Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2015, Vol. 41 ›› Issue (06): 861-871.doi: 10.3724/SP.J.1006.2015.00861


Characterization of a Novel Spotted Leaf Mutant spl32 and Mapping of Spl32(t) Gene in Rice (Oryza sativa)

ZHONG Zhen-Quan**,LUO Wen-Long**,LIU Yong-Zhu,WANG Hui,CHEN Zhi-Qiang*,GUO Tao*   

  1. National Engineering Research Centre of Plant Space Breeding, South China Agricultural University , Guangzhou 510642, China?
  • Received:2014-11-06 Revised:2015-03-19 Online:2015-06-12 Published:2015-03-30
  • Contact: 郭涛, E-mail: guo.tao@vip.163.com; 陈志强, E-mail: chenlin@scau.edu.cn


A dominant spotted-leaf mutant of rice was isolated from F2 (Yuejingsimiao 2/H4) population. The mutant, designated as spl32 (spotted-leaf 32), initiated brown spots on leaf apex at the panicle differentiation period, and then gradually spread them to whole leaf and sheath. Trypan blue staining indicated that the formation of spots was not caused by cell death. Taken normal green leaf plants segregated from heterozygous F5 as control (CK), we found seeds per panicle and seed setting rate of spotted leaf plants were significantly lower than these of CK. After appearance of spots, the POD activity and MDA content of spl32 were significantly higher than these of CK, while photosynthetic pigment content in spl32 was reduced, without significant changes in chlorophyll fluorescence parameters. The resistance to rice bacterial blight in spl32 was greatly improved by inoculation of Xanthomonas oryzae pv. oryzae at heading period. The spotted-leaf trait of spl32 was verified to be controlled by a dominant gene that temporarily designated as Spl32(t). The novel rice spotted-leaf gene was mapped between markers Ind-c and RM206 on chromosome 11 with a F2 (02428/Spl32) population.

Key words: Rice (Oryza sativa L.), Spotted-leaf mutants, Bacterial blight resistance, Genetic analysis, Mapping

[1]Hu G, Richter T E, Hulbert S H, Pryor T. Disease lesion mimicry caused by mutations in the rust resistance gene rp1. Plant Cell, 1996, 8: 1367–1376

[2]Huang Q N, Yang Y, Shi Y F, Chen J, Wu J L. Recent advances in research on spotted leaf mutants of rice (Oryza sativa). Rice Sci, 2010, 24: 108–115

[3]Dietrich R A, Delaney T P, Uknes S J, Ward E R, Ryals J A, Dangl J L. Arabidopsis mutants simulating disease resistance response. Cell, 1994, 77: 565–577

[4]Dangl J L, Dietrich R A, Richberg M H. Death don't have no mercy: Cell death programs in Plant-Microbe lnteractions. Plant Cell, 1966, 8: 1793–1807

[5]王建军, 朱旭东, 王林友, 张利华, 薛庆中, 何祖华. 水稻类病变突变体lrd40的抗病性与细胞学分析. 中国水稻科学, 2005, 19: 111–116

Wang J J, Zhu X D, Wang L Y, Zhang L H, Xue Q Z, He Z H. Disease resistance and cytological analyses on lesion resembling disease mutant lrd40 in Oryza sativa. Chin J Rice Sci, 2005, 19: 111–116 (in Chinese with Englinsh abstract)

[6]陈析丰, 金杨, 马伯军. 水稻类病变突变体及抗病性的研究进展. 植物病理学报, 2011, 41: 1–9

Chen X F, Jin Y, Ma B J. Progress on the studies of rice lesion mimics and their resistant mechanism to the pathogens. Acta Phytopathol Sin, 2011, 41: 1–9 (in Chinese with Englinsh abstract)

[7]Qiao Y L, Jiang W Z, Lee J H, Park B S, Choi M S, Piao R H, Woo M O, Roh J H, Han L Z, Paek N C,Seo H S, Koh H J. SPL28 encodes a clathrin-associated adaptor protein complex 1, medium subunit μ1 (AP1M1) and is responsible for spotted leaf and early senescence in rice (Oryza sativa). New Phytol, 2010, 185: 258–274

[8]Wu C J, Bordeos A, Madamba M R S, Baraoidan M, Ramos M, Wang G L, Leach J E, Leung H. Rice lesion mimic mutants with enhanced resistance to diseases. Mol Genet Genomics, 2008, 279: 605–619

[9]Zhong C Y, Jun C, Li R Z, Mei L G, Hei L, Gurdev S K, Wang G L. Characterizing rice lesion mimic mutants and identifying a mutant with broad-spectrum resistance to rice blast and bacterial blight. Mol Plant-Microbe Interact, 2000, 13: 869–876

