Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2021, Vol. 47 ›› Issue (12): 2490-2500.doi: 10.3724/SP.J.1006.2021.04246


Effects of exogenous jasmonic acid on photosynthetic characteristics and cadmium accumulation of Helianthus tuberosus L. under cadmium stress

ZHANG Yun1(), WANG Dan-Mei1, WANG Xiao-Yuan1, REN Qing-Wen1, TANG Ke1, ZHANG Li-Yu1, WU Yu-Huan2,3, LIU Peng1,*()   

  1. 1College of Chemistry and Life Science, Zhejiang Normal University / Botany Laboratory, Jinhua 321004, Zhejiang, China
    2College of Life and Environmental Science, Hangzhou Normal University, Hangzhou 310036, Zhejiang, China
    3Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, Liaoning, China
  • Received:2020-11-13 Accepted:2021-03-19 Online:2021-12-12 Published:2021-09-29
  • Contact: LIU Peng E-mail:1139083486@qq.com;sky79@zjnu.cn
  • Supported by:
    National Natural Science Foundation of China(32001224);National Natural Science Foundation of China(41571049)


Revealing the effects of exogenous jasmonic acid (JA) on the photosynthetic characteristics and Cadmium (Cd), a toxic pollutant, accumulation in Helianthus tuberosus L. under Cd stress can provide a practical basis for remedying soil heavy metal contamination. In this study, seedlings from Yulin (with strong Cd-tolerance) and Chengdu Helianthus tuberosus cultivars (with weak Cd-tolerance) were selected for pot culture experiments. These seedlings were treated with 25 μmol L-1 JA by foliar application to explore the alleviation effects of exogenous jasmonic acid under different degrees of Cd stress, with concentrations of low, medium, and high levels (75, 150, and 300 mg kg-1). The results showed that compared with other groups, JA had improved the height of Chengdu seedlings under the low Cd stress group, which was 1.26 times higher than that in CK group and reached to its maximum. But the height of Yulin seedlings did not change to a great extent. In addition, the leaf area, root length, and dry weight of both groups allexhibited an upward trend. The chlorophyll content (SPAD value) of Yulin seedlings had reached the maximum value on the 7th day in JA relieved low Cd group, which was 1.27 times of Cd stress group, and Chengdu seedlings had cost 21 days to reach its peak value under the same conditions. Beyond that, the initial fluorescence (F0) of each Cd group almost reduced to normal level, the maximum photochemical efficiency (Fv/Fm) rised up significantly, the photochemical quenching coefficient (qP) and the electron transfer rate (ETR) increased obviously, but the non-photochemical quenching coefficient (qN) decreased to CK group level. At the same time, the net photosynthetic rate (Pn), stomatal conductance (Gs), and transpiration rate (Tr) had maintained upward trends, but the intercellular CO2 concentration (Ci) had decreased. The concentrations of Cd in each organ of these Helianthus tuberosus cultivars under the stress groups were in the order of root > leaf > stem. Except stem, the bioconcentration factors (BCF) of other tissues were all more than one, and the translocation factors (TF) were less than one. Through the laser confocal microscope, the fluorescence signal of Cd ions around the stomata was significantly faded. In conclusion, exogenous JA could increase the content of chlorophyll and prevent the structure of chloroplast from being damaged. The net photosynthetic rate and photosynthetic carbon assimilation efficiency were enhanced, which had increased the accumulation of dry matter and had improved the resistance of seedlings to Cd stress. JA signal had reduced the absorption and transportation of cadmium, which alleviated the Cd toxicity to the plants. This study provides the theoretical basis for planting Helianthus tuberosus to repair cadmium contaminated soil.

