Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2015, Vol. 41 ›› Issue (07): 989-997.doi: 10.3724/SP.J.1006.2015.00989

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS •     Next Articles

Molecular Mapping of a New Yellow Green Leaf Gene YGL9 in Rice (Oryza sativa L.)

ZHANG Tian-Quan**,GUO Shuang**,XING Ya-Di,DU Dan,SANG Xian-Chun,LING Ying-Hua,HE Guang-Hua*   

  1. Rice Research Institute, Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Chongqing 400716, China
  • Received:2014-12-23 Revised:2015-04-02 Online:2015-07-12 Published:2015-05-15
  • Contact: 何光华,E-mail: hegh@swu.edu.cn E-mail:zhangt_q@163.com

Abstract:

Leaf color mutants are ideal materials in illuminating molecular mechanism of photosynthesis, chlorophyll metabolic pathway and chloroplast development. A novel mutant named yellow green leaf 9 (ygl9) was isolated from the progeny of ethyl methane sulfonate (EMS) treated Jinhui10 (Oryza sativa L. ssp. indica) and displayed yellow-green leaves at the seedling stage while light green at the heading stage. Compared with those of the wild type, the photosynthetic pigments of the ygl9 mutant reduced very significantly before the tillering stages and significantly in the heading stage. However, there was no obvious changing for net photosynthetic rate between the wild type and the mutant. The characteristics of stomata length, stomatal conductance and transpiration rate increased significantly in the ygl9. The observation by transmission electron microscope showed that the ygl9 mutant contained comparable chloroplasts with more osmiophilic granules, fuzzy grana and fewer/looser stroma lamella to the wild type. Genetic analysis suggested that the mutational trait was controlled by a single recessive gene. Using 759 mutational individuals from the F2 generation of Xinong 1A/ygl9, the YGL9 locus was finally mapped on the short arm of chromosome 3 between SSR marker S03-1 and InDel marker Ind03-19 with genetic distances of 0.13 cM and 0.07 cM respectively, and the physical distance was only 63 kb. These results provided a foundation for map-based cloning and functional analysis of YGL9 gene.

Key words: Rice (Oryza sativa L.), Yellow Green Leaf Mutant, Genetic analysis, Gene mapping

[1]Carol P, Stevenson D, Bisanz C, Breitenbach J, Sandamann G, Mache R, Coupland G, Kuntz M. Mutations in the Arabidopsis gene IMMUTANTS cause a variegated phenotype by inactivating a chloroplast terminal oxidase associated with phytoene desaturation. Plant Cell, 1999, 11: 57–68



[2]Mao D H, Yu H H, Liu T M, Yang G Y, Xing Y Z. Two complementary recessive genes in duplicated segments control etiolation in rice. Theor Appl Genet, 2011, 122: 373–383



[3]Lonosky P M, Zhang X S, Honavar V G. A proteomic analysis of maize chloroplast biogenesis. Plant Physiol, 2004, 134: 560–574



[4]Zhao Y, Du L F, Yang S H, Li S C, Zhang Y Z. Chloroplast composition and structure differences in a chlorophyll-reduced mutant of oilseed rape seedlings. Acta Bot Sin, 2001, 43: 877–880



[5]Falbel T G, Meehl J B, Staehelin L A. Severity of mutant phenotypein a series of chlorophyll-deficient wheat mutants depends on light intensity and the severity of the block in chlorophyll synthesis. Plant Physiol, 1996, 112: 821–832



[6]Stockinger E J, Walling L L. A chlorophyll a/b-binding protein gene from soybean. Plant Physiol, 1994, 104: 1475–1476



[7]黄晓群, 赵海新, 董春林, 孙业盈, 王平荣, 邓晓建. 水稻叶绿素合成缺陷突变体及其生物学研究进展. 西北植物学报, 2005, 25: 1685–1691



   Huang X Q, Zhao H X, Dong C L, Sun Y Y, Wang P R, Deng X J. Chlorophyll-deficient rice mutants and their research advances in biology. Acta Bot Boreal, 2005, 25: 1685–1691(in Chinese with English abstract)



