Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2015, Vol. 41 ›› Issue (07): 998-1006.doi: 10.3724/SP.J.1006.2015.00998

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Phylogeny of Maize Landraces in Southwestern China Based on Glb 1 Sequences

YAO Qi-Lun1,2,CHEN Fa-Bo1,*,LIU Hong-Fang1,FANG Ping1   

  1. 1 Department of Life Sciences and Technologies, Yangtze Normal University, Chongqing 408100, China; 2 Research Centre for Development and Utility of Unique Resources in the Wulingshan Region, Yangtze Normal University, Chongqing 408100, China
  • Received:2015-01-12 Revised:2015-05-04 Online:2015-07-12 Published:2015-05-15
  • Contact: 陈发波, E-mail: chenfabo963@126.com E-mail:yql641@aliyun.com

Abstract:

To explore the DNA polymorphism of Glb 1 genes in maize landraces from Southwest China, we cloned and sequenced the DNA sequences from 40 maize landraces, and downloaded the homologous sequences of 19 individuals representing common maize, parviglumis, Z. luxurians, and T. dactyloides from GenBank. By aligning these sequences and analyzing DNA variations in Glb 1 loci, we found 35, 25, 33 and 25 polymorphism sites in maize landraces from Sichuan, Chongqing, Yunnan, and Guizhou, respectively. Their genetic polymorphisms were 87%, 86%, 85%, and 71% of that in parviglumis. On the basis of estimates of  per base pair and  per base pair, the highest level of sequence variation was found in parviglumis, followed in turn by maize landraces from Sichuan, landraces from Chongqing, landraces from Yunnan, landraces from Guizhou, common maize, T. dactyloides, and Z. luxurians. The estimates of Tajima's and Fu and Li’s D statistic for Glb 1 gene were negative in the eight taxa, suggesting that neutrality cannot be rejected. In comparison, more fixed differences than shared polymorphisms between maize landraces and parviglumis, Z. luxurians, as well as T. dactyloides were found. The genealogical and network analysis provided the evidence for the genus Zea taxonomy. Additionally, genetic diversity of landraces was greater in Sichuan than in the other three regions. This result supports the hypothesis that the first maize migration was from India to Sichuan by way of Tibet in China.

Key words: Maize landraces, Glb 1 genes, Sequence polymorphism

[1]刘纪麟. 玉米育种学. 北京: 中国农业出版社, 2000. pp 1–22



   Liu J L. Maize Breeding. Beijing: Chinese Agriculture Press, 2000. pp 1–22 (in Chinese)



[2]荣廷昭, 李晚忱, 杨克诚, 张彪, 张述宽, 唐洪军, 番兴明. 西南生态区玉米育种. 北京: 中国农业出版社, 2003. pp 46–64



   Rong T Z, Li W C, Yang K C, Zhang B, Zhang S K, Tang H J, Fan X M. Maize Breeding in Southwest China. Beijing: Chinese Agriculture Press, 2003. pp 46–64 (in Chinese)



[3]柏光晓, 任洪. 贵州省玉米地方种质资源现状与利用潜力. 作物杂志, 1998, (增刊1): 47–49



    Bai G X, Ren H. Utilization potential on maize landrace germplasm in Guizhou Province. Crops, 1998, (suppl-1): 47–49 (in Chinese with English abstract)



[4]晏庆九, 张健, 许明陆. 三峡库区72份玉米地方品种产量性状的评价. 植物遗传资源学报, 2001, 2(1): 12–17



    Yan Q J, Zhang J, Xu M L. Evaluation on economic traits of 72 maize landraces in Three Gorges Reservoir. J Plant Genet Resour, 2001, 2(1): 12–17 (in Chinese with English abstract)



[5]霍仕平, 张健, 晏庆九, 张兴端, 许明陆, 宋光英, 李雪树. 中国西南山区玉米杂交种的种质基础. 玉米科学, 2002, 10(2): 3–6



    Huo S P, Zhang J, Yan Q J, Zhang X D, Xu M L, Song G Y, Li X S. Germplasm foundation of maize hybrids in South Western China. J Maize Sci, 2002, 10(2): 3–6 (in Chinese with English abstract)



[6]李高科, 潘光堂. 西南玉米区种质利用现状及研究进展. 玉米科学, 2005, 13(2): 3–7



   Li G K, Pan G T. Utilization situation and research progress of maize germplasm in South Western China. J Maize Sci, 2005, 13(2): 3–7 (in Chinese with English abstract)



[7]田孟良, 黄玉碧, 刘永建, 荣廷昭. SSR标记揭示的云南省、贵州省糯玉米与普通玉米种质资源的遗传差异. 四川农业大学学报, 2003, 21: 213–216



   Tian M L, Huang Y B, Liu Y J, Rong T Z. Genetic difference between Zea mays sinensis and Zea mays iadurata from Guizhou and Yunnan Province revealed by SSR markers. J Sichuan Agric Univ, 2003, 21: 213–216 (in Chinese with English abstract)