Key words: Helianthus tuberosus L., jasmonic acid, cadmium stress, photosynthetic characteristics, cadmium accumulation

Table 1

Effects of exogenous JA on growth characteristics of Helianthus tuberosus L. under cadmium stress"

Plant height (cm)
Leaf area (cm2)
Root length (cm)
Dry weight (g)
CK 17.40±0.38 bc 13.40±0.28 c 24.23±0.24 c 5.98±0.84 b
JA 19.63±0.34 ab 15.39±0.69 b 28.33±0.67 b 7.37±1.41 a
75Cd 18.63±0.33 b 15.87±0.97 b 33.50±0.95 ab 6.00±0.32 b
150Cd 15.59±0.71 c 15.17±0.99 bc 24.06±0.73 c 5.84±0.67 b
300Cd 13.13±0.35 d 14.14±0.69 c 23.60±1.04 c 4.98±0.15 b
75Cd+JA 21.86±0.13 a 16.45±0.54 ab 35.16±0.78 a 7.24±0.02 ab
150Cd+JA 19.93±0.93 ab 17.48±0.64 a 30.13±0.87 b 6.81±0.95 ab
300Cd+JA 16.23±0.81 bc 15.65±0.53 b 28.26±0.46 b 6.27±0.13 ab
CK 19.40±0.69 a 18.50±0.62 b 28.00±0.62 bc 8.91±0.77 ab
JA 21.20±0.85 a 18.69±0.63 b 29.70±0.35 abc 9.66±1.51 a
75Cd 19.30±1.02 a 17.07±0.29 c 30.40±0.18 abc 8.64±1.47 ab
150Cd 18.23±0.42 ab 18.93±1.49 a 27.83±0.57 cd 7.33±0.44 bc
300Cd 16.40±0.60 b 17.65±0.91 bc 26.80±0.46 cd 6.94±0.09 bc
75Cd+JA 20.96±0.95 a 18.80±0.51 ab 38.36±0.06 ab 9.98±0.33 a
150Cd+JA 18.46±0.33 ab 20.11±0.35 a 35.46±0.46 ab 8.47±0.58 ab
300Cd+JA 16.70±0.30 ab 17.88±0.58 b 30.90±0.58 abc 8.01±0.79 b

Fig. 1

Effects of exogenous JA on SPAD values of Chengdu and Yulin Helianthus tuberosus L. under cadmium stress The error line represents the standard deviation. The bars followed by different lowercase letters represent the significant difference among treatments in the same reproductive period at P < 0.05. Treatments are the same as those given in Table 1."

Table 2

Effects of exogenous JA on chlorophyll fluorescence parameters of Helianthus tuberosus L. under cadmium stress"

PSII最大光化学量子产量Fv/Fm 光化学淬灭
CK 0.177±0.016 b 0.813±0.0073 bc 0.697±0.971 ab 0.417±0.010 de 15.867±0.330 a
JA 0.180±0.004 b 0.828±0.005 a 0.738±0.059 a 0.404±0.020 de 15.784±0.498 a
75Cd 0.217±0.201 ab 0.806±0.003 c 0.529±0.036 c 0.484±0.027 c 11.400±0.252 c
150Cd 0.271±0.007 ab 0.765±0.006 d 0.481±0.013 c 0.525±0.005 b 13.333±1.506 b
300Cd 0.339±0.021 a 0.683±0.009 e 0.442±0.010 d 0.647±0.020 a 10.900±0.500 c
75Cd+JA 0.190±0.024 b 0.825±0.003 ab 0.626±0.031 b 0.432±0.012 d 13.260±0.460 b
150Cd+JA 0.199±0.010 b 0.817±0.002 b 0.534±0.055 c 0.414±0.026 de 14.067±0.811 b
300Cd+JA 0.201±0.038 b 0.814±0.006 bc 0.532±0.036 c 0.396±0.030 e 13.006±0.575 b
CK 0.229±0.042 b 0.816±0.004 b 0.661±0.059 a 0.509±0.028 d 22.400±1.400 a
JA 0.210±0.201 b 0.826±0.001 a 0.647±0.008 ab 0.587±0.011 c 20.733±0.607 ab
75Cd 0.261±0.015 ab 0.815±0.004 b 0.605±0.021 b 0.619±0.028 bc 19.140±0.748 b
150Cd 0.309±0.010 ab 0.802±0.006 c 0.563±0.049 b 0.687±0.011 ab 20.530±1.809 ab
300Cd 0.383±0.004 a 0.738±0.009 d 0.502±0.023 c 0.714±0.020 a 18.611±0.966 b
75Cd+JA 0.191±0.095 b 0.824±0.005 a 0.646±0.010 ab 0.544±0.026 cd 20.630±1.213 ab
150Cd+JA 0.224±0.024 b 0.820±0.004 ab 0.638±0.022 ab 0.581±0.038 c 22.180±1.139 a
300Cd+JA 0.282±0.014 ab 0.815±0.005 b 0.631±0.020 ab 0.656±0.058 b 21.460±0.650 a

