Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2014, Vol. 40 ›› Issue (04): 591-599.doi: 10.3724/SP.J.1006.2014.00591


Genetic Analysis and Gene Mapping of a Marginal Albino Leaf Mutant mal in Rice

MA Jiao,REN De-Yong,WU Guo-Chao,ZHU Xiao-Yan,MA Ling,SANG Xian-Chun,LING Ying-Hua,HE Guang-Hua*   

  1. Rice Research Institute of Southwest University / Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops / Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400716, China?
  • Received:2013-09-30 Revised:2014-01-12 Online:2014-04-12 Published:2014-02-14
  • Contact: 何光华,E-mail: hegh@swu.edu.cn E-mail:mj_struggle@163.com


The research on the color change of plant leaf is very important to clarify the structure and mechanism of photosynthetic system, such as chloroplast development and chlorophyll biosynthesis. A novel rice mutant mal (marginal albino leaf) with marginal albino leaf, was derived from the EMS-treated restorer line Jinhui 10. The mutant trait inherited steadily after several generations’ self-crossing. The mal leaf displayed albino margin and narrow blade in the whole life. Compared with the wild type, mal decreased contents of photosynthetic pigments very significantly in the whole third leaf blade, margin parts of the second and third leaves at heading stage. The observation by that transmission electronic microscopy showed cells and chloroplasts in the green part of mal leaf developed normally, while in the albino part, the mesophyll cells were nearly hollow without obvious intact organelles and the chloroplast were fully degraded. Genetic analysis showed that the mutant trait was controlled by single recessive nuclear gene. MAL was finally mapped between SSR marker M22 and InDel marker ID27 with an interval of 171 kb on chromosome 8. These results provide a foundation for cloning and function analysis of MAL.

Key words: Rice (Oryza sativa L.), marginal albino leaf (mal), Genetic analysis, Gene mapping

[1]Klimyuk V I, Persello-Cartieaux F, Havaux M, Contard-David P, Schuenemann D, Meiherhoff K, Gouet P, Jones J D G, Hoffmanc N E, Laurent Nussaume. A chromodomain protein encoded by the Arabidopsis CAO gene is a plant-specific component of the chloroplast signal recognition particle pathway that is involved in LHCP targeting. Plant Cell, 1999, 1: 87–99

[2]Chen G, Bi Y R, Li N. EGY1 encodes a membrane-associated and ATP-independent metalloprotease that is required for chloroplast development. Plant J, 2005, 41: 364–375

[3]Chen T, Zhang Y, Zhao L, Zhu Z, Lin J, Zhang S B, Wang C L. Physiological character and gene mapping in a new green-revertible albino mutant in rice. Genet Genomics, 2007, 34: 331–338

[4]Motohashi R, Ito T, Kobayashi M, Taji T, Nagata N, Asami T, Yoshida S, Yamaguchi-Shinozaki K, Shinozaki K. Functional analysis of the 37 kDa inner envelope membrane polypeptide in chloroplast biogenesis using a Ds-tagged Arabidopsis pale green mutant. Plant J, 2003, 34: 719–731

[5]Sugimoto H, Kusumi K, Tozawa Y, Yazaki J, Kishimoto N, Kikuchi S, Iba K. The virescent-2 mutation inhibits translation of plastid transcripts for the plastid genetic system at an early stage of chloroplast differentiation. Plant Cell Physiol, 2004, 45: 958–996

[6]Ihnatowicz A, Pesaresi P, Varotto C, Richly E, Schneider A, Jahns P, Salamini F, Leister D. Mutants for photosystem I subunit D of Arabidopsis thaliana: effects on photosynthesis, photosystem I stability and expression of nuclear genes for chloroplast functions. Plant J, 2004, 37: 839–852

[7]Nagata N, Tanaka R, Satoh S, Tanaka A. Identification of a vinyl reductase gene for chlorophyll synthesis in Arabidopsis thaliana and implications for the evolution of Prochlorococcus species. Plant Cell, 2005, 17: 233–240

[8]Jung K H, Hur J, Ryu C H, Choi Y. Characterization of a rice chlorophyll-deficient mutant using the T-DNA gene-trap system. Plant Cell Physiol, 2003, 44: 463–472

