Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2019, Vol. 45 ›› Issue (4): 546-555.doi: 10.3724/SP.J.1006.2019.84096


Improvement of oleic acid content in peanut (Arachis hypogaea L.) by marker assisted successive backcross and agronomic evaluation of derived lines

HUANG Bing-Yan,QI Fei-Yan,SUN Zi-Qi,MIAO Li-Juan,FANG Yuan-Jin,ZHENG Zheng,SHI Lei,ZHANG Zhong-Xin,LIU Hua,DONG Wen-Zhao,TANG Feng-Shou,ZHANG Xin-You()   

  1. Industrial Crops Research Institute, Henan Academy of Agricultural Sciences / Huanghuaihai Key Laboratory of Oil Crops, Ministry of Agriculture / Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou 450002, Henan, China
  • Received:2018-07-10 Accepted:2018-12-24 Online:2019-04-12 Published:2019-01-04
  • Contact: Xin-You ZHANG E-mail:haasz@126.com
  • Supported by:
    This study was supported by the China Agricultural Research System(CARS-13);Henan Agricultural Research System(Mars-China HOAP2013-2018)


High oleic acid content is a key quality trait in peanut varieties. Peanut and its products with high oleic acid content possess better quality stability and nutrition for benefiting peanut processing and human health. To date, the released high oleic acid varieties were few and most of which were derived by conventional breeding with narrow genetic background. In this study, Allele Specific-PCR-Mispairing (AS-PCR-MP) method and optimized KASP assay system were developed to facilitate successive marker-assisted backcross breeding strategy for high oleic acid content. We also applied Near Infra-Red technology and winter nursery in the five-year successive backcross and selfing. Four types of cultivars (Yuhua 15, Yuanza 9102, Yuhua 9327, and Yuhua 9326) were selected as recurrent parents for backcrossing. Twenty-four BC4F4 and BC4F5 stable lines with different genetic backgrounds and high oleic acid content were produced from four generations of successive backcrosses and four generations of BC4 selfing. Similarities between BC4 selfing progenies and recurrent parents were analyzed based on 13 agronomic traits. The recovery rate of genetic background for BC4F4 and BC4F5 was investigated by designing KASP assays with SNPs that were polymorphic between recurrent parents and non-recurrent parents. The proportion of genetic background of recurrent parents in BC4F5 was 79.49% to 92.31%. This study provides a new strategy for efficiently improving oleic acid content of peanuts with diverse genetic backgrounds. The near isogenic lines obtained in this study could be valuable genetic resources for further utilizations.

Key words: peanut (Arachis hypogaea L.), high oleic acid content, fatty acid desaturase (FAD2), marker assisted backcross (MABC), genetic background

Fig. 1

Breeding Strategy of marker assisted selection for high oleic acid peanut RP: recurrent parent; HO: high oleic acid; AS-PCR-MP: allele specific-PCR-mispairing; NIR: near infrared reflectance spectroscopy."

Fig. 2

F1 genotyping by AS-PCR-MPLane 1: Ol1Ol1Ol2Ol2; lane 2: Ol1Ol1Ol2ol2; lane 3: Ol1ol1Ol2Ol2; lane 4: Ol1ol1Ol2ol2."

Fig. 3

KASP detection of FAD2 SNP in BC4F2 individuals"

Table 1

Oleic acid content in BC4F2:3 and the related F2 genotype of YZ9102"

F2:3 oleic acid content
Related F2 genotype
Number of F2:3 plants
Genotype ratio
<38% _ _ _ _*; _ol1 _ _ 86 9.4/16
38%-48% _ _ _ol2; ol1ol1 _ _ 29 3.2/16
48%-68% ol1ol1 _ol2; _ol1ol2ol2; _ol1 _ol2; __ ol2ol2 25 2.7/16
>68% ol1ol1ol2ol2 7 0.8/16
合计Total 147

Fig. 4

KASP detection of FAD2 SNPs in BC4F4:5"

Fig. 5

Box-plot of BC4F4 for different recurrent parents Heavy blue solid line indicates median, black dotted line indicates mean of recurrent parent, pink dotted line indicates mean of non-recurrent parent. YH15: Yuhua 15; YZ9102: Yuanza 9102; YH9327: Yuhua 9327; YH9326: Yuhua 9326."

