Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2022, Vol. 48 ›› Issue (8): 2088-2099.doi: 10.3724/SP.J.1006.2022.14101

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Regulation of peanut seed germination and spermosphere microbial community structure by calcium fertilizer in acidic red soil

XU Yang(), ZHANG Zhi-Meng, DING Hong, QIN Fei-Fei, ZHANG Guan-Chu*(), DAI Liang-Xiang*()   

  1. Shandong Peanut Research Institute, Qingdao 266100, Shandong, China
  • Received:2021-06-08 Accepted:2021-11-29 Online:2022-08-12 Published:2021-12-13
  • Contact: ZHANG Guan-Chu,DAI Liang-Xiang E-mail:xy52120092661@163.com;guanchuzhang@126.com;liangxiangd@163.com
  • Supported by:
    National Natural Science Foundation of China(31901574);National Natural Science Foundation of China(31971856);Modern Agricultural Industry Technical System of Shandong Province(Peanut, SDAIT-04-06)

Abstract:

Acid red soil is characterized by high acid and low calcium, which seriously affects seed germination and plant morphogenesis. Both calcium and spermosphere soil microorganisms play important roles in regulating seed germination, but the mechanisms underlying their relationship are little understood. Improving the emergence and healthy seeding rate of peanut is one of the effective strategies for efficient cultivation of peanut in acidic red soil. To reveal the potential effects of calcium nutrition on the spermosphere microbial community structure and seed germination in peanut, pot experiments were conducted on Huayu 20 (HY20) with or without calcium application, and the spermosphere microbial structure during the germination process was analyzed using high-throughput sequencing. The results showed that Firmicutes, Proteobacteria, Actinobacteria, Acidobacteria, and Bacteroidetes were the dominant bacterial phyla, while Ascomycota, Basidiomycota, and Mortierellomycota were the dominant fungal phyla in peanut spermosphere. CaO application increased the relative abundance of Firmicutes, Bacteroidetes, and Mortierellomycota, but decreased the relative abundance of Basidiomycota. In addition, calcium application increased the number of beneficial bacteria Bacillus. Function prediction analysis indicated that the pathways related to organic matter metabolism (amino acid transport, and metabolism, carbohydrate transport, and metabolism) and stress resistance (replication, recombination, and repair) were significantly increased after the application of calcium, which improved the germination environment of peanut seeds in acid red soil to a certain extent. FUNGuild trophic modes analysis revealed that the number of symbiotroph was increased while the number of saprotrophs was decreased after CaO application. Redundancy analysis indicated that the bacterial and fungal structure was negatively correlated with soil physical and chemical factors, calcium content and pH value. Moreover, the calcium content in soil may have a greater regulatory effect on soil microbial diversity than pH. Based on the above studies, the application of calcium in acidic red soil can improve spermosphere microbial structure, resulting in promoting seed germination.

Key words: spermosphere, microbial community structure, peanut (Arachis hypogaea L.), acid red soil, 16S rRNA sequencing

Fig. 1

Venn and β diversity analysis of microbial community in peanut spermosphere soils A: Venn of bacteria in different spermosphere soil groups; B: Venn of fungi in different spermosphere soil groups; C: PCoA analysis of bacteria in different peanut spermosphere soils; D: PCoA analysis of fungi in different peanut spermosphere soils. Abbreviations are the same as those given in Table 1."

Table 1

α diversity indices analysis of microbial community"

样品Sample 细菌Bacteria 真菌Fungi
多样性指数
Diversity index
丰富度指数
Richness index
多样性指数
Diversity index
丰富度指数
Richness index
Shannon Simpson Ace Chao Shannon Simpson Ace Chao
CK 7.96±0.054 a 0.99±0.00060 a 1164.75±163.83 a 1037.81±117.04 a 3.41±0.15 b 0.86±0.017 a 200.07±16.05 b 196.20±13.82 b
CKS 7.90±0.024 a 0.99±0.00020 a 1022.07±92.43 a 925.945±35.82 b 4.68±1.19 a 0.88±0.078 a 223.74±37.47 a 228.76±36.23 a
CaS 7.82±0.027 a 0.99±0.00040 a 938.19±29.57 b 805.094±26.50 c 2.80±0.58 c 0.78±0.045 b 185.64±6.32 c 167.69±15.27 c