[10]Chen X F, Hao L, Pan J W, Zheng X X, Jiang G H, Jin Y, Gu Z M, Qian Q, Zhai W X, Ma B J. SPL5, a cell death and defense-related gene, encodes a putative splicing factor 3b subunit 3 (SF3b3) in rice. Mol Breed, 2012, 30: 939–949

[11]Yamanouchi U, Yano M, Lin H X, Ashikari M, Yamada K. A rice spotted leaf gene, Spl7, encodes a heat stress transcription factor protein. Proc Natl Acad Sci USA, 2002, 99: 7530–7535

[12]Zeng L R. Spotted leaf 11, a negative regulator of plant cell death and defense, encodes a U-Box/Armadillo repeat protein endowed with E3 ubiquitin ligase activity. Plant Cell Online, 2004, 16: 2795–2808

[13]Mori M, Tomita C, Sugimoto K, Hasegawa, Hayashi N, Dubouzet J, Ochiai H, Sekimoto H, Hirochika H, Kikuchi S. Isolation and molecular characterization of a Spotted leaf 18 mutant by modified activation-tagging in rice. Plant Mol Biol, 2007, 63: 847–860

[14]Wang L, Pei Z, Tian Y, He C. OsLSD1, a rice zinc finger protein, regulates programmed cell death and callus differentiation. Mol Plant Microbe Interact, 2005, 18: 375–384

[15]Chern M, Fitzgerald H A, Canlas P E, Navarre D A, Ronald P C. Over expression of a rice NPR1 homolog leads to constitutive activation of defense response and hypersensitivity to light. Mol Plant-Microbe Interact, 2005, 18: 511–520

[16]Takahashi A, Agrawal G K, Yamazaki M, Onosato K, Miyao A, Kawasaki T, Shimamoto K, Hirochika H. Rice Pti1a negatively regulates RAR1-dependent defense responses. Plant Cell Online, 2007, 19: 2940–2951

[17]Kim J A, Cho K, Singh R, Jung Y H, Jeong S H, Kim S H, Lee J, Cho Y S, Agrawal G K, Rakwal R, Tamogami S, Kersten B, Jeon J S, An G, Jwa N S. Rice OsACDR1 (Oryza sativa accelerated cell death and resistance 1) is a potential positive regulator of fungal disease resistance. Mol Cells, 2009, 28: 431–439

[18]Jiang C J, Shimono M, Maeda S, Inoue H, Mori M, Hasegawa M,Sugano S, Takatsuji H. Suppression of the rice fatty-acid desaturase gene OsSSI2 enhances resistance to blast and leaf blight diseases in rice. Mol Plant Microbe Interact, 2009, 22: 820–829

[19]Fujiwara T, Maisonneuve S, Isshiki M, Mizutani M,Chen L, Wong H L, Kawasaki T, Shimamoto K. Sekiguchi lesion gene encodes a cytochrome P450 monooxygenase that catalyzes conversion of tryptamine to serotonin in rice. J Biol Chem, 2010, 285: 11308–11313

[20]Sun C H, Liu L H, Tang J Y, Lin A H, Zhang F T, Fang J, Zhang G F, Chu C C. RLIN1, encoding a putative coproporphyrinogen III oxidase, is involved in lesion initiation in rice. Genet Genomics, 2011, 38: 29–37

[21]Jiao B B, Wang J J, Zhu X D, Zeng L J, Li Q, He Z H. A novel protein RLS1 with NB-ARM domains is involved in chloroplast degradation during leaf senescence in rice. Mol Plant, 2012, 5: 205–217

[22]Tang J Y, Zhu X D, Wang Y Q, Liu L C, Xu B, Li F, Fang J, Chu C C. Semi-dominant mutations in the CC-NB-LRR-type R gene, NLS1, lead to constitutive activation of defense responses in rice. Plant J, 2011, 66: 996–1007

[23]王丹. 水稻分蘖调控基因TE的功能分析和类病变突变体lms1的图位克隆. 中国农业科学院博士学位论文, 北京,2012

Wang D. Functional Analysis of a Key Tillering Regulator TE and Map-based Cloning of Gene lms1 in Rice(Orzya sativa L.). PhD Dissertation of Chinese Academy of Agricultural Sciences, Beijing, China, 2012 (in Chinese with Englinsh abstract)