Table 2

KASP assay for genetic background in BC4F4 lines"

Genetic background
YH15 BC4F5 lines YH15 BC4F4 lines YZ9102 BC4F5 lines YZ9102 BC4F4 lines
Z172000 Z172003 Z172025 Z172250 Z172290 Z172081 Z172086 Z172291 Z172299
轮回亲本RP (%) 79.49 84.62 92.31 66.67 77.78 87.50 87.50 83.33 83.33
杂合率Heterozygous (%) 7.69 7.69 7.69 22.22 0.00 6.25 6.25 16.67 16.67
非轮回亲本NRP (%) 12.82 7.69 0.00 11.11 22.22 6.25 6.25 0.00 0.00

Table 3

Comparison of pod and seed traits of the selected superior plants with their parents"

No. of superior plants
Oleic acid (%)
Pod type
Pod reticulation
Testa color
Yuhua 15
38.71 0.96 普通型
Thick and slight
Yuanza 9102
34.50 0.81 珍珠豆型
Thin and prominent
Yuhua 9327
39.25 0.98 普通型
Thick and slight
Yuhua 9326
36.01 0.82 普通型
Thick and prominent
Kainong 176
70.93 5.00 普通型
Thick and slight
DF12 75.09 7.52 普通型
Thin and slight
Kaixuan 016
70.03 4.96 普通型
Thick and slight
8 70.26-74.21 5.14-10.72 普通型
Thick and slight
HOAP YZ 9102*
8 73.37-79.64 8.81-42.82 珍珠豆型
Thin and prominent
HOAP YH 9327*
2 71.90-76.37 6.90-11.77 普通型
Thick and slight
HOAP YH 9326*
6 73.63-82.51 6.79-34.96 普通型
Thick and prominent
[1] O’Keefe S F, Knauft D A . Comparison of oxidative stability of high and normal-oleic peanut oils. J Am Oil Chem Soc, 1993,70:489-492.
doi: 10.1007/BF02542581
[2] Talcott S T ,Pozo-Insfran D D,Gorbet D W . Polyphenolic and antioxidant changes during storage of normal, mid, and high oleic acid peanuts. Food Chem, 2005,89:77-84.
doi: 10.1016/j.foodchem.2004.02.020
[3] Talcott S T, Duncan C E, Gorbet D W . Polyphenolic content and sensory properties of normal and high oleic acid peanuts. Food Chem, 2005,90:379-388.
doi: 10.1016/j.foodchem.2004.04.011
[4] Vassiliou E K, Garcia C, Tadros J H, Chakraborty G, Toney J H . Oleic acid and peanut oil high in oleic acid reverse the inhibitory effect of insulin production of the inflammatory cytokine TNF-alpha both in vitro and in vivo systems. Lipids Health Dis, 2009,8:25-34.
doi: 10.1186/1476-511X-8-25 pmid: 19558671
[5] Norden A J, Gorbet D W, Knauft D A, Young C T . Variability in oil quality among peanut genotypes in the Florida breeding program. Peanut Sci, 1987,14:7-11.
doi: 10.3146/i0095-3679-14-1-3
[6] 禹山林 , Isleib T G. 美国大花生脂肪酸的遗传分析. 中国油料作物学报, 2000,22:34-37.
Yu S L, Isleib T G . The inheritance of high oleic acid content in peanut of Virginia type in USA. Chin J Oil Crop Sci, 2000,22:34-37 (in Chinese with English abstract).
[7] 黄冰艳, 张新友, 苗利娟, 刘华, 秦利, 徐静, 张忠信, 汤丰收, 董文召, 韩锁义, 刘志勇 . 花生油酸和亚油酸含量的遗传模式分析. 中国农业科学, 2012,45:617-624.
Huang B Y, Zhang X Y, Miao L J, Liu H, Qin L, Xu J, Zhang Z X, Tang F S, Dong W Z, Han S Y, Liu Z Y . Inheritance analysis of oleicacid and linoleic acid content of Arachis hypogaea L. Sci Agric Sin, 2012,45:617-624 (in Chinese with English abstract).
[8] Jung S, Swift D, Sengoku E, Patel M, Teule F, Powell G, Moore K, Abbott A . The high oleate trait in the cultivated peanut (Arachis hypogaea L.): I. Isolation and characterization of two genes encoding microsomal oleoyl-PC desaturases. Mol Gen Genet, 2000,263:796-805.
