Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2019, Vol. 45 ›› Issue (8): 1260-1269.doi: 10.3724/SP.J.1006.2019.81083

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Response of yield and associated physiological characteristics for different wheat cultivars to nitrogen stress at mid-late growth stage

LI Chao-Su1,WU Xiao-Li1,TANG Yong-Lu1,*(),LI Jun1,MA Xiao-Ling1,LI Shi-Zhao1,HUANG Ming-Bo2,LIU Miao1   

  1. 1 Crop Research Institute, Sichuan Academy of Agricultural Sciences/Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Chengdu 610066, Sichuan, China
    2 Guanghan Productivity Promotion Center, Guanghan 618300, Sichuan, China
  • Received:2018-11-20 Accepted:2019-04-15 Online:2019-08-12 Published:2019-07-16
  • Contact: Yong-Lu TANG E-mail:ttyycc88@163.com
  • Supported by:
    This study was supported by the National Natural Science Foundation of China(31571590);the National Key R&D Program of China(2016YFD0300406);the Crops Breeding Project in Sichuan Province(2016NYZ0051)

Abstract:

Soil nitrogen (N) deficiency at mid-late growth stage is one of the serious factors leading to lowered grain yield of wheat. The high yield potential of synthetic hexaploid wheat-derived cultivar (SDC) has been well documented, however, its responses to N deficiency at mid-late growth stage need further study. Six cultivars were grown under two fertilizer-N applied conditions over two consecutive growing seasons (2015-2017). The cultivars consisted of three typical SDC (Chuanmai 42, Chuanmai 104 and Mianmai 367) and three non-synthetic hexaploid wheat-derived cultivar (NSC; Mianmai 37, Chuannong 16, and Chuanmai 30). Two N treatments consisted of normal N application (Nn, 150 kg hm -2, basal fertilizer 40%, top dressing 60%) and N stress (Ns, 60 kg hm -2, basal fertilizer only), and grain yield and associated physiological traits of these wheat cultivars in response to N deficiency at mid-late growth stage were studied. It turned out that the mean yield reduction of SDC (19.6%) and NSC (20.4%) was close under N stress, while SDC showed 14.4% (Nn) and 15.9% (Ns) advantages on yield than NSC at both N treatments. Besides, the biomass and grain number per unit area of SDC were higher than those of NSC. At anthesis, SDC and NSC had roughly the same leaf area index (LAI) values, whereas the LAI decline in SDC was less than that in NSC at mid-late grain-filling stage. Compared with NSC, the LAI of SDC was 25.1% (Nn) and 16.0% (Ns) higher at 22 days after anthesis, respectively. The SPAD values of flag and penultimate leaves in SDC were always higher than those in NSC at both N treatments during grain filling period, and the gap between them was increased under N stress. The differences in net photosynthetic rate (NPR) and canopy photosynthetic rate (CAP) between the two types of wheat also mainly appeared at mid-late grain-filling stage, and SDC still had advantages compared with NSC under Ns. In addition, the nitrate N, ammonium N and soluble sugar content in flag and penultimate leaves in SDC were higher than those in NSC under N stress condition. At last, SDC had higher N utilization efficiency (NUtE) than NSC, which difference between SDC and NSC was further increased by N stress. Overall, the above results indicate that the productivity of SDC is stronger than that of NSC at low N condition, which might be related to the higher sink capacity and longer leaf function period in SDC.

