Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2022, Vol. 48 ›› Issue (9): 2400-2408.doi: 10.3724/SP.J.1006.2022.11075

• RESEARCH NOTES • Previous Articles     Next Articles

Variation of ear temperature after anthesis and its relationship with yield in wheat

WANG Yun-Qi(), GAO Fu-Li, LI Ao, GUO Tong-Ji, QI Liu-Ran, ZENG Huan-Yu, ZHAO Jian-Yun, WANG Xiao-Ge, GAO Guo-Ying, YANG Jia-Peng, BAI Jin-Ze, MA Ya-Huan, LIANG Yue-Xin, ZHANG Rui*()   

  1. College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
  • Received:2021-08-22 Accepted:2021-11-30 Online:2022-09-12 Published:2022-07-15
  • Contact: WANG Yun-Qi,ZHANG Rui E-mail:wyqay163@163.com;zhangwushi@163.com
  • About author:First author contact:

    **Contributed equally to this work

  • Supported by:
    Special Support for the Introduction of Domestic Doctors in Shaanxi Province(F2020221004);Innovation and Entrepreneurship Training Program for College Students(S202010712146);China Postdoctoral Science Foundation(2018M643749)


The wheat temperature is an important parameter to reflect the ecological and physiological state of wheat. A series of studies have been carried out on the temperature of wheat from the perspective of canopy temperature, but the relationship between the temperature of wheat ear after anthesis and its yield is still unclear. In the present study, six varieties with different drought resistance were selected as the research objects. The ear temperature of these varieties at flowering stage, 7, 14, 21, 28 days after flowering and mature stage was investigated, and the contribution of ear photosynthesis to grain yield, grain number per ear, 1000-grain weight, grain weight per ear, and yield of each variety were determined. The results showed that flag leaf SPAD value of strong drought resistance varieties was significantly higher than that of weak drought resistance varieties at flowering stage. The lowest value of strong drought resistant varieties was lower than that of weak drought resistant varieties, and the occurrence time of strong drought resistant varieties and medium drought-resistant varieties was delayed about a week. The contribution of ear photosynthesis to grain yield, grain number per ear, 1000-grain weight, grain weight per ear, and yield of strong drought resistance varieties were significantly higher than those of medium drought-resistant varieties and weak drought resistance varieties. The flag leaf SPAD value at flowering stage and ear temperature at seven days after anthesis was positively correlated with yield and yield factors, while the ear temperature after anthesis was negatively correlated with yield and yield factors, and the correlation of strong drought resistant varieties was slightly higher than that of weak drought resistant varieties. Together, the ear temperature can be used as a reference index for breeding drought resistant and high yield varieties. This study not only enriches the theory of drought resistance and high yield of wheat, but also innovates the physiological breeding method of wheat varieties.

Key words: ear temperature, wheat, drought resistance, grain weight, yield

Table 1

Analysis of variance (P > F) of SPAD value of flag leaf at anthesis and ear temperature after anthesis as affected by cultivar and year"

SPAD值SPAD value 花后0 d
花后7 d
花后14 d
花后21 d
花后28 d
年份Year 20.90*** 195.19**** 162.54**** 207.64**** 1.90 73.84**** 7.43*
品种Cultivar 10.58**** 9.95**** 20.09**** 176.69**** 133.07**** 103.82**** 5.83**
年份×品种Year × Cultivar 2.55 9.79**** 6.64*** 28.53**** 40.16**** 52.17**** 1.97

Fig. 1

Effects of cultivar and year on SPAD value of flag leaf at anthesis stage Different lowercase letters in the same year indicate significant difference at the 0.05 probability level; LSD: the least significant difference at P < 0.05. SPAD value: Soil and Plant Analyzer Development, often used as a parameter to indicate chlorophyll content."

Fig. 2

Effects of cultivars and years on ear temperature after anthesis in 2017-2018 and 2018-2019 LSD: the least significant difference at P < 0.05. DAA7: 7 days after anthesis; DAA14: 14 days after anthesis; DAA21: 21 days after anthesis; DAA28: 28 days after anthesis."

Table 2

Analysis of variance (P > F) of grain number per ear, thousands grain weight, contribution of ear photosynthesis to grain yield, grain weight per ear, and grain yield as affected by cultivars and years"

年份Year 2.02 14.14** 0.05 5.40* 18.81***
品种Cultivar 10.48**** 38.74**** 41.93**** 20.94**** 42.88****
年份×品种Year × Cultivar 0.47 22.55**** 3.40* 1.19 2.64*

Table 3

Effects of interaction of year and cultivar on grain number per ear, thousand-grain weight, contribution of ear photosynthesis to grain yield, grain weight per ear, and grain yield"

