、问题与建议. 中国水稻科学, 2019, 33: 553-564.
Zhao Z H, Dai L, Huang J L, Pan X H, You A Q, Zhao Q Z, Chen G H, Zhou Z, Hu W B, Ji L. Status, problems and solutions in rice industry development in the middle reaches of the Yangtze River. Chin J Rice Sci, 2019, 33: 553-564. (in Chinese with English abstract)
[13] 刘国华, 邓化冰, 陈立云, 肖应辉, 唐文邦. 中稻头季稻与再生稻的品质比较研究. 杂交水稻, 2002, (1): 45-47.
Liu G H, Deng H B, Chen L Y, Xiao Y H, Tang W B. Comparison of grain quality between main and ratooning crops of middle-season rice. Hybrid Rice, 2002, (1): 45-47. (in Chinese with English abstract)
[14] 陈基旺, 帅泽宇, 屠乃美, 易镇邪. 湖南再生稻发展现状与对策分析. 中国稻米, 2018, 24(5): 68-72.
Chen J W, Shuai Z Y, Tu N M, Yi Z X. Analysis on development status and countermeasures of ratoon rice in Hunan. China Rice, 2018, 24(5): 68-72. (in Chinese with English abstract)
[15] 环境保护部, 国土资源部. 全国土壤污染状况调查公报. 2014 [2021-03-20]. http://www.mee.gov.cn/gkml/sthjbgw/qt/201404/t20140417_270670.htm.
The Ministry of Environmental Protection, the Ministry of Land and Resources. The national survey of soil pollution in the bulletin. 2014 [2021-03-20]. http://www.mee.gov.cn/gkml/sthjbgw/qt/201404/t20140417_270670.htm. (in Chinese)
[16] Satarug S, Garrett S H, Sens M A, Sens D A. Cadmium environmental exposure, and health outcomes. Environ Health Perspect, 2010, 118: 182-190.
doi: 10.1289/ehp.0901234
[17] Zhu Y G, Yoshinaga M, Zhao F J, Rosen B P. Earth abides arsenic biotransformations. Annu Rev Earth Planet Sci, 2014, 42: 443-467.
doi: 10.1146/annurev-earth-060313-054942
[18] Zhao F J, Ma Y, Zhu Y G, Tang Z, McGrath S P. Soil contamination in China: current status and mitigation strategies. Environ Sci Technol, 2015, 49: 750-759.
doi: 10.1021/es5047099
[19] 于焕云, 崔江虎, 乔江涛, 刘传平, 李芳柏. 稻田镉砷污染阻控原理与技术应用. 农业环境科学学报, 2018, 37: 1418-1426.
Yu H Y, Cui J H, Qiao J T, Liu C P, Li F B. Principle and technique of arsenic and cadmium pollution control in paddy field. J Agro-Environ Sci, 2018, 37: 1418-1426. (in Chinese with English abstract)
[20] Marin A R, Masscheleyn P H, Patrick Jr W H. Soil redox-pH stability of arsenic species and its influence on arsenic uptake by rice. Plant Soil, 1993, 152: 245-253.
doi: 10.1007/BF00029094
[21] Xu X Y, McGrath S P, Meharg A A, Zhao F J. Growing rice aerobically markedly decreases arsenic accumulation. Environ Sci Technol, 2008, 42: 5574-5579.
doi: 10.1021/es800324u pmid: 18754478
[22] Khan K A, Stroud J L, Zhu Y G, Mcgrath S P, Zhao F J. Arsenic bioavailability to rice is elevated in Bangladeshi paddy soils. Environ Sci Technol, 2010, 44: 8515-8521.
doi: 10.1021/es101952f
[23] Meharg A A, Norton G, Deacon C, Williams P, Adomako E E, Price A, Zhu Y, Li G, Zhao F J, McGrath S, Villada A. Variation in rice cadmium related to human exposure. Environ Sci Technol, 2013, 47: 5613-5618.
doi: 10.1021/es400521h
[24] Duan G, Shao G, Tang Z, Chen H, Wang B, Tang Z, Yang Y, Liu Y, Zhao F J. Genotypic and environmental variations in grain cadmium and arsenic concentrations among a panel of high yielding rice cultivars. Rice, 2017, 10: 9.