[8]邓晓娟, 张海清, 王悦, 舒志芬, 王国槐, 王国梁. 水稻叶色突变基因研究进展. 杂交水稻, 2012, 27: 9–14



   Deng X J, Zhang H Q, Wang Y, Shu Z F, Wang G W, Wang G L. Research progress of rice leaf coloration genes. Hybrid Rice, 2012, 27: 9–14 (in Chinese with English abstract)



[9]Miyoshi K, Ito Y, Serizawa A, Kurata N. OsHAP3 genes regulate chloroplast biogenesis in rice. Plant J, 2003, 36: 532–540



[10]Lee S, Kim J H, Yoo E S, Lee C H, Hirochika H, An G. Differential regulation of chlorophyll a oxygenase genes in rice. Plant Mol Biol, 2005, 57: 805–818



[11]Jung K H, Hur J, Ryu C H, Choi Y, Chung Y Y, Miyao A, Hirochika H, An G. Characterization of a rice chlorophyll-deficient mutant using the T-DNA gene-trap system. Plant Cell Physiol, 2003, 44: 463–472



[12]Zhang H, Li J, Yoo J H, Yoo S C, Cho S H, Koh H J, Seo H S, Paek N C. Rice Chlorina-1 and Chlorina-9 encode ChlD and ChlI subunits of Mg-chelatase, a key enzyme for chlorophyll synthesis and chloroplast development. Plant Mol Biol, 2006, 62: 325–337



[13]Wang P R, Gao J X, Wan C M, Zhang F T, Xu Z J, Huang X Q, Sun X Q, Deng X J. Divinyl chlorophyll(ide) α can be converted to monovinyl chlorophyll(ide) α by a divinyl reductase in rice. Plant Physiol, 2010, 153: 994–1003



[14]Dong H, Fei G L, Wu C Y, Wu F Q, Sun Y Y, Chen M J, Ren Y L, Zhou K N, Cheng Z J, Wang J L, Jiang L, Zhang X, Guo X P, Lei C L, Su N, Wang H Y, Wan J M. A rice virescent-yellow leaf mutant reveals new insights into the role and assembly of plastid caseinolytic protease in higher plants. Plant Physiol, 2013, 162: 1867–1880



[15]Wu Z M, Zhang X, He B, Diao L P, Sheng S L, Wang J L, Guo X P, Su N, Wang L F, Jiang L, Wang C M, Zhai H Q, Wan J M. A chlorophyll-deficient rice mutant with impaired chlorophyllide esterification in chlorophyll biosynthesis. Plant Physiol, 2007, 145: 29–40



[16]Chen H, Cheng Z J, Ma X D, Wu H, Liu Y L, Zhou K N, Chen Y L, Ma W Wi, Bi J C, Zhang X, Guo X P, Wang J L, Lei C L, Wu F Q, Lin Q B, Liu Y Q, Liu L L, Jiang L. A knockdown mutation of YELLOW-GREEN LEAF 2 blocks chlorophyll biosynthesis in rice. Plant Cell Rep, 2013, 32: 1855–1867



[17]Lichtenthaler H K. Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol, 1987, 148: 350–382



[18]何瑞峰, 丁毅, 余金洪, 祖明生. 水稻温敏叶绿素突变体叶片超微结构的研究. 武汉植物学研究, 2001, 19: 1–5



He R F, Ding Y, Yu J H, Zu M S. Study on leaf ultrastructure of the thermo-sensitive chlorophyll deficient mutant in rice. J Wuhan Bot Res, 2001, 19: 1–5 (in Chinese with English abstract)



[19]Michelmore R W, Paran I, Kesseli R V. Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA, 1991, 88: 9828–9832



[20]Murray M G, Thompson W F. Rapid isolation of high molecular weight plant DNA. Nucl Acids Res, 1980, 8: 4321–4325



[21]桑贤春, 何光华, 张毅, 杨正林, 裴炎. 水稻PCR扩增模板的快速制备. 遗传, 2003, 25: 705–707



Sang X C, He G H, Zhang Y, Yang Z L, Pei Y. The simple gain of templates of rice genomes DNA for PCR. Hereditas (Beijing), 2003, 25: 705–707 (in Chinese with English abstract)



