Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2022, Vol. 48 ›› Issue (3): 695-703.doi: 10.3724/SP.J.1006.2022.14038

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Effects of drought at different growth stages and nitrogen application on nitrogen absorption and utilization in peanut

DING Hong(), XU Yang, ZHANG Guan-Chu, QIN Fei-Fei, DAI Liang-Xiang*(), ZHANG Zhi-Meng*()   

  1. Shandong Peanut Research Institute, Qingdao 266100, Shandong, China
  • Received:2021-03-04 Accepted:2021-06-16 Online:2021-07-12 Published:2021-07-12
  • Contact: DAI Liang-Xiang,ZHANG Zhi-Meng E-mail:dingpeanut@163.com;liangxiangd@163.com;qinhdao@126.com
  • Supported by:
    National Natural Science Foundation of China(31971854);National Natural Science Foundation of China(31971856);Major Scientific and Technological Innovation Projects in Shandong Province(2019JZZY010702)

Abstract:

The aim of this study was to clarify the effects of drought at different growth stages and nitrogen application on nitrogen absorption and utilization of peanut. We investigated the effects of nitrogen application on nitrogen absorption and utilization efficiency under different water conditions in peanut by the 15N-label technique. The residue and loss rate of nitrogen in soil after peanut harvest were also studied. The soil water treatments were three levels of well-watered conditions (WW, 75%-80% of field capacity), slight water stress at flowering-pegging stage (FD, 55%-60% of field capacity), and slight water stress at pod-setting stage (PD, 55%-60% of field capacity). Nitrogen treatments were three levels of no nitrogen application (LN), moderate nitrogen (MN, 90 kg hm-2), and high nitrogen (HN, 180 kg hm-2). The results showed that peanut yield was decreased under drought stress at different growth stages and the reduction of drought stress at flowering-pegging stage was greater than that at pod-setting stage. Nitrogen accumulation of peanut kernel accounted for 68.42%-77.67% of the total nitrogen accumulation of the whole plant. Compared with the well-watered condition, nitrogen accumulation of peanut plants was decreased under drought stress at both flowering-pegging and pod-setting stages. Compared with WWMN treatment, FDMN treatment significantly increased the accumulation of Ndff and 15N in different organs and promoted the transport of nitrogen to seed kernel in peanut. However, 15N accumulation in kernel was significantly decreased under PDMN treatment. The recovery rate of 15N labeled nitrogen fertilizer was 30.20%-38.42%, the residue rate was 37.12%-48.83%, and the loss rate was 12.75%-32.68%. The recovery rate of nitrogen fertilizer was the highest and the loss rate was the lowest under FDMN treatment. In summary, nitrogen application level of 90 kg hm-2could promote the yield and nitrogen absorption and utilization under drought stress, and reduce the loss of fertilizer nitrogen in peanut.

Key words: peanut, drought stress, 15N-label technique, nitrogen absorption and utilization, yield

Fig. 1

Yield of peanut under different water and nitrogen treatments Bars superscripted by different letters are significantly different at the 0.05 probability level among treatments. *, **, and *** mean significant difference at P < 0.05, P < 0.01, and P < 0.001, respectively. WW: well-watered condition; FD: drought stress at flowering-pegging stage; PD: drought stress at pod-setting stage; LN: no nitrogen application; MN: medium nitrogen of 90 kg hm-2; HN: high nitrogen of 180 kg hm-2; W: water; N: nitrogen."

Table 1

Nitrogen accumulation in different organs of peanut under different water and nitrogen treatments (mg plant-1)"

处理
Treatment

Leaf

Stem

Root
果壳
Hull
籽仁
Seed
全株
Whole plant
WWLN 154.49 bc 80.39 a 42.80 bcd 63.88 ab 1017.39 a 1358.97 a
WWMN 219.74 a 73.12 b 40.95 bcd 56.16 ab 1036.71 a 1426.68 a
WWHN 151.51 c 73.20 b 44.72 bc 47.86 abc 884.68 b 1201.97 b
FDLN 135.44 cd 54.34 d 28.62 e 33.63 c 602.72 e 854.75 e
FDMN 140.57 cd 64.82 c 60.96 a 66.05 a 681.17 d 1013.57 d
FDHN 151.57 c 57.18 d 34.66 cde 33.18 c 610.84 e 884.74 e
PDLN 126.66 d 75.42 b 37.91 bcde 50.12 abc 791.87 c 1081.99 cd
PDMN 176.48 b 70.35 b 47.80 b 42.53 bc 848.84 bc 1186.02 b
PDHN 152.67 bc 71.37 b 32.88 de 64.50 a 821.48 bc 1142.90 bc
Water (W) 0*** 0*** 0.459 0.095 0*** 0***
Nitrogen (N) 0*** 0.102 0*** 0.413 0*** 0 ***
W×N 0*** 0** 0*** 0.002** 0.004** 0.001***