Fig. 2

Effects of exogenous JA on gas exchange parameters of Chengdu and Yulin Helianthus tuberosus L. under cadmium stress The error line represents the standard deviation. The bars followed by different lowercase letters represent the significant difference among treatments in the same reproductive period at P < 0.05. Treatments are the same as those given in Table 1."

Table 3

Effect of exogenous JA on cadmium content in root stem and leaves of Helianthus tuberosus L. under cadmium stress"

Organ cadmium content (mg kg-1)
Biological concentration factor
Translocation factor (%)






75Cd 263.53±35.42 e 92.17±3.01 d 112.06±13.01 e 3.51±0.47 b 1.23±0.04 b 1.49±0.17 c 0.43±0.15 ab
150Cd 516.58±26.61 c 184.77±5.16 b 317.83±5.03 b 3.44±0.18 b 1.96±0.03 b 2.12±0.03 b 0.62±0.23 a
300Cd 1343.41±42.54 a 413.73±8.34 a 725.16±3.05 a 4.48±0.14 a 1.38±0.03 a 2.42±0.01 a 0.54±0.03 ab
75Cd+JA 182.96±11.33 f 41.45±2.04 e 62.38±2.04 f 2.44±0.15 d 0.55±0.03 c 0.83±0.03 e 0.34±0.21 b
150Cd+JA 356.66±21.53 d 83.87±2.05 d 156.48±7.35 d 2.38±0.14 d 0.56±0.01 c 1.04±0.05 d 0.44±0.07 ab
300Cd+JA 867.79±30.18 b 124.94±6.47 c 438.56±14.10 c 2.89±0.10 c 0.42±0.02 d 1.46±0.05 c 0.51±0.14 ab
75Cd 947.25±22.45 c 201.83±4.03 d 312.69±3.01 c 12.63±0.30 b 2.69±0.05 a 4.17±0.19 c 0.33±0.02 b
150Cd 1786.47±41.71 b 378.20±7.13 b 720.99±5.45 b 11.91±0.28 c 2.52±0.05 b 4.81±0.04 a 0.40±0.24 ab
300Cd 5213.37±53.19 a 413.97±5.04 a 1328.56±2.45 a 17.38±0.18 a 1.38±0.02 c 4.43±0.01 b 0.25±0.02 b
75Cd+JA 320.31±24.41 e 57.94±3.02 f 82.92±4.26 f 4.27±0.33 d 0.77±0.04 d 1.11±0.06 f 0.26±0.05 b
150Cd+JA 560.99±20.71 d 104.03±6.27 e 325.77±11.19 d 3.74±0.14 e 0.69±0.04 e 2.17±0.07 d 0.58±0.11 a
300Cd+JA 895.69±21.09 c 235.48±2.02 c 410.48±3.47 c 2.99±0.07 f 0.78±0.01 d 1.37±0.01 e 0.46±0.06 ab

Fig. 3

Effects of exogenous JA on cadmium ion distribution in Helianthus tuberosus L. leaves under cadmium stress Treatments are the same as those given in Table 1."

