Acta Agron Sin ›› 2014, Vol. 40 ›› Issue (04): 581-590.doi: 10.3724/SP.J.1006.2014.00581
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
HUANG Zhi-Xiong1,2,WANG Fei-Juan2,JIANG Han2,LI Zhi-Lan3,DING Yan-Fei2,JIANG Qiong2,TAO Yue-Liang4,ZHU Cheng1,2,*
[1]Uraguchi S, Kamiya T, Sakamoto T, Kssai K, Sato Y, Nagamura Y, Yoshida A, Kyozuka J, Ishikawa S, Fujiwara T. Low-affinity cation transporter (OsLCT1) regulates cadmium transport into rice grains. Proc Natl Acad Sci USA, 2011, 108: 20959–20964[2]Ueno D, Koyama E, Yamaji N, Ma J F. Physiological, genetic, and molecular characterization of a high-Cd-accumulating rice cultivars, Jarjan. J Exp Bot, 2011, 62: 2262–2272[3]Uraguchi S, Mori S, Kuramata M, Kawasaki A, Arao T, Ishikawa S. Root-to-shoot Cd translocation via the xylem is the major process determining shoot and grain cadmium accumulation in rice. J Exp Bot, 2009, 60: 2677–2688[4]Takahashi R, Ishimaru Y, Senoura T, Shimo H, Ishikawa S, Arao T, Nakanishi H, Nishizawa N K. The OsNRAMP1 iron transporter is involved in Cd accumulation in rice. J Exp Bot, 2011, 62: 4843–4850[5]Kuramata M, Masuya S, Takahashi Y, Kitagawa E, Inoue C, Ishikawa S, Youssefian S, Kusano T. Novel cysteine-rich peptides from Digitaria ciliaris and Oryza sativa enhance tolerance to cadmium by limiting its cellular accumulation. Plant Cell Physiol, 2009, 50: 106–117[6]Shen G M, Zhu C, Du Q Z. Genome-wide identification of PHYTOCHELATIN and PHYTOCH_SYNTH domain-containing phytochelatin family from rice. Electronic J Biol, 2010, 6:73–79[7]Shimo H, Ishimaru Y, An G, Yamakawa T, Nakanishi H, Nishizawa N K. Low cadmium (LCD), a novel gene related to cadmium tolerance and accumulation in rice. J Exp Bot, 2011, 62: 5727–5734[8]Song W Y, Choi K S, Alexis D A, Martinoia E, Lee Y. Brassica juncea plant cadmium resistance 1 protein (BjPCR1) facilitates the radial transport of calcium in the root. Proc Natl Acad Sci USA, 2010, 108: 1908–19813[9]Song W Y, Choi K S, Kim D Y, Geisler M, Park J, Vincenzetti V, Schellenberg M, Kim S H, Lim Y P, Noh E W, Lee Y, Martinoia E. Arabidopsis PCR2 is a zinc exporter involved in both zinc extrusion and long-distance zinc transport. Plant Cell, 2010, 22: 2237–2252[10]Cobbett C, Goldsbrough P. Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annu Rev Plant Biol, 2002, 53: 159–182[11]Song W Y, Hörtensteiner S, Tomioka R, Lee Y, Martinoia E. Common functions or only phylogenetically related? The large family of PLAC8 motif-containing/PCR genes. Mol Cells, 2011, 31: 1–7[12]Song W Y, Martinoia E, Lee J, Kim D, Kim D Y, Vogt E, Shim D, Choi K S, Hwang I, Lee Y. A novel family of cys-rich membrane proteins mediates cadmium resistance in Arabidopsis. Plant Physiol, 2004, 135: 1027–1039[13]Borsani O, Zhu J, Verslues P E, Sunkar R, Zhu J K. Endogenous siRNAs derived from a pair of natural cis-antisense transcripts regulate salt tolerance in Arabidopsis. Cell, 2005, 123: 1279–1291[14]Carthew R W, Sontheimer E J. Origins and mechanisms of miRNA and siRNAs. Cell, 2009, 136: 642–655[15]Moldovan D, Spriggs A, Yang J, Pogson B J, Dennis E S, Wilson I W. Hypoxia-responsive microRNAs and trans-acting small interfering RNAs in Arabidopsis. J Exp Bot, 2010, 61: 165–177[16]Yan Y, Zhang Y, Sun Z, Fu Y, Chen X, Fang R. Small RNAs from MITE-derived stem-loop precursors regulate abscisic acid signaling and abiotic stress responses in rice. Plant J, 2011, 65: 820–828[17]Yao Y, Ni Z, Peng H, Sun F, Xin M, Sunkar R, Zhu J K, Sun Q. Non-coding small RNAs responsive to abiotic stress in wheat (Triticum aestivum L. ). Funct Integr Genomic, 2010, 10: 187–190[18]Kim V N, Han J, Siomi M C. Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol, 2009, 10: 126–139[19]Hannon G J. RNA interference. Nature, 2002, 418: 244–251[20]Song J J, Smith S K, Hannon G J, Joshua-Tor L. Crystal structure of Argonaute and its implications for RISC slicer activity. Science, 2004, 305: 1434–1437[21]Law J A, Jacobsen S E. Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat Rev Genet, 2010, 11: 204–220[22]Chan S W L, Henderson I R, Jacobsen S E. Gardening the genome: DNA methylation in Arabidopsis thaliana. Nat Rev Genet, 2005, 6: 351–360[23]Boyko A, Blevins T, Yao Y, Golubov A, Bilichak A, Ilnytskyy Y, Hollander J. Transgenerational adaptation of Arabidopsis to stress requires DNA methylation and the function of dicer-like proteins. PLoS One, 2010, 5: e9514[24]Choi C S, Sano H. Abiotic-stress induces demethylation and transcriptional activation of a gene encoding a glycerophosphodiesterase-like protein in tobacco plants. Mol Genet Genomics, 2007, 277: 589–600[25]Greco M, Chiappetta A, Bruno L, Bitonti M B. In Posidonia oceanica cadmium induces changes in DNA methylation and chromatin patterning. J Exp Bot, 2012, 63: 695–709[26]Verhoeven K J F, Jansen J J, Dijk P J, Biere A. Stress-induced DNA methylation changes and their heritability in asexual dandelions. New Phytol, 2010, 185: 1108–1118[27]Raj S, Brautigen K, Hamanishi E T, Wilkins O, Thomas B R, Schroeder W, Mansfield S D, Plant A L, Campbell M M. Clone history shapes populous drought response. Proc Natl Acad Sci USA, 2011, 108: 12521–12526[28]Ball M P, Li J B, Gao Y, Lee J H, LeProust E M, Park I H, Xie B, Daley G Q, Church G M. Targeted and genome-scale strategies reveal gene-body methylation signatures in human cells. Nat Biotechnol, 2009, 27: 361–368[29]Hellman A, Chess A. Gene Body-specific methylation on the active X chromosome. Science, 2007, 315: 1141–1143[30]Lister R, Pelizzola M, Dowen R H, Hawkins R D, Hon G, Tonti-Filippini J, Nery J R, Lee L, Ye Z, Ngo Q M, Edsall L, Antosiewicz-Bourget J, Stewart R, Ruotti V, Millar A H, Thomson J A, Ren B, Ecker J R. Human DNA methylomes at base resolution show widespread epigenomic differences. Nature, 2009, 462: 315–322[31]Kawanabe T, Fujimoto R, Sasaki T, Taylor J M, Dennis E S. A comparison of transcriptome and epigenetic status between closely related species in the genus Arabidopsis. Gene, 2012, 506: 301–309[32]Zilberman D, Gehring M, Tran R K, Ballinger T, Henikoff S. Genome-wide analysis of Arabidopsis thaliana DNA methylation uncovers an interdependence between methylation and transcription. Nat Genet, 2007, 39: 61–69[33]Suzuki M M, Bird A. DNA methylation landscapes: provocative insights from epigenomics. Nat Rev Genet, 2008, 9: 465–476[34]He J, Zhu C, Ren Y, Yan Y, Jiang D. Genotypic variation in grain cadmium concentration of lowland rice. J Plant Nutr Soil Sci, 2006, 169: 711–716 [35]何俊瑜,任艳芳,朱诚,蒋德安. 