Table 2

Ndff of peanut organs under different water and nitrogen treatments (%)"

处理
Treatment

Leaf

Stem

Root
果壳
Hull
籽仁
Seed
全株
Whole plant
WWMN 16.22 e 19.62 d 19.58 b 17.42 d 11.75 d 13.29 d
WWHN 38.69 d 39.14 b 36.00 a 38.22 b 29.45 b 31.64 b
FDMN 27.88 b 27.96 c 25.21 c 24.09 c 18.82 c 21.43 c
FDHN 42.95 a 43.43 a 42.71 a 52.08 a 43.61 a 43.78 a
PDMN 17.89 e 20.40 d 20.66 d 19.94 d 12.57 d 14.40 d
PDHN 31.59 c 39.12 b 37.20 b 37.82 b 29.28 b 30.91 b
Water (W) 0 *** 0*** 0*** 0*** 0*** 0 ***
Nitrogen (N) 0*** 0*** 0*** 0*** 0*** 0***
W×N 0.001*** 0.002** 0.861 0.002** 0.004** 0.011*

Table 3

15N uptake of various organs under different water and nitrogen treatments in peanut (mg plant-1)"

处理
Treatment

Leaf

Stem

Root
果壳
Hull
籽仁
Seed
全株
Whole plant
WWMN 3.60 c 1.46 d 0.81 c 1.00 cd 12.37 cd 19.24 d
WWHN 5.98 a 2.92 a 1.64 a 1.86 ab 26.55 a 38.95 ab
FDMN 4.00 c 1.85 c 1.57 a 1.65 bc 13.08 c 22.15 c
FDHN 6.65 a 2.53 b 1.37 a 1.76 ab 27.15 a 39.60 a
PDMN 3.22 c 1.46 d 1.01 bc 0.86 d 10.86 d 17.41 d
PDHN 4.91 b 2.85 a 1.25 ab 2.48 a 24.50 b 35.99 b
Water (W) 0.002** 0.868 0.020* 0.445 0.010** 0.002**
Nitrogen (N) 0*** 0*** 0.008** 0.001*** 0*** 0***
W×N 0.097 0.001*** 0.016* 0.023* 0.910 0.739

Table 4

Residue and spatial distribution of peanut fertilizer nitrogen in soil under different water and nitrogen treatments (mg)"

处理
Treatment
土层15N残留量 Residue and spatial distribution of peanut fertilizer nitrogen in soil
0-20 cm 20-40 cm 40-60 cm 60-80 cm 80-100 cm 0-100 cm
WWMN 36.60 b 4.17 d 2.93 e 1.61 d 0.66 e 45.97 bc
WWHN 64.64 a 15.99 b 15.38 b 1.87 c 0.85 d 98.73 a
FDMN 36.15 b 10.66 c 6.64 d 1.90 c 0.96 c 56.31 b
FDHN 67.53 a 21.27 a 8.50 c 5.30 b 2.57 a 105.15 a
PDMN 36.36 b 3.54 c 1.77 f 0.92 e 0.41 f 43.00 c
PDHN 65.33 a 20.24 a 17.64 a 6.10 a 1.97 b 111.28 a
Water (W) 0.943 0*** 0*** 0*** 0*** 0.156
Nitrogen (N) 0*** 0*** 0*** 0*** 0*** 0***
W×N 0.903 0*** 0*** 0*** 0*** 0.077

Table 5

Fertilizer nitrogen input and loss of 15N during peanut growth period"