[8]吴渝生, 郑用琏, 孙荣, 伍少云, 顾红波, 毕有华. 基于SSR标记的云南糯玉米、爆裂玉米地方种质遗传多样性研究. 作物学报, 2004, 30: 36–42



   Wu Y S, Zheng Y L, Sun R, Wu S Y, Gu H B, Bi Y H. Genetic diversity of waxy corn and popcorn landraces in Yunnan by SSR markers. Acta Agron Sin, 2004, 30: 36–42 (in China with English abstract)



[9]Liu Y J, Huang Y B, Rong T Z, Tian M L, Yang J P. Comparative analysis of genetic diversity in landraces of waxy maize from Yunnan and Guizhou using SSR markers. Agric Sci China, 2005, 4: 648–653



[10]Yao Q L, Yang K C, Pan G T, Rong T Z. Genetic diversity of maize (Zea mays L.) landraces from southwest China based on SSR data. J Genet, 2007, 34: 851–860



[11]Schwartz D. Analysis of the size alleles of the Pro gene in maize-evidence for a mutant protein processor. Mol Gen Genet, 1979, 174: 233–240



[12]Belanger C, Kriz A L. Molecular characterization of the major maize embryo globulin encoded by the Glb 1 gene. Plant Physiol, 1989, 91: 636–643



[13]Hilton H, Gaut B S. Speciation and domestication in maize and its wild relatives: evidence from the Globulin-1 gene. Genetics, 1998, 150: 863–872



[14]Tiffin P, Gaut B S. Sequence diversity in the tetraploid Zea perennis and the closely related diploid Zea diploperennis: Insights from four nuclear loci. Genetics, 2001, 158: 401–412



[15]田孟良, 黄玉碧, 谭功燮, 刘永建, 荣廷昭. 西南糯玉米地方品种Waxy基因序列多态性分析. 作物学报, 2008, 34: 729–736



    Tian M L, Huang Y B, Tan G X, Liu Y J, Rong T Z. Sequence polymorphism of Waxy genes in landraces of waxy maize from southwest China. Acta Agron Sin, 2008, 34: 729–736 (in Chinese with English abstract)



[16]Doyle J J, Doyle J L. A rapid DNA isolation procedure for small quantities of fresh tissue. Phytochem Bull, 1987, 19: 11–15



[17]Rozas J, Sa?nchez-DelBarrio J C, Messeguer X, Rozas R. DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics, 2003, 19: 2496–2497



[18]Tajima F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics, 1989, 123: 585–595



[19]Fu Y X, Li W H. Statistical tests of neutrality of mutations. Genetics, 1993, 133: 693–709



[20]Huelsenbeck J P, Ronquist F R. MrBayes: Bayesian inference of phylogenetic trees. Bioinformatics, 2001, 17: 754–755



[21]Bandelt H J, Forster P, Röhl A. Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol, 1999, 16: 37–48



[22]Pond S L, Frost S D, Muse S V. HyPhy: hypothesis testing using phylogenies. Bioinformatics, 2005, 21: 676–679



[23]Hey J. A multi-dimensional coalescent process applied to multi-alleleic selection models and migration models. Theor Pop Biol, 1991, 39: 30–48



[24]Hilton H, Gaut B S. Speciation and domestication in maize and its wild relatives: evidence from the Globulin-1 gene. Genetics, 1998, 150: 863–872



[25]Ohta T, Kimura M. Behavior of neutral mutants influenced by associated over dominant loci in finite populations. Genetics, 1971, 141: 413–429



[26]Buckler E S, Thornsberry J M, Kresovich S. Molecular diversity, structure and domestication of grasses. Genet Res, 2001, 77: 213–218



[27]Chen F C, Li W H. Genomic divergences between humans and other hominoids and the effective population size of the common ancestor of humans and chimpanzees. Am J Hum Genet, 2001, 68: 444–456



[28]胡延吉. 植物育种学. 北京: 中国农业出版社, 2003. pp 21–23



    Hu Y J. Plant Breeding. Beijing: China Agriculture Press, 2003. pp 21–23 (in Chinese)



[29]Iltis H H, Doebley J F. Taxonomy of Zea (Gramineae): II. Subspecific catagories in the Zea mays complex and genetic synopsis. Am J Bot, 67: 994–1004



[30]Yao Q L, Yang K C, Pan G T, Rong T Z. Comparative analysis of B chromosomes and genetic diversity in maize (Zea mays L.) landraces from Southwest China. Agric Sci China, 2007, 6: 559–566

[1] DONG Yi-Bo,PEI Xin-Wu,Yuan Qin-Hua,PENG Yu-Fa. Nucleotide Polymorphism in the Adh2 of Oryza rufipogon Griff. from Hainan Island [J]. Acta Agron Sin, 2009, 35(11): 2122-2126.
[2] SUN Dao-Jie;FENG Yi;WANG Hui;MIN Dong-Hong;LI Xue-Jun. Polymorphism of Wheat TaFT Gene Expressional Sequence and the Impact to Flowering Dates [J]. Acta Agron Sin, 2008, 34(11): 1953-1957.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!