doi: 10.1186/s12284-017-0149-2
[25] Yoshihara T, Goto F, Shoji K, Kohno Y. Cross relationships of Cu, Fe, Zn, Mn, and Cd accumulations in common japonica and indica rice cultivars in Japan. Environ Exp Bot, 2010, 68: 180-187.
doi: 10.1016/j.envexpbot.2009.10.006
[26] Islam S, Rahman M M, Islam M R, Naidu R. Effect of irrigation and genotypes towards reduction in arsenic load in rice. Sci Total Environ, 2017, 609: 311-318.
doi: 10.1016/j.scitotenv.2017.07.111
[27] Spanu A, Valente M, Langasco I, Barracu F, Orlandoni A M, Sanna G. Sprinkler irrigation is effective in reducing cadmium concentration in rice (Oryza sativa L.) grain: a new twist on an old tale? Sci Total Environ, 2018, 628: 1567-1581.
[28] Chen H, Tang Z, Wang P, Zhao F J. Geographical variations of cadmium and arsenic concentrations and arsenic speciation in Chinese rice. Environ Pollut, 2018, 238: 482-490.
doi: 10.1016/j.envpol.2018.03.048
[29] 李荭荭, 李洲, 陈春乐, 田甜, 陈丽玲, 王果. 生物炭对水稻-再生稻体系吸收土壤中Cd和Pb的影响. 水土保持学报, 2020, 34(2): 378-384.
Li H H, Li Z, Chen C L, Tian T, Chen L L, Wang G. Effects of biochar on the uptake of Cd and Pb from soil by rice-ratoon system. J Soil Water Conserv, 2020, 34(2): 378-384. (in Chinese with English abstract)
[30] 陈基旺, 陈平平, 王晓玉, 屠乃美, 易镇邪. 不同节位再生稻镉积累分配及其与头季稻的差异. 南方农业学报, 2020, 51: 790-797.
Chen J W, Chen P P, Wang X Y, Tu N M, Yi Z X. Cadmium accumulation and distribution in ratooning rice from different nodes and its differences with main crop. J Southern Agric, 2020, 51: 790-797. (in Chinese with English abstract)
[31] 胡志华, 李大明, 徐小林, 黄庆海, 柳开楼, 胡惠文, 叶会财, 周利军, 余喜初. 再生稻轻简化种植技术研究进展. 中国稻米, 2017, 23(3): 13-17.
Hu Z H, Li D M, Xu X L, Huang Q H, Liu K L, Hu H W, Ye H C, Zhou L J, Yu X C. Research progress of simplified cultivation technology of ratoon rice. China Rice, 2017, 23(3): 13-17. (in Chinese with English abstract)
[32] 胡香玉, 钟旭华, 梁开明, 黄农荣, 潘俊峰, 刘彦卓, 傅友强, 彭碧琳. 广东再生稻研究进展与展望. 中国稻米, 2019, 25(6): 16-19.
Hu X Y, Zhong X H, Liang K M, Huang N R, Pan J F, Liu Y Z, Fu Y Q, Peng B L. Research progress and prospect on ratoon rice in Guangdong Province. China Rice, 2019, 25(6): 16-19. (in Chinese with English abstract)
[33] Ma R, Shen J, Wu J, Tang Z, Shen Q, Zhao F J. Impact of agronomic practices on arsenic accumulation and speciation in rice grain. Environ Pollut, 2014, 194: 217-223.
doi: 10.1016/j.envpol.2014.08.004
[34] Zhao F J, Lopez-Bellido F J, Gray C W, Whalley W R, Clark L J, McGrath S P. Effects of soil compaction and irrigation on the concentrations of selenium and arsenic in wheat grains. Sci Total Environ, 2007, 372: 433-439.
doi: 10.1016/j.scitotenv.2006.09.028
[35] 中国气象局气象信息中心. 气象数据. [2021-04-30]. http://www.nmic.cn/.