[24]曹建. 水稻类病斑突变体的生理分析与LM基因的图位克隆. 中国农业科学院硕士学位论文, 2014   

Cao J. Physiological Analysis of a Lesion Mimic Mutant and Map-based Cloning of Gene LM in Rice (Oryza sativa L.). MS Thesis of Chinese Academy of Agricultural Sciences, Beijing, China, 2014 (in Chinese with Englinsh abstract)

[25]成晓越. 水稻类病变新基因CHL1 (chloroplastic-H2O2-induced Lesion 1) 的鉴定与克隆. 浙江师范大学硕士学位论文, 浙江杭州, 2013

Cheng X Y. Identification and Cloning of a Novel Rice Lesion Mimic Gene CHL1 (Chloroplastic-H2O2-induced Lesion 1). MS Thesis of Zhejiang Normal University, Zhejiang, China, 2013 (in Chinese with Englinsh abstract)

[26]Buschges R, Hollricher K, Panstruga R, Simons G, Wolter M, Frijters A, Van D R, Vander L T, Diergaarde P, Groenendijk J, Topsch S, Vos P, Salamini F, Schulze L P. The barley MLO gene: a novel control element of plant pathogen resistance. Cell, 1997, 88: 695–705

[27]Joergensen J H. Discovery, characterization and exploitation of Mlo powdery mildew resistance in barley. Euphytica, 1992, 63: 141–152

[28]Mizobuchi R, Hirabayashi H, Kaji R, Nishizawa Y, Yoshimura A, Satoh H. Isolation and characterization of rice lesion-mimic mutants with enhanced resistance to rice blast and bacterial blight. Plant Sci, 2002, 163: 345–353

[29]Wu C J, Bordeos A, Madamba M R S, Baraoidan M, Ramos M, Wang G L, Leach J E, Leung H. Rice lesion mimic mutants with enhanced resistance to diseases. Mol Genet Genomics, 2008, 279: 605–619

[30]Huang Q N, Shi Y F, Yang Y, Feng B H, Wei Y L, Chen J, Baraoidan M, Leung H, Wu J L. Characterization and genetic analysis of a light-and temperature-sensitive spotted-leaf mutant in rice. J Integr Plant Biol, 2011,53: 671–681

[31]代高猛, 朱小燕, 李云峰, 凌英华, 赵芳明, 杨正林, 何光华. 水稻类病斑突变体spl31的遗传分析与基因定位. 作物学报, 2013, 39: 1223–1230

Dai G M, Zhu X Y, Li Y F, Ling Y H, Zhao F M, Yang Z L, He G H. Genetic analysis and fine mapping of a lesion mimic mutant spl31 in rice. Acta Agron Sin, 2013, 39: 1223–1230 (in Chinese with Englinsh abstract)

[32]王建军, 朱旭东, 王友林, 张利华, 薛庆中, 何祖华. 水稻类病斑突变体的生理与遗传分析. 植物生理与分子生物学报, 2004, 30: 331–338

Wang J J, Zhu X D, Wang Y L, Zhang L H, Xue Q Z, He Z H. Physiological and genetic analysis of lesion mimic mutants in rice. J Plant Physiol Mol Biol, 2004, 30: 331–338 (in Chinese with Englinsh abstract)

[33]Yin Z, Chen J, Zeng L, Goh M, Leung H, Khush G S, Wang G L. Characterizing rice lesion mimic mutants and identifying a mutant with broad-spectrum resistance to rice blast and bacterial blight. Mol Plant Microbe Interact, 2000, 13: 869–876

[34]张志良, 瞿伟菁. 植物生理学实验指导(第3版). 北京: 高等教育出版社, 2003. pp 123–124 

Zhang Z L, Qu W J. Plant Physiology Experimental Guidance, 3rd edn. Beijing: Higher Education Press, 2003. pp 123–124 (in Chinese)

[35]赵亚华. 生物化学实验技术教程. 广州: 华南理工大学出版社, 2000. pp 153–154

Zhao Y H. Biochemical Experimental Techniques Tutorial. Guangzhou: South China Science and Technology University Press, 2000. pp 153–154 (in Chinese)

[36]中国科学院上海植物生理研究所. 现代植物生理学实验指南. 北京: 科学出版社, 1999. pp 305–306

Institute of Plant Physiology and Ecology, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences. Modern Laboratory Manual of Plant Physiology. Beijing: Science Press, 1999. pp 305–306 (in Chinese)

[37]杨敏文. 快速测定植物叶片叶绿素含量方法的探讨. 光谱实验室, 2002, 19: 478–481

Yang M W. Study on Rapid Determination of Chlorophyll Content of Leaves. Spectrographic Lab, 2002, 19: 478–481 (in Chinese with English abstract)