[1] 綦峥, 齐越, 杨红, 张铁林, 凌娜. 土壤重金属镉污染现状、危害及治理措施. 食品安全质量检测学报, 2020, 11:2286-2294.
Qi Z, Qi Y, Yang H, Zhang T L, Ling N. Status, harm and treatment measures of heavy metal cadmium pollution in soil. J Food Safety Quality, 2020, 11:2286-2294 (in Chinese with English abstract).
[2] 陈良, 隆小华, 郑晓涛, 刘兆普. 镉胁迫下两种菊芋幼苗的光合作用特征及镉吸收转运差异的研究. 草业学报, 2011, 20(6):60-67.
Chen L, Long X H, Zheng X T, Liu Z P. Effect on the photosynthetic characteristics of Cd uptake and translocation in seedlings of two Helianthus tuberosus varieties. Acta Pratac Sin, 2011, 20(6):60-67 (in Chinese with English abstract).
[3] 周晓阳, 徐明岗, 周世伟, Colinet G. 长期施肥下我国南方典型农田土壤的酸化特征. 植物营养与肥料学报, 2015, 21:1615-1621.
Zhou X Y, Xu M G, Zhou S W, Colinet G. Soil acidification characteristics in southern China’s croplands under long-term fertilization. J Plant Nutr Fert, 2015, 21:1615-1621 (in Chinese with English abstract).
[4] 陈明, 杨涛, 徐慧, 蔡忠萍, 赵玲. 赣南某钨矿区土壤中Cd、Pb的形态特征及生态风险评价. 环境化学, 2015, 34:2257-2262.
Chen M, Yang T, Xu H, Cai Z P, Zhao L. Distribution characteristics and ecological risk assessment of heavy metals Cd and Pb in soils around a tungsten mine of Gannan. Environ Chem, 2015, 34:2257-2262 (in Chinese with English abstract).
[5] Wang Z C. Effects and prevention of cadmium pollution on crops. Front Soc Sci Technol, 2020, 2:21-23.
[6] 王松良, 郑金贵. 土壤重金属污染的植物修复与金属超富集植物及其遗传工程研究. 中国生态农业学报, 2007, 15:190-194.
Wang S L, Zheng J G. Phytoremediation for heavy metal contamination in soil, metal hyperaccumulator and their genetic engineering. Chin J Eco-Agric, 2007, 15:190-194 (in Chinese with English abstract).
[7] 高会玲, 刘金隆, 郑青松, 洪立洲, 王长海, 马梅, 赵世训, 郑春芳. 外源油菜素内酯对镉胁迫下菊芋幼苗光合作用及镉富集的调控效应. 生态学报, 2013, 33:1935-1943.
Gao H L, Liu J L, Zheng Q S, Hong L Z, Wang C H, Ma M, Zhao S X, Zheng C F. Regulation of exogenous brassinosteroid on growth and photosynthesis of Helianthus tuberosus seedlings and cadmium biological enrichment under cadmium stress. Acta Ecol Sin, 2013, 33:1935-1943 (in Chinese with English abstract).
[8] 柳金库, 王云跃. 水土保持优良植物菊芋在生态修复领域的研究进展. 水土保持应用技术, 2018, (6):21-25.
Liu J K, Wang Y Y. Research progress of Helianthus tuberosus in the field of ecological restoration of soil and water conservation. Technol Soil Water, 2018, (6):21-25 (in Chinese).
[9] 李俊凯, 张丹, 周培, 刘群录. 南京市铅锌矿采矿场土壤重金属污染评价及优势植物重金属富集特征. 环境科学, 2018, 39:3845-3853.
Li J K, Zhang D, Zhou P, Liu Q L. Assessment of heavy metal pollution in soil and its bioaccumulation by dominant plants in a lead-zinc mining area, Nanjing. Environ Sci, 2018, 39:3845-3853 (in Chinese with English abstract).
[10] 包金玉, 张聪聪, 马绍英, 张秀民, 张晓玲, 田鹏, 李胜. 茉莉酸甲酯和水杨酸对西兰花毛状根增殖和萝卜硫素及信号分子含量的影响. 植物生理学报, 2020, 56:1305-1312.