National Meteorological Information Centre of the China Meteorological Administration. Climatic Data. [2021-04-30]. http://www.nmic.cn/. (in Chinese)
[36] National Oceanic Atmospheric Administration. Climate Data. [2021-04-30]. http://www.ncdc.noaa.gov/.
[37] FAO/IIASA/ISRIC/ISSCAS/JRC.Harmonized World Soil Database (version 1.2).FAO, Rome, Italy and IIASA, Laxenburg, Austria. 2012.
[38] 中华人民共和国国家标准. GB 2762-2012食品安全国家标准, 食品中污染物限量. 2012.
The National Standard of the People’s Republic of China. GB 2762-2012,National Standards for Food safety, Contaminant limits in food. 2012.
[39] Chaney R L, Reeves P G, Ryan J A, Simmons R W, Welch R M, Angle J C. An improved understanding of soil Cd risk to humans and low cost methods to phytoextract Cd from contaminated soils to prevent soil Cd risks. Biometals, 2004, 17: 549-553.
pmid: 15688862
[40] Clemens S, Aarts M G M, Thomine S, Verbruggen N. Plant science: the key to preventing slow cadmium poisoning. Trends Plant Sci, 2013, 18: 92-99.
doi: 10.1016/j.tplants.2012.08.003
[41] 彭少兵. 对转型时期水稻生产的战略思考. 中国科学: 生命科学, 2014, 44: 845-850.
Peng S B. Reflection on China’s rice production strategies during the transition period. Sci Sin (Vitae), 2014, 44: 845-850. (in Chinese with English abstract)
[42] 易镇邪, 周文新, 秦鹏, 屠乃美. 再生稻与同期抽穗主季稻源库流特性差异研究. 作物学报, 2009, 35: 140-148.
Yi Z X, Zhou W X, Qin P, Tu N M. Differences in characteristics of source, sink, and flow between ratooning rice and its same- term heading main-crop rice. Acta Agron Sin, 2009, 35: 140-148. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2009.00140
[43] 徐富贤, 熊洪, 张林, 朱永川, 蒋鹏, 郭晓艺, 刘茂. 再生稻产量形成特点与关键调控技术研究进展. 中国农业科学, 2015, 48: 1702-1717.
Xu F X, Xiong H, Zhang L, Zhu Y C, Jiang P, Guo X Y, Liu M. Progress in research of yield formation of ratooning rice and its high-yielding key regulation technologies. Sci Agric Sin, 2015, 48: 1702-1717. (in Chinese with English abstract)
[44] 任天举, 蒋志成, 王培华, 李经勇, 张晓春, 鲁远源. 杂交中稻再生力与头季稻农艺性状的相关性研究. 作物学报, 2006, 32: 613-617.
Ren T J, Jiang Z C, Wang P H, Li J Y, Zhang X C, Lu Y Y. Correlation of ratooning ability with its main crop agronomic traits in mid-season hybrid rice. Acta Agron Sin, 2006, 32: 613-617. (in Chinese with English abstract)
[45] 程旺大, 张国平, 姚海根, 吴伟, 汤美玲, 朱祝军, 徐民. 晚粳稻籽粒中As、Cd、Cr、Ni、Pb等重金属含量的基因型与环境效应及其稳定性. 作物学报, 2006, 32: 573-579.
Cheng W D, Zhang G P, Yao H G, Wu W, Tang M L, Zhu Z J, Xu M. Genotypic and environmental variation and their stability of As, Cr, Cd, Ni and Pb concentrations in the grains of japonica rice. Acta Agron Sin, 2006, 32: 573-579. (in Chinese with English abstract)
[46] Chen H, Wang P, Gu Y, Kretzschmar R, Kopittke P M, Zhao F J. The within-field spatial variation in rice grain Cd concentration is determined by soil redox status and pH during grain filling. Environ Pollut, 2020, 261: 114151.
doi: 10.1016/j.envpol.2020.114151
[47] Ge L, Cang L, Yang J, Zhou D. Effects of root morphology and leaf transpiration on Cd uptake and translocation in rice under different growth temperature. Environ Sci Pollut Res, 2016, 23: 24205-24214.
doi: 10.1007/s11356-016-7696-8
[48] 朱丹妹, 刘岩, 张丽, 王秀梅, 安毅, 李玉浸, 林大松. 不同类型土壤淹水对pH、Eh、Fe及有效态Cd含量的影响. 农业环境科学学报, 2017, 36: 1508-1517.