处理
Treatment
15N总投入量Total 15N rate
(mg column-1)
15N 植株回收量
15N recovery by plant
(mg column-1)
15N残留量
Residual 15N rate
(mg column-1)
15N损失量
15N loss rate
(mg column-1)
肥料氮回收率
Recovery rate of fertilizer nitrogen (%)
肥料氮损失率
Loss rate of
fertilizer nitrogen (%)
WWMN 115.31 38.48 d 45.97 bc 30.86 bc 33.37 bc 26.76 ab
WWHN 230.62 77.90 ab 98.73 a 53.99 a 33.78 b 23.42 b
FDMN 115.31 44.30 c 56.31 b 14.70 c 38.42 a 12.75 c
FDHN 230.62 79.20 a 105.15 a 46.27 ab 34.34 b 20.06 bc
PDMN 115.31 34.82 d 43.00 c 37.69 b 30.20 c 32.68 a
PDHN 230.62 71.98 b 111.28 a 47.36 ab 31.21 bc 20.54 bc
Water (W) 0.002** 0.156 0.069 0.001*** 0.005**
Nitrogen (N) 0*** 0*** 0.001*** 0.192 0.284
W×N 0.739 0.077 0.173 0.084 0.012*
[1] 厉广辉, 万勇善, 刘风珍, 张昆. 不同抗旱性花生品种根系形态及生理特性. 作物学报, 2014, 40:531-541.
Li G H, Wan Y S, Liu F Z, Zhang K. Morphological and physiological traits of root in different drought resistant peanut cultivars. Acta Agron Sin, 2014, 40:531-541 (in Chinese with English abstract).
[2] de Lima Pereira J W, Albuquerque M B, Melo Filho P A, Nogueira R J M C, de Lima L M, Santos R C. Assessment of drought tolerance of peanut cultivars based on physiological and yield traits in a semiarid environment. Agric Water Manage, 2016, 166:70-76.
doi: 10.1016/j.agwat.2015.12.010
[3] Ye H, Roorkiwal M, Valliyodan B, Zhou L, Chen P, Varshney R K, Nguyen H T. Genetic diversity of root system architecture in response to drought stress in grain legumes. J Exp Bot, 2018, 69:3267-3277.
doi: 10.1093/jxb/ery082
[4] Dinh H T, Kaewpradit W, Jogloy S, Vorasoot N, Patanothai A. Nutrient uptake of peanut genotypes with different levels of drought tolerance under midseason drought. Turk J Agric For, 2014, 38:495-505.
doi: 10.3906/tar-1309-45
[5] Lindquist J L, Evans S P, Shapiro C A, Knezevic S Z. Effect of nitrogen addition and weed interference on soil nitrogen and corn nitrogen nutrition. Weed Technol, 2010, 24:50-58.
doi: 10.1614/WT-09-070.1
[6] 梁靖越, 张敬昇, 王昌全, 李冰, 向毫, 尹斌, 罗晶. 控释尿素对小麦籽粒产量和氮素利用率的影响. 核农学报, 2018, 32:157-164.
Liang J Y, Zhang J S, Wang C Q, Li B, Xiang H, Yin B, Luo J. Effects of controlled release urea on grain yield and nitrogen use efficiency in wheat. J Nucl Agricul Sci, 2018, 32:157-164 (in Chinese with English abstract).
[7] Swift J, Adame M, Tranchina D, Henry A, Coruzzi G M. Water impacts nutrient dose responses genome-wide to affect crop production. Nat Commun, 2019, 10:1374.
doi: 10.1038/s41467-019-09287-7
[8] Btoom A J, Sukrapanna S S, Warner R L. Root respiration associated with ammonium and nitrate absorption and assimilation by barley. Plant Physiol, 1992, 99:1294-1301.
doi: 10.1104/pp.99.4.1294
[9] 王艳哲, 刘秀位, 孙宏勇, 张喜英, 张连蕊. 水氮调控对冬小麦根冠比和水分利用效率的影响研究. 中国生态农业学报, 2013, 21:282-289.
Wang Y Z, Liu X W, Sun H Y, Zhang X Y, Zhang L R. Effects of water and nitrogen on root/shoot ratio and water use efficiency of winter wheat. Chin J Eco-Agric, 2013, 21:282-289 (in Chinese with English abstract).
[10] 赵财, 王巧梅, 郭瑶, 殷文, 樊志龙, 胡发龙, 于爱忠, 柴强. 水氮耦合对地膜玉米免耕轮作小麦干物质积累及产量的影响. 作物学报, 2018, 44:1694-1703.