Key words: synthetic hexaploid wheat-derived cultivar, nitrogen stress, grain yield, photosynthetic characteristics, nitrogen utilization efficiency

Fig. 1

Daily maximum and minimum temperature during wheat growing period (from November to May of the next year) "

Table 1

Information of wheat cultivars tested in the study"

类别
Type
品种
Cultivar
系谱
Pedigree
审定年份
Year of release
区试产量
YD? (kg hm-2)
区试增产率
Increase rate of yield (%)
SDC 川麦42 Chuanmai 42 Syn 769/Chuanmai 30//Chuan 6415 2004 6130 16.4
川麦104 Chuanmai 104 Chuanmai 42/Chuannong 16 2012 6120 14.1
绵麦367 Mianmai 367 Mianmai 37/Chuanmai 43 2010 5690 14.0
NSC 绵麦37 Mianmai 37 96EW37/Mianyang 90-100 2004 5110 12.6
川农16 Chuannong 16 Chuanyu 12/7-429 2002 4819 13.0
川麦30 Chuanmai 30 77//YAA/ALD‘S’/3/YSZ//ST2022/983 1998 4481 8.58

Table 2

Yield, yield components and biomass of different wheat cultivars in response to nitrogen stress at mid-later growth stage"

年份
Year
处理Treatment 品种
Cultivar
产量
Yield
(kg hm-2)
粒数
Grain number (×104 hm-2)
千粒重
1000-kernel weight (g)
生物产量
Biomass
(kg hm-2)
收获指数
Harvest index
2016 Nn 川麦42 Chuanmai 42 9627 a 17851 a 48.3 a 18989 a 0.44 a
川麦104 Chuanmai 104 9263 a 17190 a 45.6 b 18296 ab 0.44 a
绵麦367 Mianmai 367 9556 a 18518 a 44.6 c 18702 a 0.45 a
绵麦37 Mianmai 37 7284 b 15203 a 45.8 b 14861 c 0.43 a
川农16 Chuannong 16 9119 a 16413 a 42.7 d 18937 a 0.42 a
川麦30 Chuanmai 30 7540 b 16397 a 40.4 e 15430 c 0.43 a
平均 Mean 8732 16929 44.6 17536 0.43
SDC 9482 17853* 46.2 18663 0.44**
NSC 7981 16004 43.0 16409 0.43
Ns 川麦42 Chuanmai 42 7696 a 12744 b 49.7 a 15493 a 0.43 ab
川麦104 Chuanmai 104 7335 a 12705 b 46.9 b 14973 ab 0.43 ab
绵麦367 Mianmai 367 7991 a 15275 a 48.5 ab 15527 a 0.45 a
绵麦37 Mianmai 37 6447 b 11231 b 48.1 b 13442 bc 0.42 bc
川农16 Chuannong 16 6509 b 11960 b 44.0 c 13170 bc 0.43 ab
川麦30 Chuanmai 30 5512 c 12303 b 40.8 d 12082 c 0.40 c
平均 Mean 6915 12703 46.3 14115 0.43
SDC 7674* 13575 48.4 15331** 0.44
NSC 6156 11831 44.3 12898 0.42
2017 Nn 川麦42 Chuanmai 42 8355 d 12893 c 59.7 a 18647 a 0.39 c
川麦104 Chuanmai 104 10332 a 16922 a 53.9 bc 18615 a 0.48 a
绵麦367 Mianmai 367 9815 b 15559 ab 56.0 b 18507 a 0.46 ab
绵麦37 Mianmai 37 8766 c 15218 ab 55.6 b 17188 b 0.44 b
川农16 Chuannong 16 8837 c 15346 ab 52.4 c 16426 b 0.47 ab
川麦30 Chuanmai 30 8297 d 14443 bc 53.8 bc 16222 b 0.45 b
平均 Mean 9067 15063 55.2 17601 0.46
SDC 9501 15125 56.5 18590* 0.45
NSC 8634 15002 54.0 16612 0.45
Ns 川麦42 Chuanmai 42 6352 bc 8735 b 60.4 a 14798 a 0.37 b
川麦104 Chuanmai 104 8213 a 11480 ab 56.8 abc 15350 a 0.46 a
绵麦367 Mianmai 367 8229 a 14154 a 53.3 c 15343 a 0.47 a
绵麦37 Mianmai 37 7397 abc 10912 ab 59.3 a 15170 a 0.42 ab
川农16 Chuannong 16 7643 ab 12346 ab 55.3 bc 15112 a 0.44 a
川麦30 Chuanmai 30 6232 c 9202 b 58.0 ab 14838 a 0.37 b
平均 Mean 7344 11138 57.2 15102 0.42
SDC 7598 11456 56.9 15164 0.43
NSC 7091 10820 57.5 15040 0.41