[9] Jung S, Powell G, Moore K, Abbott A . The high oleate trait in the cultivated peanut (Arachis hypogaea L.): II. Molecular basis and genetics of the trait. Mol Gen Genet, 2000,263:806-811.
doi: 10.1007/s004380000243 pmid: 10905348
[10] Lopez Y, Nadaf H L, Smith O D, Connell J P, Reddy A S, Fritz A K . Isolation and characterization of the Δ 12-fatty acid desaturase in peanut (Arachis hypogaea L.) and search for polymorphisms for the high oleate trait in Spanish market-type lines. Theor Appl Genet, 2000,101:1131-1138.
[11] Lopez Y, Smith O D, Senseman S A, Rooney W L . Genetic factors influencing high oleic acid content in Spanish market-type peanut cultivars. Crop Sci, 2001,41:51-56.
doi: 10.2135/cropsci2001.41151x
[12] Bruner A C, Jung S, Abbott A G, Powell G L . The naturally occurring high oleate oil character in some peanut varieties results from reduced oleoyl-PC desaturase activity from mutation of aspartate 150 to Asparagine. Crop Sci, 2001,41:522-526.
doi: 10.2135/cropsci2001.412522x
[13] Chu Y, Holbrook C C, Tillman B L, Person G, Ozias-Akins P . Marker-assisted selection to pyramid nematode resistance and the high oleic trait in peanut. Plant Genome J, 2011,4:110-117.
doi: 10.3835/plantgenome2011.01.0001
[14] Barkley N A, Wang M L, Pittman R N . Development of a real-time PCR genotyping assay to identify high oleic acid peanuts (Arachis hypogaea L.). Mol Breed, 2009,25:541-548.
doi: 10.1007/s11032-009-9338-z
[15] Chen Z, Wang M L, Barkley N A, Pittman R N . A simple allele-specific PCR assay for detecting FAD2 alleles in both A and B genomes of the cultivated peanut for high-oleate trait selection. Plant Mol Biol Rep, 2010,28:542-548.
[16] 徐平丽, 唐桂英, 付春, 刘玮, 鲁成凯, 姜言生, 刘皓, 单雷 . 高通量检测花生油酸含量相关基因AhFAD2等位变异的方法. 农业生物技术学报, 2016,24:1364-1373.
Xu P L, Tang G Y, Fu C, Liu W, Lu C K, Jiang Y S, Liu H, Shan L . Methods for high-throughput detecting the allelic variation of AhFAD2 gene related with oleic acid content in peanut(Arachis hypogaea). J Agric Biotechnol, 2016,24:1364-1373 (in Chinese with English abstract).
[17] Zhao S Z, Li A, Li C, Xia H, Zhao C, Zhang Y, Hou L, Wang X . Development and application of KASP marker for high throughput detection of AhFAD2 mutation in peanut. Elect J Biotechnol, 2017,25:9-12.
doi: 10.1016/j.ejbt.2016.10.010
[18] 陈静 . 高油酸花生遗传育种研究进展. 植物遗传资源学报, 2011,12:190-196.
Chen J . Advances in genetics and breeding of high oleic acid peanut. J Plant Genet Resour, 2011,12:190-196 (in Chinese with English abstract).
[19] 王传堂, 朱立贵 . 高油酸花生.上海: 上海科学技术出版社, 2017. pp 189-241.
Wang C T, Zhu L G. High Oleic Acid Peanut. Shanghai: Shanghai Scientific and Technical Publisher, 2017. pp 189-241(in Chinese).
[20] 禹山林 . 中国花生品种及其系谱. 上海: 上海科学技术出版社, 2008. pp 322-345.
Yu S L. Chinese Peanut Variety and Pedigree. Shanghai: Shanghai Scientific and Technical Publisher, 2008. pp 322-345(in Chinese).
[21] Patel M, Jung S, Moore K, Powell G, Ainsworth C, Abbott A . High-oleate peanut mutants results from a MITE insertion into the FAD2 gene. Theor Appl Genet, 2004,108:1492-1502.