[22]Panaud O, Chen X, McCouch S R. Development of microsatellite markers and characterization of simple sequence length polymorphism (SSLP) in rice (Oryza sativa L.). Mol Gen Genet, 1996, 252: 597–607



[23]Lander E S, Green P, Abrahamson J, Barlow A, Daly M J, Lincoln S E, Newburg L. MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics, 1987, 1: 174–181



[24]Kosambi D D. The estimation of map distances from recombination values. Ann Eugen, 1944, 12: 172–175



[25]李燕群, 高家旭, 肖云华, 李秀兰, 蒲翔, 孙昌辉, 王平荣, 邓晓建. 水稻ygl80黄绿叶突变体的遗传分析与目标基因精细定位. 作物学报, 2014, 40: 644–649



Li Y Q, Gao J X, Xiao Y H, Li X L, Pu X, Sun C H, Wang P R, Deng X J. Genetic analysis and gene fine mapping of yellow-green leaf mutant ygl80 in rice. Acta Agron Sin, 2014, 40: 644–649 (in Chinese with English abstract)



[26]Tian X Q, Ling Y H, Fang L K, Du P, Sang X C, Zhao F M, Li Y F, Xie R, He G H. Gene cloning and functional analysis of yellow green leaf 3 (ygl3) gene during the whole-plant growth stage in rice. Genes Genom, 2013, 35: 87–93



[27]Deng X J, Zhang H Q, Wang Y, He F, Liu J L, Xiao X, Shu Z F, Li W, Wang G H, Wang G L. Mapped clone and functional analysis of leaf-color gene ygl7 in a rice hybrid (Oryza sativa L. ssp. indica). PLoS One, 2014, 9(6): e99564



[28]刘梦梦, 桑贤春, 凌英华, 杜鹏, 赵芳明, 杨正林, 何光华. 水稻黄绿叶基因YGL4的遗传分析和分子定位. 作物学报, 2009, 35: 1405–1409



Liu M M, Sang X C, Ling Y H, Du P, Zhao F M, Yang Z L, He G H. Genetic analysis and molecular mapping of a yellow-green leaf gene (YGL4) in rice (Oryza sativa L.). Acta Agron Sin, 2009, 35: 1405–1409 (in Chinese with English abstract)



[29]Zhou K N, Ren Y L, Lü J, Wang Y H, Liu F, Zhou F, Zhao S L, Chen S H, Peng C, Zhang X, Guo X P, Cheng Z J, Wang J L, Wu F Q, Jiang L, Wan J M. Young Leaf Chlorosis 1, a chloroplast-localized gene required for chlorophyll and lutein accumulation during early leaf development in rice. Planta, 2013, 237: 279–292



[30]Xing C, Wang G X, Huang J L, Wu J Z. Research on chlorophyll mutation of plants and molecular mechanism. Biotechnol Bull, 2008, 5: 10–12



[31]吕典华, 宗学凤, 王三根, 凌英华, 桑贤春, 何光华. 两个水稻叶色突变体的光合特性研究. 作物学报, 2009, 35: 2304–2308



Lü D H, Zong X F, Wang S G, Ling Y H, Sang X C, He G H. Characteristics of photosynthesis in two leaf color mutants of rice. Acta Agron Sin, 2009, 35: 2304–2308 (in Chinese with English abstract)



[32]陶勤南, 吴良欢, 方萍, 陈峰. 不同叶色水稻叶绿体密度及基粒结构的计算机图象分析. 植物生理学报, 1992, 18: 126–132



Tao Q N, Wu L H, Fang P, Chen F. Computer image analysis of rice chloroplast density and grana structure between different leaf color. Acta Photophysiol Sin, 1992, 18: 126–132 (in Chinese with English abstract)



[33]欧立军. 水稻叶色突变体的高光合特性. 作物学报, 2011, 37: 1860–1867



    Ou L J. High photosynthetic efficiency of leaf colour mutant of rice (Oryza sativa L.). Acta Agron Sin, 2011, 37: 1860–1867(in Chinese with English abstract)



[34]Mullineaux P, Karpinski S. Signal transduction in response to excess light: Getting out of the chloroplast. Curr Opin Plant Biol, 2002, 5: 43–48 