[9]Larkin R M, Alonso J M, Ecker J R, Chory J. GUN4, a regulator of chlorophyll synthesis and intracellular signaling. Science, 2003, 299: 902–906

[10]董凤高, 朱旭东, 熊振民, 程式华, 孙宗修, 闵绍楷. 以淡绿叶为标记的籼型一温敏核不育系M2S的选育. 中国水稻科学, 1995, 9: 65–70

Dong F G, Zhu X D, Xiong Z M, Cheng S H, Sun Z X, Min S K. Breeding of a photo-thermoperiod sensitive genic male sterile indica rice with a pale- green- leaf marker. Chin J Rice Sci, 1995, 9: 65–70 (in Chinese with English abstract)

[11]吴自明, 张欣, 万建民. 水稻黄绿叶基因的克隆及应用. 生命科学, 2007, 12: 614–615

Wu Z M, Zhang X, Wan J M. Cloning and application of yellow-green leaf genes in rice. Chin Bull Life Sci, 2007, 12: 614–615 (in Chinese)

[12]Iwata N, Omura T. Studies on the trisomics in rice plants (Oryza sativa L.): III. Relation between trisomics and genetic linkage groups. Jpn J Breed, 1975, 25: 363–368

[13]Zhang H, Li J J, Yoo J H, Yoo S C, Cho S H, Koh H J, Seo H S, Paek N C. Rice Chlorina-1 and Chlorina-9 encode ChlD and ChlI subunits of Mg-chelatase, a key enzyme for chlorophyll synthesis and chloroplast development. Plant Mol Biol, 2006, 62: 325–337

[14]Lee S, Kim J H, Yoo E S, Lee C H, Hirochika H, An G. Differential regulation of chlorophyll a oxygenase genes in rice. Plant Mol Biol, 2005, 57: 805–818

[15]Wu Z M, Zhang X, He B, Diao L P, Sheng S L, Wang J L, Guo X P, Su N, Wang L F, Jiang L, Wang C M, Zhai F Q, Wan J M. A chlorophyll-de?cient rice mutant with impaired chlorophyllide esteri?cation in chlorophyll biosynthesis. Plant Physiol, 2007, 145: 29–40

[16]Yoo S C, Cho S H, Sugimoto H, Li J, Kusumi K, Koh H J, Koh I, Paek N C. Rice virescent3 and stripe1 encoding the large and small subunits of ribonucleotide reductase are required for chloroplast biogenesis during early leaf development. Plant Physiol, 2009, 150: 388–401

[17]Sugimoto H, Kusumi K, Noguchi K, Yano M, Yoshimura A, Iba K. The rice nuclear gene, VIRESCENT 2, is essential for chloroplast development and encodes a novel type of guanylate kinase targeted to plastids and mitochondria. Plant J, 2007, 52: 512–527

[18]Kusaba M, Ito H, Morita R, Iida S, Sato Y, Fujimoto M, Kawasaki S, Tanaka R, Hirochika H, Nishimura M, Tanaka A. Rice NON-YELLOW COLORING1 is involved in light-harvesting complex II and grana degradation during leaf senescence. Plant Cell, 2007, 19: 1362–1375

[19]Park S Y, Yu J W, Park J S, Li J, Yoo S C, Lee N Y, Lee S K, Jeong S W, Seo H S, KohH J, Jeon J S, Park Y I, Paek N C. The senescence-induced stay-green protein regulates chlorophyll degradation. Plant Cell, 2007, 19: 1649–1664

[20]Wang P R, Gao J X, Wan C M, Zhang F T, Xu Z J, Huang X Q, Sun X Q, Deng X J. Divinyl chlorophyll(ide) α can be converted to monovinyl chlorophyll(ide) α by a divinyl reductase in rice. Plant Physiol, 2010, 153: 994–1003

[21]Sakuraba Y, Rahman M L, Cho S H, Kim Y S, Koh H J, Yoo S C, Paek N C. The rice faded green leaf locus encodes protochlorophyllide oxidoreductase B and is essential for chlorophyll synthesis under high light conditions. Plant J, 2013, 74: 122–133