Zhao C, Wang Q M, Guo Y, Yin W, Fan Z L, Hu F L, Yu A Z, Chai Q. Effects of water-nitrogen coupling patterns on dry matter accumulation and yield of wheat under no-tillage with previous plastic mulched maize. Acta Agron Sin, 2018, 44:1694-1703 (in Chinese with English abstract).
[11] 吴永成, 王志敏, 周顺利. 15N标记和土柱模拟的夏玉米氮肥利用特性研究. 中国农业科学, 2011, 44:2446-2453.
Wu Y C, Wang Z M, Zhou S L. Studies on the characteristics of nitrogen fertilizer utilization in summer maize based on techniques of soil column and 15N-label. Sci Agric Sin, 2011, 44:2446-2453 (in Chinese with English abstract).
[12] Wang C B, Zheng Y M, Shen P, Zheng Y P, Wu Z F, Sun X W, Yu T Y, Feng H. Determining N supplied sources and N use efficiency for peanut under applications of four forms of N fertilizers labeled by isotope 15N. J Integr Agric, 2016, 15:432-439.
doi: 10.1016/S2095-3119(15)61079-6
[13] 李灿东, 郭泰, 王志新, 郑伟, 张振宇, 李于, 王囡囡, 刘忠堂. 叶面氮素施量对大豆氮素吸收与分配的影响. 植物营养与肥料学报, 2015, 21:1361-1365.
Li C D, Guo T, Wang Z X, Zheng W, Zhang Z Y, Li Y, Wang N N, Liu Z T. Effects of leaf nitrogen application on soybean nitrogen uptake and distribution. J Plant Nutr Fert, 2015, 21:1361-1365 (in Chinese with English abstract).
[14] 杨伟强, 石程仁, 康涛, 丁红, 徐扬, 戴良香, 张智猛. 水分胁迫对花生不同器官非结构性碳水化合物含量的影响. 中国农学通报, 2020, 36(30):28-35.
Yang W Q, Shi C R, Kang T, Ding H, Xu Y, Dai L X, Zhang Z M. Effects of water stress on non-structural carbohydrates contents in different peanut organs. Chin Agric Sci Bull, 2020, 36(30):28-35 (in Chinese with English abstract).
[15] 张俊, 刘娟, 臧秀旺, 汤丰收, 董文召, 张忠信, 苗利娟, 徐静. 不同生育时期水分胁迫对花生生长发育和产量的影响. 中国农学通报, 2015, 31(24):93-98.
Zhang J, Liu J, Zang X W, Tang F S, Dong W Z, Zhang Z X, Miao L J, Xu J. Effects of drought stress on yield and growth and development at different growth stages of peanut. Chin Agric Sci Bull, 2015, 31(24):93-98 (in Chinese with English abstract).
[16] 张智猛, 戴良香, 宋文武, 丁红, 慈敦伟, 康涛, 宁堂原, 万书波. 干旱处理对花生品种叶片保护酶活性和渗透物质含量的影响. 作物学报, 2013, 39:133-141.
doi: 10.3724/SP.J.1006.2013.00133
Zhang Z M, Dai L X, Song W W, Ding H, Ci D W, Kang T, Ning T Y, Wan S B. Effect of drought stresses at different growth stages on peanut leaf protective enzyme activities and osmoregulation substances content. Acta Agron Sin, 2013, 39:133-141 (in Chinese with English abstract).
[17] 张智猛, 戴良香, 慈敦伟, 张冠初, 田家明, 秦斐斐, 徐扬, 丁红. 生育后期干旱胁迫与施氮量对花生产量及氮素吸收利用的影响. 中国油料作物学报, 2019, 41:614-621.
Zhang Z M, Dai L X, Ci D W, Zhang G C, Tian J M, Qin F F, Xu Y, Ding H. Drought effects at late growth stage and nitrogen application rate on yield and N utilization of peanut. Chin J Oil Crop Sci, 2019, 41:614-621 (in Chinese with English abstract).
[18] 姜慧芳, 段乃雄. 花生抗旱机制的研究进展. 中国油料, 1997, 19(3):73-76.
Jiang H F, Duan N X. Advance in mechanism of resistance to drought in groundnut (Arachis hypogaea L.). Oil Crops China, 1997, 19(3):73-76 (in Chinese with English abstract).
[19] 杨晓康, 柴沙沙, 李艳红, 张佳蕾, 张凤, 杨传婷, 王媛媛, 李向东. 不同生育时期干旱对花生根系生理特性及产量的影响. 花生学报, 2012, 41(2):20-23.