[22] Trick M, Mugford S G, Jiang C C, Febrer M, Uauy C . Combining SNP discovery from next-generation sequencing data with bulked segregant analysis (BSA) to fine-map genes in polyploid wheat. BMC Plant Biol, 2012,12:14.
doi: 10.1186/1471-2229-12-14 pmid: 22280551
[23] 姜慧芳, 段乃雄 . 花生种质资源描述规范和数据标准. 北京: 中国农业出版社, 2006. pp 65-72.
Jiang H F, Duan N X. Descriptors and Dada Standard for Peanut. Beijing: China Agriculture Press, 2006. pp 65-72(in Chinese).
[24] 姜慧芳, 任小平, 黄家权, 廖伯寿, 雷永 . 中国花生小核心种质的建立及高油酸基因源的发掘. 中国油料作物学报, 2008,30:294-299.
Jiang H F, Ren X P, Huang J Q, Liao B S, Lei Y . Establishment of peanut mini core collection in China and exploration of new resource with high oleate. Chin J Oil Crop Sci, 2008,30:294-299 (in Chinese with English abstract).
[25] 雷永, 姜慧芳, 文奇根, 黄家权, 晏立英, 廖伯寿 . ahFAD2A 等位基因在中国花生小核心种质中的分布及其与种子油酸含量的相关性分析. 作物学报, 2010,36:1864-1869.
Lei Y, Jiang H F, Wen Q G, Huang J Q, Yan L Y, Liao B S . Frequencies of ahFAD2A alleles in Chinese peanut mini core collection and its correlation with oleic acid content. Acta Agron Sin, 2010,36:1864-1869 (in Chinese with English abstract).
[26] 黄冰艳, 张新友, 苗利娟, 高伟, 韩锁义, 董文召, 汤丰收, 刘志勇 . 花生ahFAD2A等位基因表达变异与种子油酸积累关系. 作物学报, 2012,38:1752-1759.
Huang B Y, Zhang X Y, Miao L J, Gao W, Han S Y, Dong W Z, Tang F S, Liu Z Y . Allelic expression variation of ahFAD2A and its relationship with oleic acid accumulation in peanut. Acta Agron Sin, 2012,38:1752-1759 (in Chinese with English abstract).
[27] 黄冰艳, 张新友, 董文召, 臧秀旺, 苗利娟, 刘华, 高伟, 韩锁义, 汤丰收 . 河南省地方花生资源的品质性状及其育种利用途径. 植物遗传资源学报, 2012,13:414-417.
Huang B Y, Zhang X Y, Dong W Z, Zang X W, Miao L J, Liu H, Gao W, Han S Y, Tang F S . Profiling of quality characteristics for peanut germplasm from Henan Province and its breeding strategy. J Plant Genet Resour, 2012,13:414-417 (in Chinese with English abstract).
[28] 张照华, 王志慧, 淮东欣, 谭家壮, 陈剑洪, 晏立英, 王晓军, 万丽云, 陈傲, 康彦平, 姜慧芳, 雷永, 廖伯寿 . 利用回交和分子标记辅助选择快速培养高油酸花生品种及其评价. 中国农业科学, 2018,51:1641-1652.
Zhang Z H, Wang Z H, Huai D X, Tan J Z, Chen J H, Yan L Y, Wang X J, Wan L Y, Chen A, Kang Y P, Jiang H F, Lei Y, Liao B S . Fast development of high oleate peanut cultivars by using marker-assisted backcrossing and their evaluation. Sci Agric Sin, 2018,51:1641-1652 (in Chinese with English abstract).
[29] 于明洋, 孙明明, 郭悦, 姜平平, 雷永, 黄冰艳, 冯素萍, 郭宝珠, 隋炯明, 王晶珊, 乔利仙 . 利用回交法快速选育高油酸新品系. 作物学报, 2017,43:855-861.
Yu M Y, Sun M M, Guo Y, Jiang P P, Lei Y, Huang B Y, Feng S P, Guo B Z, Sui J M, Wang J S, Qiao L X . Breeding new peanut lines with high oleic acid content using backcross method. Acta Agron Sin, 2017,43:855-861 (in Chinese with English abstract).
[30] 赵术珍, 侯蕾, 李长生, 赵传志, 任丽, 李爱芹, 邓丽, 夏晗, 王兴军 . 分子标记辅助回交选育高油酸花生新种质. 中国油料作物学报, 2017,39:30-36.
Zhao S Z, Hou L, Li C S, Zhao C Z, Ren L, Li A Q, Deng L, Xia H, Wang X J . Development of high oleic acid peanut from molecular marker assisted selection. Chin J Oil Crop Sci, 2017,39:30-36 (in Chinese with English abstract).
[31] Varshney R K . Exciting journey of 10 years from genomes to fields and markets: some success stories of genomics-assisted breeding in chickpea, pigeonpea and groundnut. Plant Sci, 2016,242:98-107.