TGW (g)
CEP (%)
GW (g)
GY (kg hm-2)
2017-2018 矮抗58 Aikang 58 40.33 a 48.96 a 35.97 ab 1.97 ab 10,395.3 ab
周麦18 Zhoumai 18 42.44 a 49.38 a 38.75 a 2.10 a 10,475.0 a
石4185 Shi 4185 38.57 ab 45.48 bc 33.71 ab 1.73 bc 10,095.1 bc
邯6172 Han 6172 39.10 ab 46.19 ab 32.25 b 1.80 abc 9360.2 cd
温麦6号Wenmai 6 37.33 ab 42.30 c 25.73 c 1.59 c 10,191.1 b
洛麦23 Luomai 23 34.33 b 33.73 d 28.51 d 1.16 d 9123.9 d
2018-2019 矮抗58 Aikang 58 42.58 a 44.81 b 34.82 b 1.91 b 10,295.4 a
周麦18 Zhoumai 18 44.07 a 49.58 a 38.21 a 2.19 a 10,432.4 a
石4185 Shi 4185 40.46 ab 44.14 b 31.60 c 1.79 b 9823.4 b
邯6172 Han 6172 41.59 a 45.21 b 29.08 cd 1.88 b 9649.5 b
温麦6号Wenmai 6 36.81 bc 48.93 a 27.32 de 1.80 b 9570.5 b
洛麦23 Luomai 23 33.71 c 43.84 b 24.94 e 1.48 c 8266.1 c

Table 4

Effects of cultivar and year on grain number per ear, thousand-grain weight, contribution of ear photosynthesis to grain yield, grain weight per ear, and grain yield"

Interfering factor
TGW (g)
CEP (%)
GW (g)
GY (kg hm-2)
年份Year 2017-2018 38.69 a 44.34 b 30.82 a 1.73 b 10,030.11 a
2018-2019 39.87 a 46.08 a 30.99 a 1.84 a 9672.88 b
品种 Cultivar 矮抗58 Aikang 58 41.46 ab 46.83 b 35.40 b 1.94 b 10,345.4 a
周麦18 Zhoumai 18 43.26 a 49.48 a 38.48 a 2.15 a 10,588.7 a
石4185 Shi 4185 39.52 bc 44.81 c 32.66 c 1.75 bc 9959.3 b
邯6172 Han 6172 40.35 ab 45.70 bc 30.66 c 1.84 bc 9639.8 c
温麦6号Wenmai 6 37.07 c 45.64 bc 26.53 d 1.69 c 9880.8 bc
洛麦23 Luomai 23 34.02 d 38.79 d 21.72 e 1.32 d 8695.0 d

Table 5

Correlation between SPAD value of flag leaf at anthesis, ear temperature after anthesis, and yield"