[22]Dong H, Fei G L, Wu C Y, Wu F Q, Sun Y Y, Chen M J, Ren Y L, Zhou K N, Cheng Z J, Wang J L, Jiang L, Zhang X, Guo X P, Lei C L, Su N, Wang H Y, Wan J M. A rice virescent-yellow leaf mutant reveals new insights into the role and assembly of plastid caseinolytic protease in higher plants. Plant Physiol, 2013, 162: 1867–1880

[23]Lichtenthaler H K. Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Method Enzymol, 1987, 48: 350−382

[24]张守仁. 叶绿素荧光动力学参数的意义及讨论. 植物学通报, 1999, 16: 444–448

Zhang S R. A discussion on chlorophyll fluorescence kinetics parameters and their significance. Chin Bull Bot, 1999, 16: 444–448 (in Chinese with English abstract)

[25]何瑞峰, 丁毅, 余金洪, 祖明生. 水稻温敏叶绿素突变体叶片超微结构的研究. 武汉植物学研究, 2001, 19: 1–5

He R F, Ding Y, Yu J H, Zu M S. Study on leaf ultrastructure of the thermo-sensitive chlorophyll deficient mutant in rice. J Wuhan Bot Res, 2001, 19: 1–5 (in Chinese with English abstract)

[26]Michelmore R W, Paran I, Kesseli R V. Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA, 1991, 88: 9828–9832

[27]Murray M G, Thompson W F. Rapid isolation of high molecular weight plant DNA. Nucl Acids Res, 1980, 8: 4321–4325

[28]桑贤春, 何光华, 张毅, 杨正林, 裴炎. 水稻PCR扩增模板的快速制备. 遗传, 2003, 25: 705–707

Sang X C, He G H, Zhang Y, Yang Z L, Pei Y. The simple gain of templates of rice genomes DNA for PCR. Hereditas (Beijing), 2003, 25: 705–707 (in Chinese with English abstract)

[29]Panaud O, Chen X, McCouch S R. Development of microsatellite markers and characterization of simple sequence length polymorphism (SSLP) in rice (Oryza sativa L.). Mol Gen Genet, 1996, 252: 597–607

[30]徐培洲,李云,袁澍,张红宇, 彭海, 林宏辉, 汪旭东, 吴先军.叶绿素缺乏水稻突变体中光系统蛋白和叶绿素合成特性的研究. 中国农业科学, 2006, 39: 299-305

Xu P Z, Li Y, Yuan S, Zhang H Y, Peng H, Lin H H, Wang X D, Wu X J. Studies of photosystem complexes and chlorophyll synthesis in chlorophyll-deficient rice mutant W1. Sci Agric Sin, 2006, 39: 299–305 (in Chinese with English abstract)

[31]Zhao Y, Di L F, Yang S H, Li S C, Zang Y Z. Chloroplast composition and structural differences in a chlorophyll reduced mutant of oilseed rape seedlings. Acta Bot Sin, 2001, 43: 877–880

[32]Huang X Q, Wang P R, Zhao H X, Deng X J. Genetic analysis and molecular mapping of a novel chlorophyll deficit mutant gene in rice. Rice Sci, 2008, 15: 7–12

[33]Liu W Z, Fu Y P, Hu G C, Si H M, Zhu L, Wu C, Sun Z X. Identification and fine mapping of a thermo sensitive chlorophyll deficient mutant in rice (Oryza sativa L.). Planta, 2007, 226: 785–795

[34]Iwata N, Satoh H, Omura T. Linkage analysis by use of trisomics in rice (Oryza sativa L.): IV. Linkage groups locating on chromosomes 2 and 10. Jpn J Breed, 1981, 31: 66–67

[35]程世超, 刘合芹, 翟国伟, 冯世座, 赵辉, 汪得凯, 陶跃之. 水稻白化致死突变体abl4的鉴定和基因定位. 中国水稻科学, 2013, 27: 240–246

Cheng S C, Liu H Q, Zhai G W, Feng S Z, Zhao H, Wang D K, Tao Y Z. Genetic analysis and gene mapping of an albino lethal mutant in rice. Chin J Rice Sc, 2013, 27: 240–246 (in Chinese with English abstract) 