[35]Vandenabeele S, Van Der Kelen K, Dat J, Gadjev I, Boonefaes T, Morsa S, Rottiers P, Slooten L, Montagu M V, Zabeau M, Inze D, Van Breusegem F. A comprehensive analysis of hydrogen peroxide-induced gene expression in tobacco. Proc Natl Acad Sci USA, 2003, 100: 16113–16118



[36]王淑娟, 郭军, 段迎辉, 于秀梅, 康振生. 小麦叶绿体信号识别颗粒54基因的克隆与分析. 西北植物学报, 2008, 28: 1501–1506



Wang S J, Guo J, Duan Y H, Yu X M, Kang Z S. Cloning and analysis of the chloroplast signal recognition particle 54 gene from wheat. Acta Bot Boreali-Occident Sin, 2008, 28: 1501–1506 (in Chinese with English abstract)



[37]Klimyuk V I, Persello-Cartieaux F, Havaux M, Contard-David P, Schuenemann D, Meiherhoff K, Gouet P, Jones J D, Hoffman N E, Nussaume L. A chromodomain protein encoded by the Arabidopsis CAO gene is a plant-specific component of the chloroplast signal recognition particle pathway that is involved in LHCP targeting. Plant Cell, 1999, 11: 87–99



[38]Zhang F T, Luo X D, Hu B L, Wan Y, Xie J K. YGL138(t), encoding a putative signal recognition particle 54 kDa protein, is involved in chloroplast development of rice. Rice, 2013, 6: 7



[39]Christoph O R, Qian D, Amanda R V H, Adrian H E, Michael J W. ATP and AMP mutually influence their interaction with the ATP-binding cassette (ABC) adenylate kinase cystic fibrosis transmembrane conductance regulator (CFTR) at separate binding sites. J Biol Chem, 2013, 288: 27692–27701



[40]张向前, 李晓燕, 朱海涛, 王涛, 解新明. 水稻阶段性返白突变体的鉴定和候选基因分析. 科学通报, 2010 55 (23): 2296–2301



Zhang X Q, Li X Y, Zhu H T, Wang T, Jie X M. Identification and candidate gene analysis of stage green-revertible albino mutant in rice(Oryza Sativa L.). Chin Sci Bull, 2010, 55(23): 2296–2301(in Chinese with English abstract) 



[41]Guo W J , Ho T H D. An abscisic acid-induced protein, HVA22, inhibits gibberellin-mediated programmed cell death in cereal aleurone cells. Plant Physiol, 2008, 147: 1710–1722



[42]Agrawal G K, Yamazaki M, Kobayashi M, Hirochika R, Miyao A, Hirochika H. Screening of the rice viviparous mutants generated by endogenous retrotransposon Tos17 insertion. Tagging of a zeaxanthin epoxidase gene and a novel OsTATC gene. Plant Physiol, 2001, 125: 1248–1257