Fig. 2

Leaf area index (LAI) of SDC and NSC in response to nitrogen stress at mid-later growth stage (2017) Nn: Normal nitrogen application; Ns: Nitrogen stress treatment. The error bar is standard deviation. The data in the figure are the average values of three cultivars in the same category under the same nitrogen application level. Other abbreviations are the same as those given in Table 1."

Fig. 3

SPAD values of top three leaves for SDC and NSC in response to nitrogen stress at mid-later growth stage Nn: normal nitrogen application; Ns: nitrogen stress treatment. The data in the figure are the average values of three cultivars in the same category under the same nitrogen application level. Other abbreviations are the same as those given in Table 1."

Fig. 4

Net photosynthetic rate (NPR) of flag leaf for SDC and NSC in response to nitrogen stress at mid-later growth stage Abbreviations are the same as those given in Table 1 and Fig. 2. The error bar is standard deviation. The data in the figure are the average values of three cultivars in the same category under the same nitrogen application level."

Fig. 5

Canopy photosynthetic rate (CAP) of flag leaf for SDC and NSC in response to nitrogen stress at mid-later growth stage (2017) Abbreviations are the same as those given in Table 1 and Fig. 2. The error bar is standard deviation. The data in the figure are the average values of three cultivars in the same category under the same nitrogen application level."

Table 3

NO3--N, NH4+-N and soluble sugar content in flag leaf plus penultimate leaf of SDC and NSC in response to nitrogen stress at mid-later growth stage "

年份
Year
处理
Treatment
花后天数
Days after
anthesis (d)
品种
Cultivar
硝态氮含量
NO3--N content
(mg g-1 FW)
铵态氮含量
NH4+-N content
(mg g-1 FW)
可溶性糖含量
Soluble sugar content
(mg g-1 FW)
2016 Nn 0 SDC 0.25 0.27 29.6
NSC 0.30 0.21 42.4**
22 SDC 0.21 0.14 26.2
NSC 0.26 0.11 38.8**
Ns 0 SDC 0.37 0.19 45.3
NSC 0.32 0.13 32.7
22 SDC 0.31 0.10 41.4
NSC 0.26 0.11 30.4
年份
Year
处理
Treatment
花后天数
Days after
anthesis (d)
品种
Cultivar
硝态氮含量
NO3--N content
(mg g-1 FW)
铵态氮含量
NH4+-N content
(mg g-1 FW)
可溶性糖含量
Soluble sugar content
(mg g-1 FW)
2017 Nn 0 SDC 0.08 0.12 30.6
NSC 0.09 0.11 31.9
22 SDC 0.10 0.18** 21.1
NSC 0.10 0.11 24.2
Ns 0 SDC 0.11* 0.10 38.5*
NSC 0.09 0.11 29.5
22 SDC 0.10 0.12 31.9
NSC 0.10 0.09 32.7

Fig. 6

Nitrogen utilization efficiency (NUtE) for SDC and NSC in response to nitrogen stress at mid-later growth stage Abbreviations are the same as those given in Table 1 and Fig. 2. The Error bar is standard deviation. The data in the figure are the average values of three cultivars in the same category under the same nitrogen application level."