Fig. 2

Microbial community structure of each sample A: percent of bacterial community abundance at the phylum level; B: percent of fungal community abundance at the phylum level; C: percent of bacterial community abundance at the genus level; D: percent of fungal community abundance at the genus level. Abbreviations are the same as those given in Table 1."

Fig. 3

Specific phylotypes of peanut spermosphere responding to CaO by LEfSe bars A: bacterial community structure of peanut spermosphere responding to CaO by LEfSe bars; B: fungal community structure of peanut spermosphere responding to CaO by LEfSe bars. Abbreviations are the same as those given in Table 1."

Fig. 4

Metabolic functional features of the peanut spermosphere microbial community A: the relative abundance and diversity of bacterial functional groups; B: the relative abundance of fungal trophic modes. *: P < 0.05. Abbreviations are the same as those given in Table 1."

Fig. 5

Correlation analysis of soil bacterial and fungal community and soil physical and chemical factors A: correlation analysis of soil bacterial community and soil physical and chemical factors; B: correlation analysis of soil fungal community and soil physical and chemical factors. Abbreviations are the same as those given in Table 1."

Fig. 6

Germination rate of peanuts in acidic red soil with and without calcium application"

[1] 张佳蕾, 郭峰, 孟静静, 于晓霞, 杨莎, 张思斌, 耿耘, 李新国, 万书波. 酸性土施用钙肥对花生产量和品质及相关代谢酶活性的影响. 植物生态学报, 2015, 39: 1101-1109.
doi: 10.17521/cjpe.2015.0107
Zhang J L, Guo F, Meng J J, Yu X X, Yang S, Zhang S B, Geng Y, Li X G, Wan S B. Effects of calcium fertilizer on yield, quality and related enzyme activities of peanut in acidic soil. Chin J Plant Ecol, 2015, 39: 1101-1109 (in Chinese with English abstract).
doi: 10.17521/cjpe.2015.0107
[2] Guo G H, Liu X J, Zhang Y, Shen J L, Han W X, Zhang W F, Christie P, Goulding K W T, Vitousek P M, Zhang F S. Significant acidification in major Chinese crop lands. Nature, 2010, 327: 1008-1010.
[3] 孟静静, 孙克香, 张佳蕾, 郭峰, 于晓霞, 万书波, 张思斌, 李新国. 钙肥对酸性土壤春花生生长及产量的影响. 西北农业学报, 2015, 24(5): 113-118.
Meng J J, Sun K X, Zhang J L, Guo F, Yu X X, Wan S B, Zhang S B, Li X G. Effects of calcium fertilizer on growth and yield of spring peanuts in acidic soil. Acta Agric Boreali-Occident Sin, 2015, 24(5): 113-118. (in Chinese with English abstract)
[4] 刘登望, 李林, 张昊, 张博文, 王飞, 王建国, 万书波, 李新国. 耐酸性土壤花生品种筛选及特征研究. 花生学报, 2018, 47(4): 60-65.
Liu D W, Li L, Zhang H, Zhang B W, Wang F, Wang J G, Wan S B, Li X G. Screening and characteristics of peanut varieties resistant to acid soil. J Peanut Sci, 2018, 47(4): 60-65. (in Chinese with English abstract)
[5] 徐恒恒, 黎妮, 刘树君, 王伟青, 王伟平, 张红, 程红焱, 宋松泉. 种子萌发及其调控的研究进展. 作物学报, 2014, 40: 1141-1156.