Bao J Y, Zhang C C, Ma S Y, Zhang X M, Zhang X L, Tian P, Li S. Effects of MeJA and SA on hairy root proliferation and sulphur content in Brassia oleracea var. italica. Plant Physiol J, 2020, 56:1305-1312 (in Chinese with English abstract).
[11] 张知晓, 泽桑梓, 户连荣, 刘凌, 季梅. 茉莉酸甲酯生物活性研究进展. 河南农业科学, 2018, 47(11):1-7.
Zhang Z X, Ze S Z, Hu L R, Liu L, Ji M. Research advance in biological activities of methyl jasmonate. J Henan Agric Sci, 2018, 47(11):1-7 (in Chinese with English abstract).
[12] Ali E, Hussain N, Shamsi I H, Jabeen Z, Siddiqui M H, Jiang L X. Role of jasmonic acid in improving tolerance of rapeseed ( Brassica napus L.) to Cd toxicity. J Zhejiang Univ Sci B, 2018, 19:130-146.
doi: 10.1631/jzus.B1700191
[13] 鲍士旦. 土壤农化分析(第3版). 北京: 中国农业出版社, 2000. pp 39-114.
Bao S D, Soil Agrochemical Analysis, 3rd edn. Beijing: China Agriculture Press, 2000. pp 39-114(in Chinese).
[14] 宋慧, 黄芸萍, 臧全宇, 张凌霄, 张香琴. 甜瓜幼苗不同叶位SPAD值与叶绿素含量的变化规律及相关性. 华北农学报, 2019, 34(增刊1):99-104.
Song H, Huang Y P, Zang Q Y, Zhang L X, Zhang X Q. Variation and correlation analysis of SPAD value and chlorophyll content of leaves at different position in melon seedling. Acta Agric Boreali Sin, 2019, 34(S1):99-104 (in Chinese with English abstract).
[15] 李志贤, 冯涛, 陈章, 陈国梁, 陈远其, 向言词, 刘庆龙, 刘顺. 镉胁迫对龙葵镉的吸收积累及生理响应的影响. 水土保持学报, 2017, 31(5):328-333.
Li Z X, Feng T, Chen Z, Chen G L, Chen Y Q, Xiang Y C, Liu Q L, Liu S. Effects of different levels Cd Stress on Cd uptake and physiological response of Solanum nigrum L. J Soil Water Conserv, 2017, 31(5):328-333 (in Chinese with English abstract).
[16] Simôes P S, Carbonari C A, Nascentes R F, Stasievski A, Velini E D. Selectivity of herbicides inhibitors of photosystem II for sugarcane cultivars. Planta Daninha, 2016, 34:803-814 (in Portuguese with English abstract).
doi: 10.1590/s0100-83582016340400021
[17] 黄文斌. 基于生物应用的镉离子荧光探针的设计制备及检测性能研究. 浙江大学硕士学位论文, 浙江杭州, 2019.
Huang W B. Design, Synthesis and Sensing Properties of Fluorescent Cd2+ Probe for Biological Application. MS Thesis of Zhejiang University, Hangzhou, Zhejiang, China, 2019 (in Chinese with English abstract).
[18] Shi G R, Cai Q S, Liu C F, Wu L. Silicon alleviates cadmium toxicity in peanut plants in relation to cadmium distribution and stimulation of antioxidative enzymes. Environ Exp Bot, 2007, 60:468-476.
doi: 10.1016/j.envexpbot.2007.01.004
[19] 蒋汉明, 李书启, 韩希凤, 王华, 郭剑霞. 镉对植物生长的影响及植物耐镉机理研究进展. 广东微量元素科学, 2012, 19(5):1-6.
Jiang H M, Li S Q, Han X F, Wang H, Guo J X. Progress on the effect for plant and their tolerant mechanism. Guangdong Trace Elem, 2012, 19(5):1-6 (in Chinese with English abstract).