[1] Zörb C, Ludewig U, Hawkesford M J . Perspective on wheat yield and quality with reduced nitrogen supply. Trends Plant Sci, 2018,23:1029-1037.
doi: 10.1016/j.tplants.2018.08.012
[2] 吴晓丽, 李朝苏, 汤永禄, 刘于斌, 李伯群, 樊高琼, 熊涛 . 氮肥运筹对小麦产量、氮素利用效率和光能利用率的影响. 应用生态学报, 2017,28:1889-1898.
Wu X L, Li C S, Tang Y L, Liu Y B, Li B Q, Fan G Q, Xiong T . Effect of nitrogen management modes on grain yield, nitrogen use efficiency and light use efficiency of wheat. China J Appl Ecol, 2017,28:1889-1898 (in Chinese with English abstract).
[3] Tian Z W, Liu X X, Gu S L, Yu J H, Zhang L, Zhang W W, Jiang D, Cao W X, Dai T B . Postponed and reduced basal nitrogen application improves nitrogen use efficiency and plant growth of winter wheat. J Integr Agric, 2018,17:2648-2661.
doi: 10.1016/S2095-3119(18)62086-6
[4] 张士昌, 史占良, 李孟军, 李亚青, 底瑞耀, 李雁鸣 . 长期定位氮胁迫对小麦碳氮代谢氮素利用及产量的影响. 河南农业科学, 2016,45(12):13-19.
Zhang S C, Shi Z L, Li M J, Li Y Q, Di R Y, Li Y M . Effect of long-term nitrogen stress on carbon and nitrogen metabolism nitrogen use efficiency and yield of wheat. J Henan Agric Sci, 2016,45(12):13-19 (in Chinese with English abstract).
[5] Papakosta D K, Gagianas A A . Nitrogen and dry matter accumulation, remobilization, and losses for Mediterranean wheat during grain filling. Agron J, 1991,83:864-870.
doi: 10.2134/agronj1991.00021962008300050018x
[6] Prystupa P, Savin R, Slafer G A . Grain number and its relationship with dry matter, N and P in the spikes at heading in response to N×P fertilization in barley. Field Crops Res, 2004,90:245-254.
doi: 10.1016/j.fcr.2004.03.001
[7] Madani A, Shirani-Rad A, Pazoki A, Nourmohammadi G, Zarghami R, Mokhtassi-Bidgol A . The impact of source or sink limitations on yield formation of winter wheat(Triticum aestivum L.) due to post-anthesis water and nitrogen deficiencies. Plant Soil Environ, 2010,56:218-227.
[8] 杨慧勇, 林凡云, 陆琼娴, 徐剑宏, 史建荣 . 中国冬、春性小麦品种遗传多样性的微卫星标记分析. 麦类作物学报, 2007,27:555-559.
Yang H Y, Lin F Y, Lu Q X, Xu J H, Shi J R . Genetic diversity of Chinese winter and spring wheat varieties detected by microsatellite markers. J Triticeae Crops, 2007,27:555-559 (in Chinese with English abstract).
[9] Li A L, Liu D C, Yang W Y, Kishii M, Mao L . Synthetic hexaploid wheat: yesterday, today, and tomorrow. Engineering, 2018,4:552-558.
doi: 10.1016/j.eng.2018.07.001
[10] Tang Y L, Rosemarne G M, Li C S, Wu X L, Yang W Y, Wu C . Physiological factors under pinning grain yield improvement of synthetic derived wheat in southeastern China. Crop Sci, 2015,55:98-112.
doi: 10.2135/cropsci2014.02.0124
[11] 李俊, 魏会廷, 胡晓蓉, 李朝苏, 汤永禄, 刘登才, 杨武云 . 川麦42中源于人工合成小麦的一个高产位点鉴定. 作物学报, 2011,37:255-262.