Xu H H, Li N, Liu S J, Wang W Q, Wang W P, Zhang H, Cheng H Y, Song S Q. Research progress in seed germination and its control. Acta Agron Sin, 2014, 40: 1141-1156. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2014.01141
[6] 陈士林, 赵新亮, 卫秀英, 王锐, 袁贵仁. 钙和赤霉素对玉米种子活力的影响. 中国农学通报, 2003, 19(4): 64-67.
Chen S J, Zhao X L, Wei X Y, Wang R, Yuan G R. Effects of calcium and gibberellin on vigor of seeds of maize. Chin Agric Sci Bull, 2003, 19(4): 64-67. (in Chinese with English abstract)
[7] 丁燕, 呼凤兰, 田云亮, 段丽君. 温度、湿度、pH值及NaCl浓度对花生种子萌发的影响. 种子, 2018, 37(4): 95-98.
Ding Y, Hu F L, Tian Y L, Duan L J. Effects of temperature, moisture, pH and NaCl concentration on seed germination of peanut. Seed, 2018, 37(4): 95-98 (in Chinese with English abstract).
[8] Han C, Yang P F. Studies on the molecular mechanisms of seed germination. Proteomics, 2015, 15: 1671-1679.
doi: 10.1002/pmic.201400375
[9] Windstam S, Nelson E B. Differential interference with Pythium ultimum sporangial activation and germination by Enterobacter cloacae in the corn and cucumber spermospheres. Appl Environ Microbiol, 2008, 74: 4285-4291.
doi: 10.1128/AEM.00263-08
[10] Gazzarrini S, Tsai A Y. Hormone cross-talk during seed germination. Essays Biochem, 2015, 58: 151-164.
doi: 10.1042/bse0580151 pmid: 26374893
[11] 张智猛, 慈敦伟, 张冠初, 丁红, 杨吉顺, 戴良香, 张岱. 山东地区盐碱土花生种子际土壤微生物群落结构的研究. 微生物学报, 2017, 57: 582-596.
Zhang Z M, Ci D W, Zhang G C, Ding H, Yang J S, Dai L X, Zhang D. Diversity of microbial community structure in the spermosphere of saline-alkali soil in Shandong area. Acta Microbiol Sin, 2017, 57: 582-596. (in Chinese with English abstract)
[12] 张岱, 杨吉顺, 宋文武, 丁红, 张冠初, 李瀚, 刘国利, 张智猛, 慈敦伟. 盐碱土类型对花生种子萌发过程中种子际土壤菌群结构的影响. 花生学报, 2016, 45(3): 8-15.
Zhang D, Yang J S, Song W W, Ding H, Zhang G C, Li H, Liu G L, Zhang Z M, Ci D W. Effect of saline-alkali soil types on the microflora structure in the spermosphere during germination of peanut seeds. J Peanut Sci, 2016, 45(3): 8-15. (in Chinese with English abstract)
[13] Xu Y, Zhang D, Dai L, Ding H, Ci D, Qin F, Zhang G, Zhang Z. Influence of salt stress on growth of spermosphere bacterial communities in different peanut (Arachis hypogaea L.) cultivars. Int J Mol Sci, 2020, 21: 2131.
doi: 10.3390/ijms21062131
[14] 韩丽珍, 刘畅, 邓兆辉, 朱春艳. 茶树根际细菌菌株对种子萌发及幼苗生长的促生效应及机制初探. 种子, 2019, 38(12): 41-47.
Han L Z, Liu C, Deng Z H, Zhu C Y. Studying on growth-promoting effect and mechanism of strains isolated from tea rhizosphere on seed germination and seeding growth. Seed, 2019, 38(12): 41-47. (in Chinese with English abstract)
[15] 韩丽珍, 林佳静, 郑欢, 邓兆辉. 一株溶磷菌的抗逆促生特性及对种子萌发的研究. 种子, 2019, 38(10): 34-40.
Han L Z, Lin J J, Zheng H, Deng Z H. Study on the stress resistance and growth-promoting characteristic of a phosphate- solubilizing bacteria strain and its effect on seed germination. Seed, 2019, 38(10): 34-40. (in Chinese with English abstract)