[20] 郑黎明, 张杰, 杨红飞, 李全发, 袁静. 镉胁迫对荻生长、镉富集和土壤酶活性的影响. 水土保持学报, 2017, 31(5):334-339.
Zheng L M, Zhang J, Yang H F, Li Q F, Yuan J. Effects of Cd stress on the growth, Cd accumulation and soil enzyme activities of Miscanthus sacchariflorus. J Soil Water Conserv, 2017, 31(5):334-339 (in Chinese with English abstract).
[21] 杨彪, 杜荣宇, 杨玉, 朱德宽, 郭文川, 朱新华. 便携式植物叶片叶绿素含量无损检测仪设计与试验. 农业机械学报, 2019, 50(12):180-186.
Yang B, Du R Y, Yang Y, Zhu D K, Guo W C, Zhu X H. Design of portable nondestructive detector for chlorophyll content of plant leaves. Trans CSAM, 2019, 50(12):180-186 (in Chinese with English abstract).
[22] 唐星林, 金洪平, 周晨, 刘光正, 王丽艳. 镉胁迫对龙葵叶绿素荧光和光合生化特性的影响. 中南林业科技大学学报, 2019, 39(9):102-108.
Tang X L, Jin H P, Zhou C, Liu G Z, Wang L Y. Effects of cadmium stress on chlorophyll fluorescence and photosynthetic biochemical characteristics in leaves of Solanum nigrum. J Central South Univ For, 2019, 39(9):102-108 (in Chinese with English abstract).
[23] 刘星星. 镉胁迫下菊芋的生理响应及污染红壤改良的探究. 浙江师范大学硕士学位论文, 浙江金华, 2018.
Liu X X. Physiological Response of Helianthus tuberosus L. under Cadmium Stress and Improvement of Polluted Red Soil. MS Thesis of Zhejiang Normal University, Jinhua, Zhejiang, China, 2018 (in Chinese with English abstract).
[24] Xiong B, Wang Y, Zhang Y, Ma M M, Gao Y F, Zhou Z Y, Wang B Z, Wang T, Lv X L, Wang X, Wang J, Deng H H, Wang Z H. Alleviation of drought stress and the physiological mechanisms in Citrus cultivar (Huangguogan) treated with methyl jasmonate. Biosci Biotechnol Biochem, 2020, 84:1958-1965.
doi: 10.1080/09168451.2020.1771676
[25] 邵君伟. 茉莉酸和赤霉素在水稻幼苗响应镉毒害中的调控作用. 华中农业大学硕士学位论文, 湖北武汉, 2015.
Shao J W. The Regulation of Jasmonic Acid and Gibberellin in Response to Cadmium Toxicity in Rice Seedlings. MS Thesis of Huazhong Agricultural University, Wuhan, Hubei, China, 2015 (in Chinese with English abstract).
[26] 单长卷, 徐新娟, 孙海丽, 马艳华. 茉莉酸对镉胁迫下玉米幼苗叶片生理特性的影响. 玉米科学, 2016, 24(3):99-102.
Shan C J, Xu X J, Sun H L, Ma Y H. Effects of jasmonic acid on the leaf physiological characteristics of maize seedlings under cadmium stress. J Maize Sci, 2016, 24(3):99-102 (in Chinese with English abstract).
[27] 麻云霞, 李钢铁, 梁田雨, 马媛, 闫晶秋子, 杨超. 外源H2O2对镉胁迫下酸枣幼苗生长及生理特性的缓解效应. 水土保持学报, 2019, 33(6):361-369.
Ma Y X, Li G T, Liang T Y, Ma Y, Yan J Q Z, Yang C. Alleviative effects of exogenous H2O2 on growth and physiological characteristics of Zizyphus jujuba seedlings under cadmium stress. J Soil Water Conserv, 2019, 33(6):361-369 (in Chinese with English abstract).
[28] 任秀娟, 朱东海, 吴海卿, 吴大付. 镉富集植物筛选研究. 资源开发与市场, 2014, 30:961-962.