Li J, Wei H T, Hu X R, Li C S, Tang Y L, Liu D C, Yang W Y . Identification of a high-yield introgression locus from synthetic hexaploid wheat in Chuanmai 42. Acta Agron Sin, 2011,37:255-262 (in Chinese with English abstract).
[12] 汤永禄, 李朝苏, 吴晓丽, 吴春, 杨武云, 黄钢, 马孝玲 . 人工合成小麦衍生品种的物质积累、冠层结构及群体光合特性. 中国农业科学, 2014,47:844-855.
Tang Y L, Li C S, Wu X L, Wu C, Yang W Y, Huang G, Ma X L . Accumulation of dry matter, canopy structure and photosynthesis of synthetic hexaploid wheat-derived high-yielding varieties grown in Sichuan Basin, China. Sci Agric Sin, 2014,47:844-855 (in Chinese with English abstract).
[13] 李朝苏, 汤永禄, 吴春, 吴晓丽, 黄钢, 何刚, 郭大明 . 施氮量对四川盆地小麦生长及灌浆的影响. 植物营养与肥料学报, 2015,21:873-883.
Li C S, Tang Y L, Wu C, Wu X L, Huang G, He G, Guo D M . Effect of N rate on growth and grain filling of wheat in Sichuan Basin. Plant Nutr Fert Sci, 2015,21:873-883 (in Chinese with English abstract).
[14] 汤永禄, 吴晓丽, 吴元奇, 李朝苏, 吴春, 郭大明 . 小麦籽粒灌浆参数的基因型差异及其稳定性分析. 中国农业大学学报, 2014,19(1):9-20.
Tang Y L, Wu X L, Wu Y Q, Li C S, Wu C, Guo D M . Analysis of the genotypic variation and stability of grain filling parameters of wheat. J China Agric Univ, 2014,19(1):9-20 (in Chinese with English abstract).
[15] 李俊, 魏会廷, 杨粟洁, 李朝苏, 汤永禄, 胡晓蓉, 杨武云 . 川麦42的1BS染色体臂对小麦主要农艺性状的遗传效应. 作物学报, 2009,35:2167-2173.
Li J, Wei H T, Yang S J, Li C S, Tang Y L, Hu X R, Yang W Y . Genetic effects of 1BS chromosome arm on the main agronomic traits in Chuanmai 42. Acta Agron Sin, 2009,35:2167-2173 (in Chinese with English abstract).
[16] Hawkesford M J, Araus J L, Park R, Calderini D, Miralles D, Shen T M, Zhang J P, Parry M A J . Prospects of doubling global wheat yields. Food Energy Security, 2013,2:34-48.
doi: 10.1002/fes3.15
[17] Nehe A S, Misra S, Murchie E H, Chinnathambi K, Foulkes M J . Genetic variation in N-use efficiency and associated traits in Indian wheat cultivars. Field Crops Res, 2018,225:152-162.
doi: 10.1016/j.fcr.2018.06.002
[18] 剧成欣, 周著彪, 赵步洪, 王志琴, 杨建昌 . 不同氮敏感性粳稻品种的氮代谢与光合特性比较. 作物学报, 2018,44:405-413.
Ju C X, Zhou Z B, Zhao B H, Wang Z Q, Yang J C . Comparison in nitrogen metabolism and photosynthetic characteristics between japonica rice varieties differing in nitrogen sensitivity. Acta Agron Sin, 2018,44:405-413 (in Chinese with English abstract).
[19] 韩胜芳, 李淑文, 文宏达, 李雁鸣, 肖凯 . 不同氮效率小麦品种的光合碳同化特性. 植物营养与肥料学报, 2006,12:797-804.
Han S F, Li S W, Wen H D, Li Y M, Xiao K . Characterization of photosynthetic carbon assimilation in wheat varieties with different N efficiency. Plant Nutr Fert Sci, 2006,12:797-804 (in Chinese with English abstract).
[20] 郭文善, 封超年, 严六零, 彭永欣, 朱新开, 宗爱国 . 小麦开花后源库关系分析. 作物学报, 1995,21:334-340.
Guo W S, Feng C N, Yan L L, Peng Y X, Zhu X K, Zong A G . Analysis of source-sink relationship after anthesis in wheat. Acta Agron Sin, 1995,21:334-340 (in Chinese with English abstract).