[36]余庆波, 江华, 米华玲, 周根余, 杨仲南. 水稻白化突变体alb21生理特性和基因定位. 上海师范大学学报, 2005, 34: 70–75

Yu Q B, Jiang H, Mi H L, Zhou G Y, Yang Z N. Physiological property and gene mapping of an albino mutant alb21 in rice. J Shanghai Norm Univ, 2005, 34: 70–75 (in Chinese)

[37]李育红, 王宝和, 戴正元, 李爱宏, 赵步洪, 左示敏, 陈忠祥, 张洪熙, 潘学彪. 水稻叶色突变体及其基因定位、克隆的研究进展. 江苏农业科学, 2011, 39: 34–39

Li Y H, Wang B H, Dai Z Y, Li A H, Zhao B H, Zuo S M, Chen Z X, Zhang H X, Pan X B. The research advances of gene mapping and cloning of leaf color mutants in rice. Jiangsu Agric Sci, 2011, 39: 34–39 (in Chinese)

[38]Parks B M, Quail P H. Phytochrome-deficient hyl and hy2 long hypocotyls mutants of Arabidopsis are defective in phytochrome chromophore biosynthesis. Plant Cell, 1991: 1177–1186

[39]朱丽, 刘文真, 吴超, 栾维江, 傅亚萍, 胡国成, 斯华敏, 孙宗修. 水稻着丝粒附近一个淡绿叶突变相关基因的定位分析. 中国水稻科学, 2007, 21: 228–234

Zhu L, Liu W Z, Wu C, Luan W J, Fu Y P, Hu G C, Si H M, Sun Z X. Identification and fine mapping of a gene related to pale green leaf near centromere region in rice (Oryza sativa L.). Chin J Rice Sci, 2007, 21: 228–234 (in Chinese with English abstract)

[40]Xia J C, Wang Y P, Ma B T, Yin Z Q, Hao M, Kong D W, Li S G. Ultrastructure and gene mapping of the albino mutant al12 in rice (Oryza sativa L.). Acta Genet Sin, 2006, 33: 1112–1119

[41]Siddappa K, Vasudev K L, Ganiger B S, Rathod R, Devar K V. Report of albino seedlings in Pongamia pinnata. Karnataka J Agric Sci, 2004, 17: 884–885

[42]Chen T, Zhang Y D, Zhao L, Zhu Z, Lin J, Zhang S B, Wang C L. Physiological character and gene mapping in a new green-revertible albino mutant in rice. J Genet Genomics, 2007, 34: 331–338

[43]Chen T, Zhang Y D, Zhao L, Zhu Z, Lin J, Zhang S B, Wang C L. Fine mapping and candidate gene analysis of a green-revertible albino gene gra(t) in rice. J Genet Genomics, 2009, 36: 117–123

[44]Lan T, Wang B, Ling Q P, Xu C H, Tong Z J, Liang K J, Duan Y L, Jin J, Wu W R. Fine mapping of cisc(t), a gene for cold-induced seedling chlorosis, and identification of its candidate in rice. Chin Sci Bull, 2010, 55: 3149–3153