[1] ZHENG Chong-Ke, ZHOU Guan-Hua, NIU Shu-Lin, HE Ya-Nan, SUN wei, XIE Xian-Zhi. Phenotypic characterization and gene mapping of an early senescence leaf H5(esl-H5) mutant in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1389-1400.
[2] WANG Hao-Rang, ZHANG Yong, YU Chun-Miao, DONG Quan-Zhong, LI Wei-Wei, HU Kai-Feng, ZHANG Ming-Ming, XUE Hong, YANG Meng-Ping, SONG Ji-Ling, WANG Lei, YANG Xing-Yong, QIU Li-Juan. Fine mapping of yellow-green leaf gene (ygl2) in soybean (Glycine max L.) [J]. Acta Agronomica Sinica, 2022, 48(4): 791-800.
[3] LIU Lei, ZHAN Wei-Min, DING Wu-Si, LIU Tong, CUI Lian-Hua, JIANG Liang-Liang, ZHANG Yan-Pei, YANG Jian-Ping. Genetic analysis and molecular characterization of dwarf mutant gad39 in maize [J]. Acta Agronomica Sinica, 2022, 48(4): 886-895.
[4] XU Ning-Kun, LI Bing, CHEN Xiao-Yan, WEI Ya-Kang, LIU Zi-Long, XUE Yong-Kang, CHEN Hong-Yu, WANG Gui-Feng. Genetic analysis and molecular characterization of a novel maize Bt2 gene mutant [J]. Acta Agronomica Sinica, 2022, 48(3): 572-579.
[5] ZHAO Mei-Cheng, DIAO Xian-Min. Phylogeny of wild Setaria species and their utilization in foxtail millet breeding [J]. Acta Agronomica Sinica, 2022, 48(2): 267-279.
[6] JIANG Jian-Hua, ZHANG Wu-Han, DANG Xiao-Jing, RONG Hui, YE Qin, HU Chang-Min, ZHANG Ying, HE Qiang, WANG De-Zheng. Genetic analysis of stigma traits with genic male sterile line by mixture model of major gene plus polygene in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2021, 47(7): 1215-1227.
[7] YIN Ming, YANG Da-Wei, TANG Hui-Juan, PAN Gen, LI De-Fang, ZHAO Li-Ning, HUANG Si-Qi. Genome-wide identification of GRAS transcription factor and expression analysis in response to cadmium stresses in hemp (Cannabis sativa L.) [J]. Acta Agronomica Sinica, 2021, 47(6): 1054-1069.
[8] HUANG Xing, XI Jin-Gen, CHEN Tao, QIN Xu, TAN Shi-Bei, CHEN He-Long, YI Ke-Xian. Identification and expression of PAL genes in sisal [J]. Acta Agronomica Sinica, 2021, 47(6): 1082-1089.
[9] WU Ran-Ran, LIN Yun, CHEN Jing-Bin, XUE Chen-Chen, YUAN Xing-Xing, YAN Qiang, GAO Ying, LI Ling-Hui, ZHANG Qin-Xue, CHEN Xin. Genetic and cytological analysis of male sterile mutant msm2015-1 in mungbean [J]. Acta Agronomica Sinica, 2021, 47(5): 860-868.
[10] JIANG Cheng-Gong, SHI Hui-Min, WANG Hong-Wu, LI Kun, HUANG Chang-Ling, LIU Zhi-Fang, WU Yu-Jin, LI Shu-Qiang, HU Xiao-Jiao, MA Qing. Phenotype analysis and gene mapping of small kernel 7 (smk7) mutant in maize [J]. Acta Agronomica Sinica, 2021, 47(2): 285-293.
[11] GUO Qing-Qing, ZHOU Rong, CHEN Xue, CHEN Lei, LI Jia-Na, WANG Rui. Location and InDel markers for candidate interval of the orange petal gene in Brassica napus L. by next generation sequencing [J]. Acta Agronomica Sinica, 2021, 47(11): 2163-2172.
[12] HUANG Yan, HE Huan-Huan, XIE Zhi-Yao, LI Dan-Ying, ZHAO Chao-Yue, WU Xin, HUANG Fu-Deng, CHENG Fang-Min, PAN Gang. Physiological characters and gene mapping of a dwarf and wide-leaf mutant osdwl1 in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2021, 47(1): 50-60.
[13] JIANG Hong-Rui, YE Ya-Feng, HE Dan, REN Yan, YANG Yang, XIE Jian, CHENG Wei-Min, TAO Liang-Zhi, ZHOU Li-Bin, WU Yue-Jin, LIU Bin-Mei. Identification and gene localization of a novel rice brittle culm mutant bc17 [J]. Acta Agronomica Sinica, 2021, 47(1): 71-79.
[14] SHI Hui-Min, JIANG Cheng-Gong, WANG Hong-Wu, MA Qing, LI Kun, LIU Zhi-Fang, WU Yu-Jin, LI Shu-Qiang, HU Xiao-Jiao, HUANG Chang-Ling. Phenotype identification and gene mapping of defective kernel 48 mutant (dek48) in maize [J]. Acta Agronomica Sinica, 2020, 46(9): 1359-1367.
[15] ZHANG Xue-Cui,ZHONG Chao,DUAN Can-Xing,SUN Su-Li,ZHU Zhen-Dong. Fine mapping of Phytophthora resistance gene RpsZheng in soybean cultivar Zheng 97196 [J]. Acta Agronomica Sinica, 2020, 46(7): 997-1005.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!