[21] 曹蓓蓓, 王仕稳, 齐凌云, 陈道钳, 殷俐娜, 邓西平 . 小麦苗期叶片碳氮平衡与低氮诱导的叶片衰老之间的关系. 麦类作物学报, 2017,37:673-679.
Cao B B, Wang S W, Qi L Y, Chen D Q, Yin L N, Deng X P . Carbon/nitrogen balance involved in nitrogen deficiency induced leaf senescence in wheat seedling. J Triticeae Crops, 2017,37:673-679 (in Chinese with English abstract).
[22] 李春燕, 陈思思, 徐雯, 李东升, 顾骁, 朱新开, 郭文善, 封超年 . 苗期低温胁迫对扬麦16叶片抗氧化酶和渗透调节物质的影响. 作物学报, 2011,37:2293-2298.
Li C Y, Chen S S, Xu W, Li D S G X, Zhu X K, Guo W S, Feng C N . Effect of low temperature at seedling stage on antioxidation enzymes and cytoplasmic osmoticum of leaves in wheat cultivar Yangmai 16. Acta Agron Sin, 2011,37:2293-2298 (in Chinese with English abstract).
[23] 龚月桦 . 持绿小麦的筛选及同化物的积累与转运. 西北农林科技大学硕士论文, 陕西杨凌, 2008. pp 12-22.
Gong Y H . The Filtration of Stay Green Wheat and Study on the Accumulation and Transportation of Assimilates in Stay Green Wheat. MS Thesis of Northwest A&F University, Yangling, Shaanxi, China, 2008. pp 12-22 (in Chinese with English abstract).
[1] YAN Jia-Qian, GU Yi-Biao, XUE Zhang-Yi, ZHOU Tian-Yang, GE Qian-Qian, ZHANG Hao, LIU Li-Jun, WANG Zhi-Qin, GU Jun-Fei, YANG Jian-Chang, ZHOU Zhen-Ling, XU Da-Yong. Different responses of rice cultivars to salt stress and the underlying mechanisms [J]. Acta Agronomica Sinica, 2022, 48(6): 1463-1475.
[2] XU Tian-Jun, ZHANG Yong, ZHAO Jiu-Ran, WANG Rong-Huan, LYU Tian-Fang, LIU Yue-E, CAI Wan-Tao, LIU Hong-Wei, CHEN Chuan-Yong, WANG Yuan-Dong. Canopy structure, photosynthesis, grain filling, and dehydration characteristics of maize varieties suitable for grain mechanical harvesting [J]. Acta Agronomica Sinica, 2022, 48(6): 1526-1536.
[3] SHI Yan-Yan, MA Zhi-Hua, WU Chun-Hua, ZHOU Yong-Jin, LI Rong. Effects of ridge tillage with film mulching in furrow on photosynthetic characteristics of potato and yield formation in dryland farming [J]. Acta Agronomica Sinica, 2022, 48(5): 1288-1297.
[4] KE Jian, CHEN Ting-Ting, WU Zhou, ZHU Tie-Zhong, SUN Jie, HE Hai-Bing, YOU Cui-Cui, ZHU De-Quan, WU Li-Quan. Suitable varieties and high-yielding population characteristics of late season rice in the northern margin area of double-cropping rice along the Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(4): 1005-1016.
[5] LIU Yun-Jing, ZHENG Fei-Na, ZHANG Xiu, CHU Jin-Peng, YU Hai-Tao, DAI Xing-Long, HE Ming-Rong. Effects of wide range sowing on grain yield, quality, and nitrogen use of strong gluten wheat [J]. Acta Agronomica Sinica, 2022, 48(3): 716-725.
[6] XIE Cheng-Hui, MA Hai-Zhao, XU Hong-Wei, XU Xi-Yang, RUAN Guo-Bing, GUO Zheng-Yan, NING Yong-Pei, FENG Yong-Zhong, YANG Gai-He, REN Guang-Xin. Effects of nitrogen rate on growth, grain yield, and nitrogen utilization of multiple cropping proso millet after spring-wheat in Irrigation Area of Ningxia [J]. Acta Agronomica Sinica, 2022, 48(2): 463-477.