Zhu D M, Liu Y, Zhang L, Wang X M, An Y, Li Y J, Lin D S. Effects of pH, Eh, Fe, and flooded time on available-Cd content after flooding of different kinds of soil. J Agro-Environ Sci, 2017, 36: 1508-1517. (in Chinese with English abstract)
[49] Stone R. Arsenic and paddy rice: a neglected cancer risk? Science, 2008, 321: 184-185.
doi: 10.1126/science.321.5886.184
[50] Zhu Y G, Sun G X, Lei M, Teng M, Liu Y X, Chen N C, Wang L H, Carey A M, Deacon C, Raab A, Meharg A A. High percentage inorganic arsenic content of mining impacted and nonimpacted Chinese rice. Environ Sci Technol, 2008, 42: 5008-5013.
pmid: 18678041
[51] 竺朝娜, 冯英, 胡桂仙, 朱凤珍, 王林友, 张礼霞, 金庆生, 王建军. 水稻糙米砷含量及其与土壤砷含量的关系. 核农学报, 2010, 24: 355-359.
Zhu Z N, Feng Y, Hu G X, Zhu F Z, Wang L Y, Zhang L X, Jin Q S, Wang J J. Arsenic concentration of brown rice and its relationship with soil arsenic. J Nucl Agric Sci, 2010, 24: 355-359. (in Chinese with English abstract)
[52] Meharg A A, Zhao F J. Arsenic and Rice Dordrecht: Springer, 2012. pp 11-27.
[53] Yu H Y, Ding X, Li F, Wang X, Zhang S, Yi J, Liu C, Xu X, Wang Q. The availabilities of arsenic and cadmium in rice paddy fields from a mining area: the role of soil extractable and plant silicon. Environ Pollut, 2016, 215: 258-265.
doi: 10.1016/j.envpol.2016.04.008
[54] Zhao F J, McGrath S P, Meharg A A. Arsenic as a food-chain contaminant: mechanisms of plant uptake and metabolism and mitigation strategies. Annu Rev Plant Biol, 2010, 61: 535-559.
doi: 10.1146/annurev-arplant-042809-112152
[55] 吴佳, 纪雄辉, 魏维, 谢运河. 水分状况对水稻镉砷吸收转运的影响. 农业环境科学学报, 2018, 37: 1427-1434.
Wu J, Ji X H, Wei W, Xie Y H. Effect of water levels on cadmium and arsenic absorption and transportation in rice. J Agro-Environ Sci, 2018, 37: 1427-1434. (in Chinese with English abstract)
[56] Norton G J, Pinson S R, Alexander J, McKay S, Hansen H, Duan G L, Islam M R, Islam S, Stroud J L, Zhao F J, McGrath S P, Zhu Y, Lahner B, Yakubora E, Guerinot M L, Tarpley L, Eizenga G, Salt D E, Meharg A A, Price A H. Variation in grain arsenic assessed in a diverse panel of rice (Oryza sativa) grown in multiple sites. New Phytol, 2012, 193: 650-664.
doi: 10.1111/j.1469-8137.2011.03983.x
[57] Li R Y, Stroud J L, Ma J F, McGrath S P, Zhao F J. Mitigation of arsenic accumulation in rice with water management and silicon fertilization. Environ Sci Technol, 2009, 43: 3778-3783.
doi: 10.1021/es803643v pmid: 19544887
[58] 王伟, 宋雯, 尹双义, 徐辰武. 江苏省稻米重金属镉检测多级抽样最优试验方案的探讨. 作物学报, 2014, 40: 2052-2056.
doi: 10.3724/SP.J.1006.2014.02052
Wang W, Song W, Yin S Y, Xu C W. Discussion of multistage sampling optimum test plans on rice cadmium detection for Jiangsu province. Acta Agron Sin, 2014, 40: 2052-2056. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2014.02052
[59] 汤文光, 肖小平, 张海林, 黄桂林, 唐海明, 李超, 刘胜利, 汪柯. 轮耕对双季稻田耕层土壤养分库容及Cd含量的影响. 作物学报, 2018, 44: 105-114.