[38]Lichtenthaler H K. Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Methods Enzymol, 1987, 148: 350–382

[39]Michelmore R W, Paran I, Kesseli R V. Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Aca. Sci USA, 1991, 88: 9828–9832

[40]Rogers S O, Bendich A J. Extraction of DNA from milligram amounts of fresh, herbarium and mummified plant tissues. Plant Mol Biol, 1985, 5: 69–76

[41]Shen H C, Wang H M, Huang Q N, Xu X, Lu X G, Wu J L. Characterization and genetic analysis of a novel rice spotted-leaf mutant HM47 with broad-spectrum resistance to Xanthomonas oryzae pv. oryzae. Integr Plant Biol, 2013, 55: 473–483

[42]梁颖, 李加纳, 唐章林, 谌利, 张学昆. 油菜光合生理指标与产量的关联分析. 西南农业大学学报, 1999, 21: 38–41

 Liang Y, Li J N, Tang Z L, Chen L, Zhang X K. Correlative analysis of photosynthesis physiological targets and yield of rape. J Southwest Agric Univ, 1999, 21: 38–41 (in Chinese with English abstract)

[43]王忠华. 植物类病变突变体的诱发与突变机制. 细胞生物学杂志, 2005, 27: 530–534

Wang Z H. Induction and mutation mechanism of plant lesion mimic mutants. Chin J Cell Biol, 2005, 27: 530–534 (in Chinese with English abstract)

[44]Frye C A, Tang D , Innes R W. Negative regulation of defense responses in plants by a conserved MAPKK kinase. Proc Natl Acad Sci USA, 2001, 98: 373–378

[45]金杨, 周丽芬, 陈析丰, 刘峰, 马伯军. 水稻类病变突变体spl5细胞坏死机制的分析. 浙江师范大学学报(自然科学版), 2009, 32: 329–330

Jin Y, Zhou L F, Chen X F, Liu F, Ma B J. Mechanisms of cell death in rice lesion mimic muant spl5. J Zhejiang Norm Univ (Nat Sci), 2009, 32: 326–331 (in Chinese with English abstract)

[46]虞玲锦. 一种水稻类病斑突变体生理分析与基因初定位, 南京林业大学硕士学位论文, 江苏南京, 2012

Yu L J. Physiological Analysis and Mapping of a Lesion Mimic Mutant in Rice (Oryza sativa L.). MS Thesis of Nanjing Forestry University, Nanjing, China, 2012 (in Chinese with English abstract)

[47]章琦. 水稻白叶枯病抗性基因鉴定进展及其利用. 中国水稻科学, 2005, 19: 453–459

Zhang Q. Highlights in identification and application of resistance genes to bacterial blight. Chin J Rice Sci, 2005, 19: 453–459 (in Chinese with English abstract)

[48]鄂志国, 张丽靖, 焦桂爱, 程本义, 王磊. 稻瘟病抗性基因的鉴定及利用进展. 中国水稻科学, 2008, 22: 533–540

E Z G, Zhang L J, Jiao G A, Cheng B Y, Wang L. Highlights in identification and application of resistance genes to rice blast. Chin J Rice Sci, 2008, 22: 533–540 (in Chinese with English abstract)

[49]林艳, 陈在杰, 田大刚, 杨广阔, 杨绍华, 刘华清, 陈松彪, 王锋. 水稻类病斑及早衰突变体lms1的鉴定及基因初步定位. 福建农业学报, 2014, 29(1): 29–34

Lin Y, Chen Z J, Tian D G, Yang G K, Yang S H, Liu H Q, Chen S B, Wang F. Identification and gene mapping of a lesion mimic and senescence mutant lms1 in rice. Fujian J Agric Sci, 2014, 29(1): 29–34 (in Chinese with English abstract)