[16] Harper J F, Sussman M R, Schaller G E, Putnam-Evans C, Charbonneau H, Harmon A C. A calcium-dependence protein kinase with a regulatory domain similar to calmodulin. Science, 1991, 252: 951-954.
pmid: 1852075
[17] Choi H, Park H J, Park J H, Kim S, Im M Y, Seo H H, Kim Y W, Hwang I, Kim S Y. Arabidopsis calcium-dependent protein kinase AtCPK32 interacts with ABF4, a transcriptional regulator of abscisic acid-responsive gene expression, and modulates its activity. Plant Physiol, 2005, 139: 1750-1761.
doi: 10.1104/pp.105.069757
[18] Hepler P K. Calcium: a central regulator of plant growth and development. Plant Cell, 2005, 17: 2142-2215.
pmid: 16061961
[19] 于震宇. 外源钙对盐胁迫下金花葵种子萌发的影响. 现代园艺, 2021, 44(1): 53-54.
Yu Z Y. Effects of exogenous calcium on seed germination of Sunflower under salt stress. Xiandai Hortic, 2021, 44(1): 53-54. (in Chinese)
[20] 戴良香, 徐扬, 张冠初, 史晓龙, 秦斐斐, 丁红, 张智猛. 花生根际土壤细菌群落多样性对盐胁迫的响应. 作物学报, 2021, 47: 1581-1592.
doi: 10.3724/SP.J.1006.2021.04160
Dai L X, Xu Y, Zhang G C, Shi X L, Qin F F, Ding H, Zhang Z M. Response of rhizosphere bacterial community diversity to salt stress in peanut. Acta Agron Sin, 2021, 47: 1581-1592. (in Chinese with English abstract)
[21] 焦克, 张旭博, 徐梦, 刘晓洁, 安前东, 张崇玉. 藏东南典型暗针叶林不同土壤剖面深度微生物群落特征研究. 生态学报, 2021, 41: 4864-4875.
Jiao K, Zhang X B, Xu M, Liu X J, An Q D, Zhang C Y. Depth-related characteristics of soil microbial community along the soil profile of typical dark coniferous forest in southeast Tibet. Acta Ecol Sin, 2021, 41: 4864-4875. (in Chinese with English abstract)
[22] 张淼, 陈裕凤, 陈龙, 黄飘玲, 韦露玲. 不同地区药用植物两面针根际土壤真菌种群多样性差异分析. 生物技术通报, 2020, 36(9): 167-179.
doi: 10.13560/j.cnki.biotech.bull.1985.2020-0667
Zhang M, Chen Y F, Chen L, Huang P L, Wei L L. Difference analysis of the community diversity of fungi in the rhizosphere soil of Zanthoxylum nitidum (Roxb) DC in sifferent regions. Biotechnol Bull, 2020, 36(9): 167-179 (in Chinese with English abstract).
[23] 王文晓, 李小伟, 黄文广, 杨君珑. 蒙古沙冬青根际土壤细菌群落组成及多样性与生态因子相关性研究. 生态学报, 2020, 40: 8660-8671.
Wang W X, Li X W, Huang W G, Yang J L. Correlations between the composition and diversity of bacterial communities and ecological factors in the rhizosphere of Ammopiptanthus mongolicus. Acta Ecol Sin, 2020, 40: 8660-8671 (in Chinese with English abstract).
[24] 薛晓梦, 吴洁, 王欣, 白冬梅, 胡美玲, 晏立英, 陈玉宁, 康彦平, 王志慧, 淮东欣, 雷永, 廖伯寿. 低温胁迫对普通和高油酸花生种子萌发的影响. 作物学报, 2021, 47: 1768-1778.
doi: 10.3724/SP.J.1006.2021.04170
Xue X M, Wu J, Wang X, Bai D M, Hu M L, Yan L Y, Chen Y N, Kang Y P, Wang Z H, Huai D X, Lei Y, Liao B S. Effects of cold stress on germination in peanut cultivars with normal and high content of oleic acid. Acta Agron Sin, 2021, 47: 1768-1778. (in Chinese with English abstract)