Ren X J, Zhu D H, Wu H Q, Wu D F. Screening of cadmium enrichment plants. Resour Dev Market, 2014, 30:961-962 (in Chinese with English abstract).
[29] 王晓娟, 王文斌, 杨龙, 金梁, 宋瑜, 姜少俊, 秦兰兰. 重金属镉(Cd)在植物体内的转运途径及其调控机制. 生态学报, 2015, 35:7921-7929.
Wang X J, Wang W B, Yang L, Jin L, Song Y, Jiang S J, Qin L L. Transport pathways of cadmium (Cd) and its regulatory mechanisms in plant. Acta Ecol Sin, 2015, 35:7921-7929 (in Chinese with English abstract).
[30] 方继宇, 贾永霞, 张春梅, 张世熔, 徐小逊, 蒲玉琳, 李婷, 李云. 马缨丹对镉的生长响应及其富集、转运和亚细胞分布特点研究. 生态环境学报, 2014, 23:1677-1682.
Fang J Y, Jia Y X, Zhang C M, Zhang S R, Xu X X, Pu Y L, Li T, Li Y. Effects of cadmium on growth response of Lantana camara L. and its accumulation, translocation and subcellular distribution of Cd. Ecol Environ Sci, 2014, 23:1677-1682 (in Chinese with English abstract).
[31] Lei G J, Sun L, Sun Y, Zhu X F, Li G X, Zheng S J. Jasmonic acid alleviates cadmium toxicity in Arabidopsis via suppression of cadmium uptake and translocation. J Integr Plant Biol, 2020, 62:218-227.
doi: 10.1111/jipb.v62.2
[1] XU Tian-Jun, ZHANG Yong, ZHAO Jiu-Ran, WANG Rong-Huan, LYU Tian-Fang, LIU Yue-E, CAI Wan-Tao, LIU Hong-Wei, CHEN Chuan-Yong, WANG Yuan-Dong. Canopy structure, photosynthesis, grain filling, and dehydration characteristics of maize varieties suitable for grain mechanical harvesting [J]. Acta Agronomica Sinica, 2022, 48(6): 1526-1536.
[2] SHI Yan-Yan, MA Zhi-Hua, WU Chun-Hua, ZHOU Yong-Jin, LI Rong. Effects of ridge tillage with film mulching in furrow on photosynthetic characteristics of potato and yield formation in dryland farming [J]. Acta Agronomica Sinica, 2022, 48(5): 1288-1297.
[3] LU Hai, LI Zeng-Qiang, TANG Mei-Qiong, LUO Deng-Jie, CAO Shan, YUE Jiao, HU Ya-Li, HUANG Zhen, CHEN Tao, CHEN Peng. DNA methylation in response to cadmium stress and expression of different methylated genes in kenaf [J]. Acta Agronomica Sinica, 2021, 47(12): 2324-2334.
[4] FENG Ke-Yun, WANG Ning, NAN Hong-Yu, GAO Jian-Gang. Effects of chemical fertilizer reduction with organic fertilizer application under water deficit on photosynthetic characteristics and yield of cotton [J]. Acta Agronomica Sinica, 2021, 47(1): 125-137.
[5] DU Jin-Yong,CHAI Qiang,WANG Yi-Fan,FAN Hong,HU Fa-Long,YIN Wen,LI Deng-Ye. Effect of above- and below-ground interaction intensity on photosynthetic characteristics of wheat-maize intercropping [J]. Acta Agronomica Sinica, 2019, 45(9): 1398-1406.
[6] LI Chao-Su,WU Xiao-Li,TANG Yong-Lu,LI Jun,MA Xiao-Ling,LI Shi-Zhao,HUANG Ming-Bo,LIU Miao. Response of yield and associated physiological characteristics for different wheat cultivars to nitrogen stress at mid-late growth stage [J]. Acta Agronomica Sinica, 2019, 45(8): 1260-1269.