[1] ZHENG Chong-Ke, ZHOU Guan-Hua, NIU Shu-Lin, HE Ya-Nan, SUN wei, XIE Xian-Zhi. Phenotypic characterization and gene mapping of an early senescence leaf H5(esl-H5) mutant in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1389-1400.
[2] YU Chun-Miao, ZHANG Yong, WANG Hao-Rang, YANG Xing-Yong, DONG Quan-Zhong, XUE Hong, ZHANG Ming-Ming, LI Wei-Wei, WANG Lei, HU Kai-Feng, GU Yong-Zhe, QIU Li-Juan. Construction of a high density genetic map between cultivated and semi-wild soybeans and identification of QTLs for plant height [J]. Acta Agronomica Sinica, 2022, 48(5): 1091-1102.
[3] WANG Hao-Rang, ZHANG Yong, YU Chun-Miao, DONG Quan-Zhong, LI Wei-Wei, HU Kai-Feng, ZHANG Ming-Ming, XUE Hong, YANG Meng-Ping, SONG Ji-Ling, WANG Lei, YANG Xing-Yong, QIU Li-Juan. Fine mapping of yellow-green leaf gene (ygl2) in soybean (Glycine max L.) [J]. Acta Agronomica Sinica, 2022, 48(4): 791-800.
[4] LIU Lei, ZHAN Wei-Min, DING Wu-Si, LIU Tong, CUI Lian-Hua, JIANG Liang-Liang, ZHANG Yan-Pei, YANG Jian-Ping. Genetic analysis and molecular characterization of dwarf mutant gad39 in maize [J]. Acta Agronomica Sinica, 2022, 48(4): 886-895.
[5] XU Ning-Kun, LI Bing, CHEN Xiao-Yan, WEI Ya-Kang, LIU Zi-Long, XUE Yong-Kang, CHEN Hong-Yu, WANG Gui-Feng. Genetic analysis and molecular characterization of a novel maize Bt2 gene mutant [J]. Acta Agronomica Sinica, 2022, 48(3): 572-579.
[6] ZHAO Mei-Cheng, DIAO Xian-Min. Phylogeny of wild Setaria species and their utilization in foxtail millet breeding [J]. Acta Agronomica Sinica, 2022, 48(2): 267-279.
[7] HUANG Li, CHEN Yu-Ning, LUO Huai-Yong, ZHOU Xiao-Jing, LIU Nian, CHEN Wei-Gang, LEI Yong, LIAO Bo-Shou, JIANG Hui-Fang. Advances of QTL mapping for seed size related traits in peanut [J]. Acta Agronomica Sinica, 2022, 48(2): 280-291.
[8] ZHANG Bo, PEI Rui-Qing, YANG Wei-Feng, ZHU Hai-Tao, LIU Gui-Fu, ZHANG Gui-Quan, WANG Shao-Kui. Mapping and identification QTLs controlling grain size in rice (Oryza sativa L.) by using single segment substitution lines derived from IAPAR9 [J]. Acta Agronomica Sinica, 2021, 47(8): 1472-1480.
[9] JIANG Jian-Hua, ZHANG Wu-Han, DANG Xiao-Jing, RONG Hui, YE Qin, HU Chang-Min, ZHANG Ying, HE Qiang, WANG De-Zheng. Genetic analysis of stigma traits with genic male sterile line by mixture model of major gene plus polygene in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2021, 47(7): 1215-1227.
[10] YIN Ming, YANG Da-Wei, TANG Hui-Juan, PAN Gen, LI De-Fang, ZHAO Li-Ning, HUANG Si-Qi. Genome-wide identification of GRAS transcription factor and expression analysis in response to cadmium stresses in hemp (Cannabis sativa L.) [J]. Acta Agronomica Sinica, 2021, 47(6): 1054-1069.
[11] HUANG Xing, XI Jin-Gen, CHEN Tao, QIN Xu, TAN Shi-Bei, CHEN He-Long, YI Ke-Xian. Identification and expression of PAL genes in sisal [J]. Acta Agronomica Sinica, 2021, 47(6): 1082-1089.
[12] WU Ran-Ran, LIN Yun, CHEN Jing-Bin, XUE Chen-Chen, YUAN Xing-Xing, YAN Qiang, GAO Ying, LI Ling-Hui, ZHANG Qin-Xue, CHEN Xin. Genetic and cytological analysis of male sterile mutant msm2015-1 in mungbean [J]. Acta Agronomica Sinica, 2021, 47(5): 860-868.
[13] WANG Wu-Bin, TONG Fei, KHAN Mueen-Alam, ZHANG Ya-Xuan, HE Jian-Bo, HAO Xiao-Shuai, XING Guang-Nan, ZHAO Tuan-Jie, GAI Jun-Yi. Detecting QTL system of root hydraulic stress tolerance index at seedling stage in soybean [J]. Acta Agronomica Sinica, 2021, 47(5): 847-859.
[14] ZHOU Xin-Tong, GUO Qing-Qing, CHEN Xue, LI Jia-Na, WANG Rui. Construction of a high-density genetic map using genotyping by sequencing (GBS) for quantitative trait loci (QTL) analysis of pink petal trait in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(4): 587-598.
[15] LI Shu-Yu, HUANG Yang, XIONG Jie, DING Ge, CHEN Lun-Lin, SONG Lai-Qiang. QTL mapping and candidate genes screening of earliness traits in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(4): 626-637.
Full text



No Suggested Reading articles found!