[25] 彭玉龙, 张乾申, 韩丽珍, 孟源. 促烟草种子萌发的细菌菌株筛选及促生特性研究. 中国烟草科学, 2020, 41(5): 68-72.
Peng Y L, Zhang Q S, Han L Z, Meng Y. Screening for bacterial strains promoting seed germination of tobacco and study of their growth-promoting characteristics. Chin Tob Sci, 2020, 41(5): 68-72. (in Chinese with English abstract)
[26] 陈静, 李斌, 曾庆宾, 罗定棋, 王昌全, 陈强, 刘松青, 辜运富. 攀枝花地区烤烟可培养内生固氮菌的多样性. 微生物学报, 2017, 44: 428-437.
Chen J, Li B, Zeng Q B, Luo D Q, Wang C Q, Chen Q, Liu S Q, Gu Y F. Diversity of culturable endophytic diazotrophic bacteria in flue-cured tobacco in Panzhihua. Acta Microbiol Sin, 2017, 44: 428-437. (in Chinese with English abstract)
[27] Kageyama K, Nelson E B. Differential inactivation of seed exudate stimulation of Pythium ultimum sporangium germination by Enterobacter cloacae influences biological control efficacy on different plant species. Appl Environ Microbiol, 2003, 69: 1114-1120.
doi: 10.1128/AEM.69.2.1114-1120.2003
[28] Verona O. The spermosphere. Ann Inst Pasteur (Paris), 1958, 95: 795-798.
[29] 于少鹏, 史传奇, 胡宝忠, 丁俊男, 孟博, 杨春雪. 古大湖湿地盐碱土壤微生物群落结构及多样性分析. 生态学报, 2020, 40: 3764-3775.
Yu S P, Shi C Q, Hu B Z, Ding J N, Meng B, Yang C X. Analysis of microbial community structure and diversity of saline soil in Gudahu Wetland. Acta Ecol Sin, 2020, 40: 3764-3775. (in Chinese with English abstract)
[30] Fierer N, Bradford M A, Jackson R B. Toward an ecological classification of soil bacteria. Ecology (Durham), 2007, 88: 1354-1364.
pmid: 17601128
[31] 王改萍, 阿依古丽·托乎提, 王茹, 祝长青. 新疆乌尔禾地区盐渍土壤耐盐细菌多样性与群落结构研究. 微生物学杂志, 2021, 41(2): 17-26.
Wang G P, Ayiguli T H T, Wang R, Zhu C Q. Study on the diversity and community structure of salt tolerant bacteria in saline alkali soil in Wuerhe. Xinjiang. J Microbiol, 2021, 41(2): 17-26. (in Chinese with English abstract)
[32] 徐扬, 张冠初, 丁红, 慈敦伟, 秦斐斐, 张智猛, 戴良香. 干旱与盐胁迫对花生根际土壤细菌群落结构和花生产量的影响. 应用生态学报, 2020, 31: 1305-1313.
Xu Y, Zhang G C, Ding H, Ci D W, Qin F F, Zhang Z M, Dai L X. Effects of salt and drought stresses on rhizosphere soil bacterial community structure and peanut yield. Chin J Appl Ecol, 2020, 31: 1305-1313. (in Chinese with English abstract)
[33] Kielak A, Pijl A S, Veen J A, Kowalchuk G A. Differences in vegetation composition and plant species identity lead to only minor changes in soil-borne microbial communities in a former arable field. FEMS Microbiol Ecol, 2008, 63: 372-382.
doi: 10.1111/j.1574-6941.2007.00428.x pmid: 18205817
[34] Zhang Y G, Cong J, Lu H. Community structure and elevational diversity patterns of soil Acidobacteria. J Environ Sci, 2014, 26: 1717-1724.
doi: 10.1016/j.jes.2014.06.012
[35] Hanson C A, Allison S D, Bradford M A, Wallenstein M D, Treseder K K. Fungal taxa target different carbon sources in forest soil. Ecosystems, 2008, 11: 1157-1167.