[7] KE Jian, CHEN Ting-Ting, XU Hao-Cong, ZHU Tie-Zhong, WU Han, HE Hai-Bing, YOU Cui-Cui, ZHU De-Quan, WU Li-Quan. Effects of different application methods of controlled-release nitrogen fertilizer on grain yield and nitrogen utilization of indica-japonica hybrid rice in pot-seedling mechanically transplanted [J]. Acta Agronomica Sinica, 2021, 47(7): 1372-1382.
[8] LIU Qiu-Yuan, ZHOU Lei, TIAN Jin-Yu, CHENG Shuang, TAO Yu, XING Zhi-Peng, LIU Guo-Dong, WEI Hai-Yan, ZHANG Hong-Cheng. Relationships among grain yield, rice quality and nitrogen uptake of inbred middle-ripe japonica rice in the middle and lower reaches of Yangtze River [J]. Acta Agronomica Sinica, 2021, 47(5): 904-914.
[9] ZHENG Ying-Xia, CHEN Du, WEI Peng-Cheng, LU Ping, YANG Jin-Yue, LUO Shang-Ke, YE Kai-Mei, SONG Bi. Effects of planting density on lodging resistance and grain yield of spring maize stalks in Guizhou province [J]. Acta Agronomica Sinica, 2021, 47(4): 738-751.
[10] ZHU Ya-Li, WANG Chen-Guang, YANG Mei, ZHENG Xue-Hui, ZHAO Cheng-Feng, ZHANG Ren-He. Response of grain filling and dehydration characteristics of kernels located in different ear positions in the different maturity maize hybrids to plant density [J]. Acta Agronomica Sinica, 2021, 47(3): 507-519.
[11] ZHANG Yun, WANG Dan-Mei, WANG Xiao-Yuan, REN Qing-Wen, TANG Ke, ZHANG Li-Yu, WU Yu-Huan, LIU Peng. Effects of exogenous jasmonic acid on photosynthetic characteristics and cadmium accumulation of Helianthus tuberosus L. under cadmium stress [J]. Acta Agronomica Sinica, 2021, 47(12): 2490-2500.
[12] HU Xin-Hui, GU Shu-Bo, ZHU Jun-Ke, WANG Dong. Effects of applying potassium at different growth stages on dry matter accumulation and yield of winter wheat in different soil-texture fields [J]. Acta Agronomica Sinica, 2021, 47(11): 2258-2267.
[13] FENG Ke-Yun, WANG Ning, NAN Hong-Yu, GAO Jian-Gang. Effects of chemical fertilizer reduction with organic fertilizer application under water deficit on photosynthetic characteristics and yield of cotton [J]. Acta Agronomica Sinica, 2021, 47(1): 125-137.
[14] LUO Wen-He, SHI Zu-Jiao, WANG Xu-Min, LI Jun, WANG Rui. Effects of water saving and nitrogen reduction on soil nitrate nitrogen distribution, water and nitrogen use efficiencies of winter wheat [J]. Acta Agronomica Sinica, 2020, 46(6): 924-936.
[15] Zhi-Yuan YANG,Na LI,Peng MA,Tian-Rong YAN,Yan HE,Ming-Jin JIANG,Teng-Fei LYU,Yu LI,Xiang GUO,Rong HU,Chang-Chun GUO,Yong-Jian SUN,Jun MA. Effects of methodical nitrogen-water distribution management on water and nitrogen use efficiency of rice [J]. Acta Agronomica Sinica, 2020, 46(3): 408-422.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!