Yang X K, Chai S S, Li Y H, Zhang J L, Zhang F, Yang C T, Wang Y Y, Li X D. Effects of drought stress at different growth stages on physiological characteristics of root and pod yield in peanut. J Peanut Sci, 2012, 41(2):20-23 (in Chinese with English abstract).
[20] 程曦, 赵长星, 王铭伦, 王月福, 单桂萍. 不同生育时期干旱胁迫对花生抗旱指标值及产量的影响. 青岛农业大学学报(自然科学版), 2010, 27:282-284.
Cheng X, Zhao C X, Wang M L, Wang Y F, Shan G P. Effects of drought stress at different growth stages on drought resistance index and yield of peanut. J Qingdao Agric Univ (Nat Sci), 2010, 27:282-284 (in Chinese with English abstract).
[21] 褚丽丽, 李影, 姚百超, 杜崇, 龚文峰, 王笑峰. 水分胁迫和施氮量对大豆叶片生长的补偿效应. 灌溉排水学报. 2013, 32(5):96-99.
Chu L L, Li Y, Yao B C, Du C, Gong W F, Wang X F. Compensation effect of water stress and nitrogen application rate on soybean leaf growth. J Irrig Drain, 2013, 32(5):96-99 (in Chinese with English abstract).
[22] 邹小云, 刘宝林, 宋来强, 邹晓芬, 陈伦林, 熊洁, 李书宇, 官春云. 施氮量与花期水分胁迫对不同氮效率油菜产量性能及氮肥利用效率的影响. 华北农学报, 2015, 30(2):220-226.
Zou X Y, Liu B L, Song L Q, Zou X F, Chen L L, Xiong J, Li S Y, Guan C Y. Effects of nitrogen application and water stress at flowering stage on yield performance parameters and nitrogen use efficiency in rapeseed with different nitrogen use efficiency. Acta Agric Boreali-Sin, 2015, 30(2):220-226 (in Chinese with English abstract).
[23] 熊炳霖, 王仕稳, 王鑫月, 陈道钳, 殷俐娜, 邓西平. 干旱胁迫下氮肥对玉米叶片衰老影响及与碳氮平衡的关系. 玉米科学, 2016, 24(3):138-146.
Xiong B L, Wang S W, Wang X Y, Chen D Q, Yin L N, Deng X P. Effects of nitrogenous fertilizer on leaf senescence of maize and the associate with carbon/nitrogen balance under drought stress. J Maize Sci, 2016, 24(3):138-146 (in Chinese with English abstract).
[24] 谷晓博, 李援农, 杜娅丹, 吴国军, 周昌明, 任全茂, 杨丹. 不同施氮水平对返青期水分胁迫下冬油菜补偿效应的影响. 中国生态农业学报, 2016, 24:572-581.
Gu X B, Li Y D, Du Y D, Wu G J, Zhou C M, Ren Q M, Yang D. Compensative impact of winter oilseed rape (Brassica napus L.) affected by water stress at re-greening stage under different nitrogen rates. Chin J Eco-Agric, 2016, 24:572-581 (in Chinese with English abstract).
[25] 王晓英, 贺明荣, 刘永环, 张洪华, 李飞, 华芳霞, 孟淑华. 水氮耦合对冬小麦氮肥吸收及土壤硝态氮残留淋溶的影响. 生态学报, 2008, 28:685-694.
Wang X Y, He M R, Liu Y H, Zhang H H, Li F, Hua F X, Meng S H. Interactive effects of irrigation and nitrogen fertilizer on nitrogen fertilizer recovery and nitrate-N movement across soil profile in a winter wheat field. Acta Ecol Sin, 2008, 28:685-694 (in Chinese with English abstract).
[26] 李翠平, 秦保平, 李亚静, 郭双双, 付陈陈, 郭振清, 张敏, 杨敏, 蔡瑞国. 减少灌水量对强筋小麦花后干物质和氮素积累、转运及产量的影响. 麦类作物学报, 2020, 40:964-971.
Li C P, Qin B P, Li Y J, Guo S S, Fu C C, Guo Z Q, Zhang M, Yang M, Cai R G. Effect of reducing irrigation amount on the accumulation and translocation of dry matter and nitrogen and grain yield after flowering of strong gluten wheat. J Triticeae Crop, 2020, 40:964-971 (in Chinese with English abstract).
[27] 曹超群, 张国斌, 胡琳莉, 强浩然, 马国礼, 杜淼鑫, 李雨桐. 15N同位素示踪技术研究辣椒器官氮素分配特性和基质氮素运移规律. 华北农学报, 2019, 34(2):171-177.
Cao C Q, Zhang G B, Hu L L, Qiang H R, Ma G L, Du M X, Li Y T. Studies on nitrogen distribution characteristics of capsicum organs and matrix nitrogen transportation law by 15N isotope tracing technique. Acta Agric Boreali-Sin, 2019, 34(2):171-177 (in Chinese with English abstract).