Tang W G, Xiao X P, Zhang H L, Huang G L, Tang H M, Li C, Liu S L, Wang K. Effects of rotational tillage on nutrient storage capacity and Cd content in tilth soil of double-cropping rice region. Acta Agron Sin, 2018, 44: 105-114. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2018.00105
[60] Zhao F J, Wang P. Arsenic and cadmium accumulation in rice and mitigation strategies. Plant Soil, 2020, 446: 1-21.
doi: 10.1007/s11104-019-04374-6
[61] 徐建明, 孟俊, 刘杏梅, 施加春, 唐先进. 我国农田土壤重金属污染防治与粮食安全保障. 中国科学院院刊, 2018, 33: 153-159.
Xu J M, Meng J, Liu X M, Shi J C, Tang X J. Control of heavy metal pollution in farmland of China in terms of food security. Bull Chin Acad Sci, 2018, 33: 153-159.
[62] 杨小粉, 吴勇俊, 张玉盛, 汪泽钱, 敖和军. 水分管理对水稻镉吸收的影响. 中国稻米, 2019, 25(4): 34-37.
Yang X F, Wu Y J, Zhang Y S, Wang Z Q, Ao H J. Effects of water management on the accumulation of cadmium in rice. China Rice, 2019, 25(4): 34-37. (in Chinese with English abstract)
[63] 易镇邪, 苏雨婷, 谷子寒, 王元元, 屠乃美, 周文新. 不同生育阶段间歇灌溉对镉污染稻田双季稻产量构成与镉累积的影响. 水土保持学报, 2019, 33(5): 364-368.
Yi Z X, Su Y T, Gu Z H, Wang Y Y, Tu N M, Zhou W X. Effects of intermittent irrigation at different growth stages on yield components and cadmium accumulation of double-cropping rice in Cd-contaminated paddy field. J Soil Water Conserv, 2019, 33(5): 364-368. (in Chinese with English abstract)
[1] FENG Ya-Juan, LI Ting-Xuan, PU Yong, ZHANG Xi-Zhou. Characteristics of cadmium accumulation and distribution in different organs of wheat with different cadmium-accumulating type [J]. Acta Agronomica Sinica, 2022, 48(7): 1761-1770.
[2] LI Hui, LI De-Fang, DENG Yong, PAN Gen, CHEN An-Guo, ZHAO Li-Ning, TANG Hui-Juan. Expression analysis of abiotic stress response gene HcWRKY71 in kenaf and transformation of Arabidopsis [J]. Acta Agronomica Sinica, 2021, 47(6): 1090-1099.
[3] LU Hai, LI Zeng-Qiang, TANG Mei-Qiong, LUO Deng-Jie, CAO Shan, YUE Jiao, HU Ya-Li, HUANG Zhen, CHEN Tao, CHEN Peng. DNA methylation in response to cadmium stress and expression of different methylated genes in kenaf [J]. Acta Agronomica Sinica, 2021, 47(12): 2324-2334.
[4] ZHANG Yun, WANG Dan-Mei, WANG Xiao-Yuan, REN Qing-Wen, TANG Ke, ZHANG Li-Yu, WU Yu-Huan, LIU Peng. Effects of exogenous jasmonic acid on photosynthetic characteristics and cadmium accumulation of Helianthus tuberosus L. under cadmium stress [J]. Acta Agronomica Sinica, 2021, 47(12): 2490-2500.
[5] HUANG Su-Hua, LIN Xi-Yue, LEI Zheng-Ping, DING Zai-Song, ZHAO Ming. Physiological characters of carbon, nitrogen, and hormones in ratooning rice cultivars with strong regeneration ability [J]. Acta Agronomica Sinica, 2021, 47(11): 2278-2289.