[7] Yong-Fu REN,Guo-Peng CHEN,Tian PU,Cheng CHEN,Jin-Xi ZENG,Xiao PENG,Yan-Wei MA,Wen-Yu YANG,Xiao-Chun WANG. Responses of photosynthetic characteristics to low light stress in ear leaves of high photosynthetic efficiency maize at narrow row of maize-soybean strip intercropping system [J]. Acta Agronomica Sinica, 2019, 45(5): 728-739.
[8] Si-Long CHEN,Zeng-Shu CHENG,Ya-Hui SONG,Jin WANG,Yi-Jie LIU,Peng-Juan ZHANG,Yu-Rong LI. Leaf photosynthesis and matter production dynamic characteristics of peanut varieties with high yield and high oil content [J]. Acta Agronomica Sinica, 2019, 45(2): 276-288.
[9] Hai-Yue YU,Yan YAN,Yu-Shi ZHANG,Ming-Cai ZHANG,Zhao-Hu LI. Regulatory effects of coronatine on photosynthetic characteristics and yield of soybean under different irrigation conditions [J]. Acta Agronomica Sinica, 2019, 45(12): 1851-1858.
[10] Yang GAO,Wei-Guo LIU,Shu-Xian LI,Ting LIU,Tao ZHOU,Yong-Li DU,Yi ZHANG,Bi-Qin LI,Wen-Yu YANG. Effect of shade priming on photosynthetic characteristics of soybean seedlings [J]. Acta Agronomica Sinica, 2019, 45(1): 91-99.
[11] Hong-Liang SHI,Qing-Qing YAN,Ju-Song ZHANG,Chun-Yan LI,Hai-Tao DOU. Compensation Effect of Nitrogen Fertilizer on Photosynthetic Characteristics and Yield during Cotton Flowering Boll-setting Stage under Non-sufficient Drip Irrigation [J]. Acta Agronomica Sinica, 2018, 44(8): 1196-1204.
[12] Dan-Dan HU,Ji-Wang ZHANG,Peng LIU,Bin ZHAO,Shu-Ting DONG. Effects of Mixed-cropping with Different Varieties on Photosynthetic Characteristics and Yield of Summer Maize under Close Planting Condition [J]. Acta Agronomica Sinica, 2018, 44(6): 920-930.
[13] Ya-Jiao CHENG,Yuan-Fang FAN,Jun-Xu CHEN,Zhong-Lin WANG,Ting-Ting TAN,Jia-Feng LI,Sheng-Lan LI,Feng YANG,Wen-Yu YANG. Effects of Light Intensity on Photosynthetic Characteristics and Assimilates of Soybean Leaf [J]. Acta Agronomica Sinica, 2018, 44(12): 1867-1874.
[14] Tian-Jun XU, Tian-Fang LYU, Jiu-Ran ZHAO, Rong-Huan WANG, Chuan-Yong CHEN, Yue-E LIU, Xiu-Zhi LIU, Yuan-Dong WANG, Chun-Ge LIU. Photosynthetic Characteristics, Dry Matter Accumulation and Translocation, Grain Filling Parameter of Three Main Maize Varieties in Production [J]. Acta Agronomica Sinica, 2018, 44(03): 414-422.
[15] LIU Hong-Yan, ZHOU Fang, LI Jun, YANG Min-Min, ZHOU Ting, HAO Guo-Cun,ZHAO Ying-Zhong . Anatomical Structure and Photosynthetic Characteristics of a Yellow Leaf Mutant YL1 in Sesame (Sesamum indicum L.) [J]. Acta Agron Sin, 2017, 43(12): 1856-1863.
Full text



No Suggested Reading articles found!