[28] 祁有玲, 张富仓, 李开峰. 水分亏缺和施氮对冬小麦生长及氮素吸收的影响. 应用生态学报, 2009, 20:2399-2405.
Qi Y L, Zhang F C, Li K F. Effects of water deficit and nitrogen fertilization on winter wheat growth and nitrogen uptake. Chin J Appl Ecol, 2009, 20:2399-2405 (in Chinese with English abstract).
[29] 石洪亮, 张巨松, 严青青, 李春艳, 李健伟. 氮肥对非充分灌溉下棉花产量及品质的补偿作用. 植物营养与肥料学报, 2018, 24:134-145.
Shi H L, Zhang J S, Yan Q Q, Li C Y, Li J W. Compensation effects of nitrogen fertilizer on yield and quality of cotton under insufficient irrigation. J Plant Nutr Fert, 2018, 24:134-145 (in Chinese with English abstract).
[30] 徐聪, 李欢, 史衍玺. 不同施氮量对甘薯氮素吸收与分配的影响. 水土保持学报, 2014, 28(2):149-153.
Xu C, Li H, Shi Y X. Effects of different nitrogen level on nitrogen uptake and distribution of sweet potato. J Soil Water Conserv, 2014, 28(2):149-153 (in Chinese with English abstract).
[31] 郑永美, 杜连涛, 王春晓, 吴正锋, 孙学武, 于天一, 沈浦, 王才斌. 不同花生品种根瘤固氮特点及其与产量的关系. 应用生态学报, 2019, 30:961-968.
Zheng Y M, Du L T, Wang C X, Wu Z F, Sun X W, Yu T Y, Shen P, Wang C B. Nitrogen fixation characteristics of root nodules in different peanut varieties and their relationship with yield. Chin J Appl Ecol, 2019, 30:961-968 (in Chinese with English abstract).
[32] 朱兆良. 中国土壤氮素研究. 土壤学报, 2008, 45:778-783.
Zhu Z L. Research on soil nitrogen in China. Acta Pedol Sin, 2008, 45:778-783 (in Chinese with English abstract).
[33] Gabriel J L, Alonson-Ayuso M, Garcia-Gonzalez I, Hontoria C, Quemada M. Nitrogen use efficiency and fertilizer fate in a long-term experiment with winter cover crops. Eur J Agron, 2016, 79:14-22.
doi: 10.1016/j.eja.2016.04.015
[34] 张忠学, 陈帅宏, 陈鹏, 刘明, 尚文彬. 基于15N示踪技术的不同灌水方案玉米追肥氮素去向研究. 农业机械学报, 2018, 49(12):262-272.
Zhang Z X, Chen S H, Chen P, Liu M, Shang W B. Fate of maize topdressing nitrogen under different irrigation schemes based on 15N tracer technology. Trans CSAM, 2018, 49(12):262-272 (in Chinese with English abstract).
[1] WANG Dan, ZHOU Bao-Yuan, MA Wei, GE Jun-Zhu, DING Zai-Song, LI Cong-Feng, ZHAO Ming. Characteristics of the annual distribution and utilization of climate resource for double maize cropping system in the middle reaches of Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(6): 1437-1450.
[2] WANG Wang-Nian, GE Jun-Zhu, YANG Hai-Chang, YIN Fa-Ting, HUANG Tai-Li, KUAI Jie, WANG Jing, WANG Bo, ZHOU Guang-Sheng, FU Ting-Dong. Adaptation of feed crops to saline-alkali soil stress and effect of improving saline-alkali soil [J]. Acta Agronomica Sinica, 2022, 48(6): 1451-1462.
[3] YAN Jia-Qian, GU Yi-Biao, XUE Zhang-Yi, ZHOU Tian-Yang, GE Qian-Qian, ZHANG Hao, LIU Li-Jun, WANG Zhi-Qin, GU Jun-Fei, YANG Jian-Chang, ZHOU Zhen-Ling, XU Da-Yong. Different responses of rice cultivars to salt stress and the underlying mechanisms [J]. Acta Agronomica Sinica, 2022, 48(6): 1463-1475.
[4] YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487.