镉胁迫对不同水稻品种种子萌发、幼苗生长和淀粉酶活性的影响. 中国水稻科学, 2008, 22: 399–404 He J Y, Ren Y F, Zhu C, Jiang D A. Effects of cadmium stress on seed germination, seedling growth, and amylase activities in rice. Chin J Rice Sci, 2008, 22: 399–404 (in Chinese with English abstract)[36]Ding Y, Chen Z, Zhu C. Microarray-based analysis of cadmium-responsive microRNAs in rice (Oryza sativa). J Exp Bot, 2011, 62: 3563–3573 [37]Pfaffl M W. A new mathematical model for relative quantification in real-time RT-PCR. Nucl Acids Res, 2001, 29: e45[38]Serra I A, Procaccini G, Intrieri M C, Migliaccio M, Mazzuca S, Innocenti A M. Comparison of ISSR and SSR markers for analysis of genetic diversity in the seagrass Posidonia oceanica. Marine Ecology Progress Series, 2007, 338: 71–79[39]Teixeira F K, Heredia F, Sarazin A, Roudier F, Boccara M, Ciaudo C, Cruaud C, Poulain J, Berdasco M, Fraga M F, Voinnet O, Wincker P, Esteller M, Colot V. A role for RNAi in the selective correction of DNA methylation defects. Science, 2009, 323: 1600–1604[40]Johnson C, Bowman L, Adai A T, Vance V, Sundaresan V. CSRDB: a small RNA integrated database and browser resource for cereals. Nucleic Acids Res, 2007, 35: D829–D833[41]Brandeis M, Ariel M, Cedar H. Dynamics of DNA methylation during development. Bioessays, 1993, 15: 709–713[42]赵嵘, 胡丽玲, 孔繁强, 左爱军. PXR基因外显子3甲基化与肠癌细胞对5氟尿嘧啶的耐药性相关. 中国生物化学与分子生物学报, 2013, 29: 63–69Zhao R, Hu L L, Kong F Q, Zuo A J. Association between pregnane X receptor gene exon3 methylation with 5-fluorouracil resistance of the colon cancer cells. Chin J Biochem Mol Biol, 2013, 29: 63–69 (in Chinese with English abstract)[43]Hohn T, Corsten S, Rieke S, Muller M, Rothnie H. Methylation of coding region alone inhibits gene expression in plant protoplasts. Proc Natl Acad Sci USA, 1996, 93: 8334–8339[44]Rountree M R, Selker E U. DNA methylation inhibits elongation but not initiation of transcription in Neurospora crassa. Genes Dev, 1997, 11: 2383–2395[45]Xiao Z, Wang C, Mo D, Li J, Chen Y, Zhang Z, Cong P. Promoter CpG methylation status in porcine Lyn is associated with its expression levels. Gene, 2012, 511: 73–78[46]Foret S, Kucharski R, Pellegrini M, Feng S, Jacobsen S E, Robinson G E, Maleszka R. DNA methylation dynamics, metabolic fluxes, genesplicing, and alternative phenotypes in honey bees. Proc Natl Acad Sci USA, 2012, 109: 4968–4973[47]Shukla S, Kavak E, Gregory M, Imashimizu M, Shutinoski B, Kashlev M, Oberdoerffer P, Sandberg R, Oberdoerffer S. CTCF-promoted RNA polymerase II pausing links DNA methylation to splicing. Nature, 2011, 479: 74–79 |
[1] | ZHANG Yun, WANG Dan-Mei, WANG Xiao-Yuan, REN Qing-Wen, TANG Ke, ZHANG Li-Yu, WU Yu-Huan, LIU Peng. Effects of exogenous jasmonic acid on photosynthetic characteristics and cadmium accumulation of Helianthus tuberosus L. under cadmium stress [J]. Acta Agronomica Sinica, 2021, 47(12): 2490-2500. |
[2] | ZHANG Xiao-Qiong, WANG Xiao-Wen, TIAN Wei-Jiang, ZHANG Xiao-Bo, Sun Ying, LI Yang-Yang, Xie Jia, HE Guang-Hua,SANG Xian-Chun. LAZY1 Regulates the Development of Rice Leaf Angle through BR Pathway [J]. Acta Agron Sin, 2017, 43(12): 1767-1773. |