doi: 10.1007/s10021-008-9186-4
[36] Egidi E, Delgado-Baquerizo M, Plett J M, Wang J T, Eldridge D J, Bardgett R D, Maestre F T, Singh B K. A few Ascomycota taxa dominate soil fungal communities worldwide. Nat Commun, 2019, 10: 6506-6511.
[37] 伍思宇, 李宝财, 李纪元, 廖健明, 韦晓娟, 傅镜远, 李开祥. 不同树种林下套种金花茶土壤微生物多样性分析. 广西林业科学, 2021, 50(2): 115-124.
Wu S Y, Li B C, Li J Y, Liao J M, Wei X J, Fu J Y, Li K X. Soil microbial diversity of planting Camellia nitidissima under different tree species. Guangxi For Sin, 2021, 50(2): 115-124. (in Chinese with English abstract)
[38] Lopez-Siles M, Duncan S H, Garcia-Gil L J, Martinez-Medina M. Faecalibacterium prausnitzii: from microbiology to diagnostics and prognostics. ISME J, 2017, 11: 841-852.
doi: 10.1038/ismej.2016.176 pmid: 28045459
[39] 张林, 丁效东, 王菲, 田芷源, 冯固. 菌丝室接种解磷细菌Bacillus megaterium C4对土壤有机磷矿化和植物吸收的影响. 生态学报, 2012, 32: 4079-4086.
Zhang L, Ding X D, Wang F, Tian Z Y, Feng G. The effects of inoculation with phosphate solubilizing bacteria Bacillus megaterium C4 in the AM fungal hyphosphere on soil organic phosphorus mineralization and plant uptake. Acta Ecol Sin, 2012, 32: 4079-4086. (in Chinese with English abstract)
[40] Yanni Y G, Dazzo F B, Zidan M I. Beneficial endophytic rhizobia as bio fertilizer inoculants for rice and the spatial ecology of this bacteria-plant association. In: Bacteria in Agrobiology:Crop Ecosystems. Berlin: Springer Berlin Heidelberg, 2011. pp 265-294.
[41] 陈瑶, 周寒梅, 何兵, 李维. GA3和IAA组合调控华重楼种子萌发机理初探. 园艺学报, 2020, 47: 321-333.
Chen Y, Zhou H M, He B, Li W. Preliminary study on the regulation mechanism of GA3 and IAA combination in Paris polyphylla var. chinensis seed germination. Acta Hortic Sin, 2020, 47: 321-333. (in Chinese with English abstract)
[42] 刘长征, 姜晓琳, 蔡启忠, 周良云, 杨全. 何首乌根际促生菌的筛选及其对何首乌种子萌发的影响. 中国中药杂志, 2021, 46: 5247-5252.
Liu C Z, Jiang X L, Cai Q Z, Zhou L Y, Yang Q. Screening for growth-promoting bacteria in rhizosphere of Polygonum multiflorum and its effect on seed germination of Polygonum multiflorum. China J Chin Mater Med, 2021, 46: 5247-5252. (in Chinese with English abstract)
[43] 王桔红, 史生晶, 陈文, 甘桂媚, 陈赛娜, 李张伟. 枯草芽孢杆菌和3种放线菌对盐胁迫下鬼针草和鳢肠种子萌发及幼苗生长的影响. 草业学报, 2020, 29(12): 112-120.
Wang J H, Shi S J, Chen W, Gan G M, Chen S N, Li Z W. Effects of Bacillus subtilis and three actinomycetes on seed germination and seedling growth of Bidens pilosa and Eclipta prostrata under salt stress. Acta Pratac Sin, 2020, 29(12): 112-120. (in Chinese with English abstract)
[44] Vurukonda S S K P, Vardharajula S, Shrivastava M, SkZ A. Enhancement of drought stress tolerance in crops by plant growth promoting rhizobacteria. Microbiol Res, 2016, 184: 13-24.
doi: 10.1016/j.micres.2015.12.003 pmid: 26856449