[5] CHEN Jing, REN Bai-Zhao, ZHAO Bin, LIU Peng, ZHANG Ji-Wang. Regulation of leaf-spraying glycine betaine on yield formation and antioxidation of summer maize sowed in different dates [J]. Acta Agronomica Sinica, 2022, 48(6): 1502-1515.
[6] LI Yi-Jun, LYU Hou-Quan. Effect of agricultural meteorological disasters on the production corn in the Northeast China [J]. Acta Agronomica Sinica, 2022, 48(6): 1537-1545.
[7] LI Hai-Fen, WEI Hao, WEN Shi-Jie, LU Qing, LIU Hao, LI Shao-Xiong, HONG Yan-Bin, CHEN Xiao-Ping, LIANG Xuan-Qiang. Cloning and expression analysis of voltage dependent anion channel (AhVDAC) gene in the geotropism response of the peanut gynophores [J]. Acta Agronomica Sinica, 2022, 48(6): 1558-1565.
[8] SHI Yan-Yan, MA Zhi-Hua, WU Chun-Hua, ZHOU Yong-Jin, LI Rong. Effects of ridge tillage with film mulching in furrow on photosynthetic characteristics of potato and yield formation in dryland farming [J]. Acta Agronomica Sinica, 2022, 48(5): 1288-1297.
[9] WANG Xia, YIN Xiao-Yu, Yu Xiao-Ming, LIU Xiao-Dan. Effects of drought hardening on contemporary expression of drought stress memory genes and DNA methylation in promoter of B73 inbred progeny [J]. Acta Agronomica Sinica, 2022, 48(5): 1191-1198.
[10] YAN Xiao-Yu, GUO Wen-Jun, QIN Du-Lin, WANG Shuang-Lei, NIE Jun-Jun, ZHAO Na, QI Jie, SONG Xian-Liang, MAO Li-Li, SUN Xue-Zhen. Effects of cotton stubble return and subsoiling on dry matter accumulation, nutrient uptake, and yield of cotton in coastal saline-alkali soil [J]. Acta Agronomica Sinica, 2022, 48(5): 1235-1247.
[11] KE Jian, CHEN Ting-Ting, WU Zhou, ZHU Tie-Zhong, SUN Jie, HE Hai-Bing, YOU Cui-Cui, ZHU De-Quan, WU Li-Quan. Suitable varieties and high-yielding population characteristics of late season rice in the northern margin area of double-cropping rice along the Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(4): 1005-1016.
[12] LI Rui-Dong, YIN Yang-Yang, SONG Wen-Wen, WU Ting-Ting, SUN Shi, HAN Tian-Fu, XU Cai-Long, WU Cun-Xiang, HU Shui-Xiu. Effects of close planting densities on assimilate accumulation and yield of soybean with different plant branching types [J]. Acta Agronomica Sinica, 2022, 48(4): 942-951.
[13] WANG Lyu, CUI Yue-Zhen, WU Yu-Hong, HAO Xing-Shun, ZHANG Chun-Hui, WANG Jun-Yi, LIU Yi-Xin, LI Xiao-Gang, QIN Yu-Hang. Effects of rice stalks mulching combined with green manure (Astragalus smicus L.) incorporated into soil and reducing nitrogen fertilizer rate on rice yield and soil fertility [J]. Acta Agronomica Sinica, 2022, 48(4): 952-961.
[14] DU Hao, CHENG Yu-Han, LI Tai, HOU Zhi-Hong, LI Yong-Li, NAN Hai-Yang, DONG Li-Dong, LIU Bao-Hui, CHENG Qun. Improving seed number per pod of soybean by molecular breeding based on Ln locus [J]. Acta Agronomica Sinica, 2022, 48(3): 565-571.
[15] CHEN Yun, LI Si-Yu, ZHU An, LIU Kun, ZHANG Ya-Jun, ZHANG Hao, GU Jun-Fei, ZHANG Wei-Yang, LIU Li-Jun, YANG Jian-Chang. Effects of seeding rates and panicle nitrogen fertilizer rates on grain yield and quality in good taste rice cultivars under direct sowing [J]. Acta Agronomica Sinica, 2022, 48(3): 656-666.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!