[3] | ZHONG Jie,WEN Pei-Zheng,SUN Zhi-Guang,XIAO Shi-Zhuo,HU Jin-Long,ZHANG Le,JIANG Ling,CHENG Xia-Nian,LIU Yu-Qiang,WAN Jian-Min. Identification of QTLs Conferring Small Brown Planthopper Resistance in Rice (Oryza sativa L.) Using MR1523/Suyunuo F2:3 Population [J]. Acta Agron Sin, 2017, 43(11): 1596-1602. |
[4] | ZHOU Ke,LI Yan,WANG Shi-Ming,CUI Guo-Qing,YANG Zheng-Lin,HE Guang-Hua,LING Ying-Hua,ZHAO Fang-Ming. Identification of Rice Chromosome Segment Substitution Line Z519 with Purple Sheath and Candidate Gene Analysis of PSH1 [J]. Acta Agron Sin, 2017, 43(07): 974-982. |
[5] | YANG Bo,XIA Min, ZHANG Xiao-Bo,WANG Xiao-Wen,ZHU Xiao-Yan,HE Pei-Long,HE Guang-Hua,SANG Xian-Chun*. Identification and Gene Mapping of an Early Senescent Leaf Mutant esl6 in Oryza sativa L. [J]. Acta Agron Sin, 2016, 42(07): 976-983. |
[6] | ZHANG Tian-Quan,GUO Shuang,XING Ya-Di,DU Dan,SANG Xian-Chun,LING Ying-Hua,HE Guang-Hua. Molecular Mapping of a New Yellow Green Leaf Gene YGL9 in Rice (Oryza sativa L.) [J]. Acta Agron Sin, 2015, 41(07): 989-997. |
[7] | ZHONG Zhen-Quan,LUO Wen-Long,LIU Yong-Zhu,WANG Hui,CHEN Zhi-Qiang,GUO Tao. Characterization of a Novel Spotted Leaf Mutant spl32 and Mapping of Spl32(t) Gene in Rice (Oryza sativa) [J]. Acta Agron Sin, 2015, 41(06): 861-871. |
[8] | TAN Yan-Ning,SUN Xue-Wu,YUAN Ding-Yang,SUN Zhi-Zhong,YU Dong,HE Qiang,DUAN Mei-Juan,DENG Hua-Feng,YUAN Long-Ping. Identification and Fine Mapping of Green-Revertible Chlorina Gene grc2 in Rice (Oryza sativa L.) [J]. Acta Agron Sin, 2015, 41(06): 831-837. |
[9] | WANG Xing-Chun,WANG Min,JI Zhi-Juan,CHEN Zhao,LIU Wen-Zhen,HAN Yuan-Huai,YANG Chang-Deng. Functional Characterization of the Glycoside Hydrolase Encoding Gene OsBE1 during Chloroplast Development in Oryza sativa [J]. Acta Agron Sin, 2014, 40(12): 2090-2097. |
[10] | WANG Bao-Xiang,HU Jin-Long,SUN Zhi-Guang,SONG Zhao-Qiang,LU Bai-Guan,ZHOU Zhen-Ling,FAN Ji-Wei,QIN De-Rong,LIU Yu-Qiang,JIANG Ling,XU Da-Yong,WAN Jian-Min. An Evaluation System for Rice Black-Streaked Dwarf Virus Disease and Screening for Resistant Rice Germplasm [J]. Acta Agron Sin, 2014, 40(09): 1521-1530. |
[11] | MA Jiao,REN De-Yong,WU Guo-Chao,ZHU Xiao-Yan,MA Ling,SANG Xian-Chun,LING Ying-Hua,HE Guang-Hua. Genetic Analysis and Gene Mapping of a Marginal Albino Leaf Mutant mal in Rice [J]. Acta Agron Sin, 2014, 40(04): 591-599. |
[12] | GUO Tao,HUANG Yong-Xiang,LUO Wen-Long,HUANG Xuan,WANG Hui,CHEN Zhi-Qiang,LIU Yong-Zhu. Gene Differential Expression of a Green-revertible Albino and High-tillering Dwarf Mutant hfa-1 by Using Rice Microarray [J]. Acta Agron Sin, 2013, 39(12): 2123-2134. |
[13] | CHEN Da-Gang,ZHOU Xin-Qiao,LI Li-Jun,LIU Chuan-Guang,ZHANG Xu,CHEN You-Ding. Relationship between Root Morphological Characteristics and Yield Components of Major Commercial Indica Rice in South China [J]. Acta Agron Sin, 2013, 39(10): 1899-1908. |
[14] | ZHAO Xu-Bo,LI Ai-Li,MAO Long*. Progress on Gene Regulatory Mechanisms by Small RNAs during Plant Polyploidization [J]. Acta Agron Sin, 2013, 39(08): 1331-1338. |
[15] | LI Hong-Yan**,WANG Si-Zhe**,SHAHID Muhammad Qasim**,CHEN Zhi-Xiong,WANG Lan,CHEN Feng-Yi,LIU Xiang-Dong*,LU Yong-Gen*. Excavation of Neutral Alleles San, Sbn, and Scn from the Rice Germplasm Harboring S5n Gene [J]. Acta Agron Sin, 2013, 39(08): 1366-1376. |
|