[1] ZHENG Chong-Ke, ZHOU Guan-Hua, NIU Shu-Lin, HE Ya-Nan, SUN wei, XIE Xian-Zhi. Phenotypic characterization and gene mapping of an early senescence leaf H5(esl-H5) mutant in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1389-1400.
[2] WANG Hao-Rang, ZHANG Yong, YU Chun-Miao, DONG Quan-Zhong, LI Wei-Wei, HU Kai-Feng, ZHANG Ming-Ming, XUE Hong, YANG Meng-Ping, SONG Ji-Ling, WANG Lei, YANG Xing-Yong, QIU Li-Juan. Fine mapping of yellow-green leaf gene (ygl2) in soybean (Glycine max L.) [J]. Acta Agronomica Sinica, 2022, 48(4): 791-800.
[3] LIU Lei, ZHAN Wei-Min, DING Wu-Si, LIU Tong, CUI Lian-Hua, JIANG Liang-Liang, ZHANG Yan-Pei, YANG Jian-Ping. Genetic analysis and molecular characterization of dwarf mutant gad39 in maize [J]. Acta Agronomica Sinica, 2022, 48(4): 886-895.
[4] XU Ning-Kun, LI Bing, CHEN Xiao-Yan, WEI Ya-Kang, LIU Zi-Long, XUE Yong-Kang, CHEN Hong-Yu, WANG Gui-Feng. Genetic analysis and molecular characterization of a novel maize Bt2 gene mutant [J]. Acta Agronomica Sinica, 2022, 48(3): 572-579.
[5] ZHAO Mei-Cheng, DIAO Xian-Min. Phylogeny of wild Setaria species and their utilization in foxtail millet breeding [J]. Acta Agronomica Sinica, 2022, 48(2): 267-279.
[6] JIANG Jian-Hua, ZHANG Wu-Han, DANG Xiao-Jing, RONG Hui, YE Qin, HU Chang-Min, ZHANG Ying, HE Qiang, WANG De-Zheng. Genetic analysis of stigma traits with genic male sterile line by mixture model of major gene plus polygene in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2021, 47(7): 1215-1227.
[7] YIN Ming, YANG Da-Wei, TANG Hui-Juan, PAN Gen, LI De-Fang, ZHAO Li-Ning, HUANG Si-Qi. Genome-wide identification of GRAS transcription factor and expression analysis in response to cadmium stresses in hemp (Cannabis sativa L.) [J]. Acta Agronomica Sinica, 2021, 47(6): 1054-1069.
[8] HUANG Xing, XI Jin-Gen, CHEN Tao, QIN Xu, TAN Shi-Bei, CHEN He-Long, YI Ke-Xian. Identification and expression of PAL genes in sisal [J]. Acta Agronomica Sinica, 2021, 47(6): 1082-1089.
[9] WU Ran-Ran, LIN Yun, CHEN Jing-Bin, XUE Chen-Chen, YUAN Xing-Xing, YAN Qiang, GAO Ying, LI Ling-Hui, ZHANG Qin-Xue, CHEN Xin. Genetic and cytological analysis of male sterile mutant msm2015-1 in mungbean [J]. Acta Agronomica Sinica, 2021, 47(5): 860-868.
[10] JIANG Cheng-Gong, SHI Hui-Min, WANG Hong-Wu, LI Kun, HUANG Chang-Ling, LIU Zhi-Fang, WU Yu-Jin, LI Shu-Qiang, HU Xiao-Jiao, MA Qing. Phenotype analysis and gene mapping of small kernel 7 (smk7) mutant in maize [J]. Acta Agronomica Sinica, 2021, 47(2): 285-293.
[11] GUO Qing-Qing, ZHOU Rong, CHEN Xue, CHEN Lei, LI Jia-Na, WANG Rui. Location and InDel markers for candidate interval of the orange petal gene in Brassica napus L. by next generation sequencing [J]. Acta Agronomica Sinica, 2021, 47(11): 2163-2172.
[12] HUANG Yan, HE Huan-Huan, XIE Zhi-Yao, LI Dan-Ying, ZHAO Chao-Yue, WU Xin, HUANG Fu-Deng, CHENG Fang-Min, PAN Gang. Physiological characters and gene mapping of a dwarf and wide-leaf mutant osdwl1 in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2021, 47(1): 50-60.
[13] JIANG Hong-Rui, YE Ya-Feng, HE Dan, REN Yan, YANG Yang, XIE Jian, CHENG Wei-Min, TAO Liang-Zhi, ZHOU Li-Bin, WU Yue-Jin, LIU Bin-Mei. Identification and gene localization of a novel rice brittle culm mutant bc17 [J]. Acta Agronomica Sinica, 2021, 47(1): 71-79.
[14] SHI Hui-Min, JIANG Cheng-Gong, WANG Hong-Wu, MA Qing, LI Kun, LIU Zhi-Fang, WU Yu-Jin, LI Shu-Qiang, HU Xiao-Jiao, HUANG Chang-Ling. Phenotype identification and gene mapping of defective kernel 48 mutant (dek48) in maize [J]. Acta Agronomica Sinica, 2020, 46(9): 1359-1367.
[15] ZHANG Xue-Cui,ZHONG Chao,DUAN Can-Xing,SUN Su-Li,ZHU Zhen-Dong. Fine mapping of Phytophthora resistance gene RpsZheng in soybean cultivar Zheng 97196 [J]. Acta Agronomica Sinica, 2020, 46(7): 997-1005.
Full text



No Suggested Reading articles found!