[45] Bouskill N J, Wood T E, Baran R, Ye Z, Bowen B P, Lim H C, Zhou J Z, Van Nostrand J D, Nico P, Northen T R, Silver W L, Brodie E L. Belowground response to drought in a tropical forest soil: I. Changes in microbial functional potential and metabolism. Front Microbiol, 2016, 7: 525.
[46] Ullah A, Akbar A, Luo Q Q, Khan A H, Manghwar H, Shaban M, Yang X Y. Microbiome diversity in cotton rhizosphere under normal and drought conditions. Microb Ecol, 2019, 77: 429-439.
doi: 10.1007/s00248-018-1260-7 pmid: 30196314
[47] Naylor D, Coleman-Derr D. Drought stress and root associated bacterial communities. Front Plant Sci, 2018, 8: 2223.
doi: 10.3389/fpls.2017.02223
[48] Sun J Y, Song Y, Ma Z P, Zhang H J, Yang Z D, Cai Z H, Zhou J. Fungal community dynamics during a marine dinoflagellate (Noctiluca scintillans) bloom. Mar Environ Res, 2017, 131: 183-194.
doi: 10.1016/j.marenvres.2017.10.002
[49] Li W, Wang M M, Burgaud G, Yu H M, Cai L. Fungal community composition and potential depth-related driving factors impacting distribution pattern and trophic modes from Epi-to abyssopelagic zones of the Western Pacific Ocean. Microb Ecol, 2019, 78: 820-831.
doi: 10.1007/s00248-019-01374-y
[50] 陈祖静, 高尚坤, 陈园, 何平会, 何茜, 邱权, 李吉跃. 短期施肥对桉树人工林土壤真菌群落结构及功能类群的影响. 生态学报, 2020, 40: 3813-3821.
Chen Z J, Gao S K, Chen Y, He P H, He Q, Qiu Q, Li J Y. Effects of short-term fertilization on soil fungal community structure and functional group in Eucalyptus artificial forest. Acta Ecol Sin, 2020, 40: 3813-3821. (in Chinese with English abstract)
[51] Igiehon N O, Babalola O O. Biofertilizers and sustainable agriculture: exploring arbuscular mycorrhizal fungi. Appl Microbiol Biotechnol, 2017, 101: 4871-4881.
doi: 10.1007/s00253-017-8344-z
[52] 陈乾丽, 汪汉成, 梁永进, 蔡刘体, 黄宇, 周浩, 李忠, 韩洁. 烤后健康烟叶和霉烂烟叶真菌群落结构分析. 浙江农业学报, 2020, 32: 1019-1028.
Chen Q L, Wang H C, Liang Y J, Cai L T, Huang Y, Zhou H, Li Z, Han J. Fungal composition and diversity analysis of healthy and rotten tobacco leaves after curing. Acta Agric Zhejiangensis, 2020, 32: 1019-1028. (in Chinese with English abstract)
[53] Anthony M A, Frey S D, Stinson K A. Fungal community homogenization, shift in dominant trophic guild, and appearance of novel taxa with biotic invasion. Ecosphere, 2017, 8: e01951.
[1] TAN Xue-Lian, GUO Tian-Wen, HU Xin-Yuan, ZHANG Ping-Liang, ZENG Jun, LIU Xiao-Wei. Characteristics of microbial community in the rhizosphere soil of continuous potato cropping in arid regions of the Loess Plateau [J]. Acta Agronomica Sinica, 2022, 48(3): 682-694.
[2] SHI Lei, MIAO Li-Juan, HUANG Bing-Yan, GAO Wei, ZHANG Zong-Xin, QI Fei-Yan, LIU Juan, DONG Wen-Zhao, ZHANG Xin-You. Characterization of the promoter and 5'-UTR intron in AhFAD2-1 genes from peanut and their responses to cold stress [J]. Acta Agronomica Sinica, 2021, 47(9): 1703-1711.