doi: 10.1016/j.plantsci.2015.09.009 pmid: 26566828
[32] Fox G . Near infrared reflectance as a rapid and inexpensive surrogate measure for fatty acid composition and oil content of peanut (Arachis hypogaea L.). J Near Infrared Spectrosc, 2005,13:287-291.
doi: 10.1255/jnirs.559
[33] Janila P, Pandey M K, Shasidhar Y, Variath M T, Sriswathi M, Khera P, Manohar S S, Nagesh P, Vishwakarma M K, Mishra G P, Radhakrishnan T, Manivannan N, Dobariya K L, Vasanthi R P, Varshney R K . Molecular breeding for introgression of fatty acid desaturase mutant alleles (ahFAD2A and ahFAD2B) enhances oil quality in high and low oil containing peanut genotypes. Plant Sci, 2016,242:203-213.
doi: 10.1016/j.plantsci.2015.08.013 pmid: 26566838
[1] SHI Lei, MIAO Li-Juan, HUANG Bing-Yan, GAO Wei, ZHANG Zong-Xin, QI Fei-Yan, LIU Juan, DONG Wen-Zhao, ZHANG Xin-You. Characterization of the promoter and 5'-UTR intron in AhFAD2-1 genes from peanut and their responses to cold stress [J]. Acta Agronomica Sinica, 2021, 47(9): 1703-1711.
[2] YU Ming-Yang,SUN Ming-Ming,GUO Yue,JIANG Ping-Ping,LEI Yong,HUANG Bing-Yan,FENG Su-Ping,GUO Bao-Zhu,SUI Jiong-Ming,WANG Jing-Shan,QIAO Li-Xian. Breeding New Peanut Line with High Oleic Acid Content Using Backcross Method [J]. Acta Agron Sin, 2017, 43(06): 855-861.
[3] MA Jun-Tao,ZHANG Guo-Min,XIN Ai-Hua,ZHANG Li-Yan1,DENG Ling-Wei1,WANG Yong-Li,WANG Ying,REN Yang,GONG Xiu-Jie,GE Xuan-Liang,YANG Xiu-Feng. Comparison of Pathogenicity of Pyricularia oryzae under Different Genetic Backgrounds [J]. Acta Agron Sin, 2015, 41(12): 1791-1801.
[4] AI Xian-Tao,LIANG Ya-Jun,SHA Hong,WANG Jun-Duo,ZHENG Ju-Yun,Tu-Er-Xun-Jiang,DUO Li-Kun,LI Xue-Yuan,HUA Jin-Ping. Genetic Diversity Analysis on Local Upland Cotton Cultivars in Xinjiang Based on SSR Markers [J]. Acta Agron Sin, 2014, 40(02): 369-379.
[5] WANG Yun,CHENG Li-Rui,SUN Yong,ZHOU Zheng,ZHU Ling-Hua,XU Zheng-Jin et al.. Genetic Background Effect on QTL Expression of Heading Date and Plant Height and Their Interaction with Environment in Reciprocal Introgression Lines of Rice  [J]. Acta Agron Sin, 2009, 35(8): 1386-1394.
[6] YANG Jing,SUN Yong,CHENG Li-Rui,ZHOU Zheng,WANG Yun,ZHU Ling-Hua,CANG Jing....... Genetic Background Effect on QTL Mapping for Salt Tolerance Revealed by a Set of Reciprocal Introgression Line Populations in Rice [J]. Acta Agron Sin, 2009, 35(6): 974-982.
[7] CHEN Yu,PAN Da-Jian,YANG Qing-Wen,LIU Bin,FAN Zhi-Lan,CHEN Jian-You,LI Chen. Sampling Strategy for an Applied Core Collection of Gaozhou Wild Rice(Oryza rufipogon Griff.)in Guangdong Province of China [J]. Acta Agron Sin, 2009, 35(3): 459-466.
[8] XIE Xue-Wen;XU Mei-Rong;ZANG Jin-Ping;SUN Yong;ZHU Ling-Hua;XU Jian-Long;ZHOU Yong-Li;LI Zhi-Kang. Genetic Background and Environmental Effects on Expression of QTL for Sheath Blight Resistance in Reciprocal Introgression Lines of Rice [J]. Acta Agron Sin, 2008, 34(11): 1885-1893.
Full text



No Suggested Reading articles found!