[6] Gui-Hong LIANG,Ying-Peng HUA,Ting ZHOU,Qiong LIAO,Hai-Xing SONG,Zhen-Hua ZHANG. Bioinformatics analysis and response to nitrate-cadmium stress of NRT1.5 and NRT1.8 family genes in Brassica napus [J]. Acta Agronomica Sinica, 2019, 45(3): 365-380.
[7] CHEN Hong-Fei, PANG Xiao-Min, ZHANG Ren, ZHANG Zhi-Xing, XU Qian-Hua, FANG Chang-Xun, LI Jing-Yong, LIN Wen-Xiong . Effects of Different Irrigation and Fertilizer Application Regimes on Soil Enzyme Activities and Microbial Functional Diversity in Rhizosphere of Ratooning Rice [J]. Acta Agron Sin, 2017, 43(10): 1507-1517.
[8] HUANG Zhi-Xiong,WANG Fei-Juan,JIANG Han,LI Zhi-Lan,DING Yan-Fei,JIANG Qiong,TAO Yue-Liang,ZHU Cheng. A Comparison of Cadmium-Accumulation-Associated Genes Expression and Molecular Regulation Mechanism between Two Rice Cultivars (Oryza sativa L. subspecies japonica) [J]. Acta Agron Sin, 2014, 40(04): 581-590.
[9] LI Hai-Bo,YANG Lan-Fang,LI Ya-Dong. Effects of Soil Arsenic on Soybean Main Traits and Chlorophyll Content at Different Growing Stage [J]. Acta Agron Sin, 2013, 39(07): 1303-1308.
[10] LI Ling, CHEN Jin-Gong, CHU Shui-Jin. Effects of Cadmium Stress on the Seed Quality Traits of Transgenic Cotton SGK3 and ZD-90 [J]. Acta Agron Sin, 2011, 37(05): 929-933.
[11] GAO Qing-Song, YANG Ze-Feng, ZHOU Yong, ZHANG Dan, YAN Cheng-Hai, LIANG Guo-Hua, XU Chen-Wu. Cloning of an ABC1-like Gene ZmABC1-10 and Its Responses to Cadmium and Other Abiotic Stresses in Maize (Zea mays L.) [J]. Acta Agron Sin, 2010, 36(12): 2073-2083.
[12] HUANG Dong-Fen;XI Ling-Lin;YANG Li-Nian;WANG Zhi-Qin;YANG Jian-Chang. Comparisons in Agronomic and Physiological Traits of Rice Genotypes Differing in Cadmium-Tolerance [J]. Acta Agron Sin, 2008, 34(05): 809-817.
[13] HUANG Dong-Fen;XI Ling-Lin;WANG Zhi-Qin;LIU Li-Jun;YANG Jian-Chang. Effects of Irrigation Regimes during Grain Filling on Grain Quality and the Concentration and Distribution of Cadmium in Different Organs of Rice [J]. Acta Agron Sin, 2008, 34(03): 456-464.
[14] JIANG Ting-Bo;CHEN Hong;TANG Xin-Huan;DING Bao-Jian;WANG Yu-Cheng;LI Feng-Juan;LI Shao-Chen. Analysis of Physiologic Characteristics for Cd2+ Tolerance on Transgenic Tobacco Expressing Metallothionein Gene (MT1) [J]. Acta Agron Sin, 2007, 33(11): 1902-1905.
[15] LIN Rui-Yu;CHEN Hong-Fei;DENG Jia-Yao;LIANG Yi-Yuan;LIANG Kang-Jing;LIN Wen-Xiong. Analysis on Energy Accumulation and Calorific Value of Early-Season Rice and Its Ratooning Rice under Different Cultivation Models [J]. Acta Agron Sin, 2007, 33(11): 1794-1801.
Full text



[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[5] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[6] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[7] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[8] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[9] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .
[10] XING Guang-Nan, ZHOU Bin, ZHAO Tuan-Jie, YU De-Yue, XING Han, HEN Shou-Yi, GAI Jun-Yi. Mapping QTLs of Resistance to Megacota cribraria (Fabricius) in Soybean[J]. Acta Agronomica Sinica, 2008, 34(03): 361 -368 .