[3] ZHANG Wei, HONG Yan-Yun, LIU Deng-Wang, ZHANG Bo-Wen, YI Tu-Yong, LI Lin. Effects of calcium application on the structural diversity of endophytic bacterial community in peanut roots under acidic red soil cultivation [J]. Acta Agronomica Sinica, 2021, 47(1): 116-124.
[4] LUO Jun,LIN Zhao-Li,LI Shi-Yan,QUE You-Xiong,ZHANG Cai-Fang,YANG Zai-Qi,YAO Kun-Cun,FENG Jing-Fang,CHEN Jian-Feng,ZHANG Hua. Effects of different soil improvement measures on soil physicochemical properties and microbial community structures in mechanically compacted acidified sugarcane field [J]. Acta Agronomica Sinica, 2020, 46(4): 596-613.
[5] HUANG Bing-Yan,QI Fei-Yan,SUN Zi-Qi,MIAO Li-Juan,FANG Yuan-Jin,ZHENG Zheng,SHI Lei,ZHANG Zhong-Xin,LIU Hua,DONG Wen-Zhao,TANG Feng-Shou,ZHANG Xin-You. Improvement of oleic acid content in peanut (Arachis hypogaea L.) by marker assisted successive backcross and agronomic evaluation of derived lines [J]. Acta Agronomica Sinica, 2019, 45(4): 546-555.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[2] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[3] Hu Yuqi;Liao Xiaohai. A STUDY ON THE COEFFICIENT OF LEAVES SHAPE OF MAIZE[J]. Acta Agron Sin, 1986, (01): 71 -72 .
[4] LIANG Tai-Bo;YIN Yan-Ping;CAI Rui-Guo;YAN Su-Hui;LI Wen-Yang;GENG Qing-Hui;WANG Ping;WANG Zhen-Lin. Starch Accumulation and Related Enzyme Activities in Superior and Inferior Grains of Large Spike Wheat[J]. Acta Agron Sin, 2008, 34(01): 150 -156 .
[5] WANG Cheng-Zhang;HAN Jin-Feng;SHI Ying-Hua;LI Zhen-Tian;LI De-Feng. Production Performance in Alfalfa with Different Classes of Fall Dormancy[J]. Acta Agron Sin, 2008, 34(01): 133 -141 .
[6] TIAN Zhi-Jian;Yi Rong;CHEN Jian-Rong;GUO Qing-Quan;ZHANG Xue-Wen;. Cloning and Expression of Cellulose Synthase Gene in Ramie [Boehme- ria nivea (Linn.) Gaud.][J]. Acta Agron Sin, 2008, 34(01): 76 -83 .
[7] ZHAO Xiu-Qin;ZHU Ling-Hua;XU Jian-Long;LI Zhi-Kang. QTL Mapping of Yield under Irrigation and Rainfed Field Conditions for Advanced Backcrossing Introgression Lines in Rice[J]. Acta Agron Sin, 2007, 33(09): 1536 -1542 .
[8] WU Ying ; SONG Feng-Sun ; LU Xu-Zhong; ZHAO Wei; YANG Jian-Bo; LI Li ;. Detecting Genetically Modified Soybean by Real-time Quantitative PCR Technique[J]. Acta Agron Sin, 2007, 33(10): 1733 -1737 .
[9] GOU Ling ; HUANG Jian-Jun; ZHANG Bin; LI Tao; SUN Rui; ZHAO Ming ;. Effects of Population Density on Stalk Lodging Resistant Mechanism and Agronomic Characteristics of Maize[J]. Acta Agron Sin, 2007, 33(10): 1688 -1695 .
[10] YU Jing;ZHANG Lin;CUI Hong;ZHANG Yong-Xia;CANG Jing;HAO Zai-Bin;LI Zhuo-Fu. Physiological and Biochemical Characteristics of Dongnongdongmai 1 before Wintering in High-Cold Area[J]. Acta Agron Sin, 2008, 34(11): 2019 -2025 .