Yield index
SPAD value
花后0 d
花后7 d
花后14 d
花后21 d
花后28 d
强抗旱品种 穗粒数GN 0.74** -0.67* 0.32 -0.60* -0.20 0.17 -0.61*
DC 千粒重TGW 0.77** -0.89**** 0.60* -0.71** -0.28 0.21 -0.75**
穗光合对产量的贡献率CEP 0.79** -0.89**** 0.44 -0.80** -0.37 0.13 -0.77**
穗粒重GW 0.81** -0.84*** 0.48 -0.69* -0.26 0.19 -0.71**
产量GY 0.68* -0.77** 0.67* -0.52 -0.05 0.40 -0.64*
中抗旱品种 穗粒数GN 0.77** -0.67* -0.85*** -0.44 0.19 0.75** -0.13
MDC 千粒重TGW 0.39 0.41 0.53 0.73** -0.16 -0.07 0.94****
穗光合对产量的贡献率CEP 0.54 0.27 0.54 0.33 0.24 -0.01 0.39
Yield index
SPAD value
花后0 d
花后7 d
花后14 d
花后21 d
花后28 d
穗粒重GW 0.71** -0.47 -0.58* -0.07 0.17 0.60* 0.20
产量GY 0.61* 0.13 0.20 -0.28 -0.05 -0.24 -0.21
弱抗旱品种 穗粒数GN 0.60* -0.08 0.42 -0.62* -0.64* -0.62* -0.15
WDC 千粒重TGW 0.06 0.62* 0.84*** 0.29 -0.09 0.01 0.34
穗光合对产量的贡献率CEP 0.61* -0.13 0.51 -0.63* -0.73** -0.71** -0.38
穗粒重GW 0.50 0.14 0.66* -0.39 -0.58* -0.52 0.00
产量GY 0.73** 0.15 0.41 -0.57* -0.42 -0.38 -0.12
所有品种 穗粒数GN 0.45** -0.34* 0.14 -0.53*** -0.33* -0.23 -0.29
AC 千粒重TGW 0.47** -0.49** 0.23 -0.53*** -0.20 0.19 0.25
穗光合对产量的贡献率CEP 0.63**** -0.42* 0.30 -0.66**** -0.42* -0.19 -0.44**
穗粒重GW 0.53*** -0.46** 0.21 -0.60**** -0.32 -0.04 -0.31
产量GY 0.64**** 0.03 0.47* -0.32 -0.23 -0.12 -0.17
[1] 何中虎, 庄巧生, 程顺和, 于振文, 赵振东, 刘旭. 中国小麦产业发展与科技进步. 农学学报, 2018, 8(1): 99-106.
He Z H, Zhuang Q S, Cheng S H, Yu Z W, Zhao Z D, Liu X. Wheat production and technology improvement in China. J Agric, 2018, 8(1): 99-106. (in Chinese with English abstract)
[2] 闫丽霞, 于振文, 石玉, 赵俊晔, 张永丽. 测墒补灌对2个小麦品种旗叶叶绿素荧光及衰老特性的影响. 中国农业科学, 2017, 50: 1416-1429.
Yan L X, Yu Z W, Shi Y, Zhao J Y, Zhang Y L. Effects of supplemental irrigation based on soil moisture measurement on flag leaf chlorophyll fluorescence and senescence characteristics in two wheat cultivars. Sci Agric Sin, 2017, 50: 1416-1429. (in Chinese with English abstract)
[3] Elliott J, Deryng D, Müller C, Frieler K, Konzmann M, Gerten D, Glotter M, Flörke M, Wada Y, Best N. Constraints and potentials of future irrigation water availability on agricultural production under climate change. Proc Natl Acad Sci USA, 2014, 111: 3239-3244.
doi: 10.1073/pnas.1222474110
[4] 张立伟, 张智郡, 刘海军, 刘钰, 朱明承, 丁梅. 基于冠层温度的玉米缺水诊断研究. 干旱地区农业研究, 2017, 35: 94-98.
Zhang L W, Zhang Z J, Liu H J, Liu Y, Zhu M C, Ding M. Research on water deficit diagnosis of maize based on canopy temperature. Agric Res Arid Area, 2017, 35: 94-98. (in Chinese with English abstract)
[5] 赵刚, 樊廷录, 李尚中, 王勇, 王磊, 党翼, 唐小明, 张建军, 王国宇. 不同品种冬小麦冠层温度与抗旱性和水分利用效率的关系研究. 农业现代化研究, 2010, 31: 334-337.
Zhao G, Fan T L, Li S Z, Wang Y, Wang L, Dang Y, Tang X M, Zhang J J, Wang G Y. Study of relationship of canopy temperature with drought resistance and water use efficiency on different genotype winter wheat. Res Agric Modern, 2010, 31: 334-337. (in Chinese with English abstract)
[6] 蔡焕杰, 康绍忠. 棉花冠层温度的变化规律及其用于缺水诊断研究. 灌溉排水, 1997, 16(1): 1-5.
Cai H J, Kang S Z. The changing pattern of cotton crop canopy temperature and its application in detecting crop water stress. Irrig Drain, 1997, 16(1): 1-5. (in Chinese with English abstract)
[7] 樊廷录, 宋尚有, 徐银萍, 李兴茂. 旱地冬小麦灌浆期冠层温度与产量和水分利用效率的关系. 生态学报, 2007, 27, 4491-4497.
Fan T L, Song S Y, Xu Y P, Li X M. Relationship between canopy temperature and water use efficiency/grain yield among dryland winter wheat genotypes during grain filling stage. Acta Ecol Sin, 2007, 27: 4491-4497. (in Chinese with English abstract)
[8] 李丽, 申双和, 李永秀, 韩小梅, 汪秀敏, 李倩, 邹学智. 不同水分处理下冬小麦冠层温度、叶片水势和水分利用效率的变化及相关关系. 干旱地区农业研究, 2012, 30(2): 68-72.
Li L, Shen S H, Li Y X, Han X M, Wang X M, Li Q, Zou X Z. Variation and interrelationship of winter wheat canopy temperature, leaf water potential and water use efficiency under different water treatments. Agric Res Arid Area, 2012, 30(2): 68-72. (in Chinese with English abstract)
[9] Gonzalez-Dugo V, Zarco-Tejada P, Berni J A J, Suárez L, Goldhamer D, Fereres E. Almond tree canopy temperature reveals intra-crown variability that is water stress-dependent. Agric For Meteorol, 2012, 154-155: 156-165.
doi: 10.1016/j.agrformet.2011.11.004
[10] Wang X, Yang W, Wheaton A, Cooley N, Moran B. Automated canopy temperature estimation via infrared thermography: a first step towards automated plant water stress monitoring. Comput Electron Agric, 2010, 73: 74-83.
doi: 10.1016/j.compag.2010.04.007
[11] Panigada C, Rossini M, Meroni M, Cilia C, Busetto L, Amaducci S, Boschetti M, Cogliati S, Picchi V, Pinto F, Marchesi A, Colombo R. Fluorescence, PRI and canopy temperature for water stress detection in cereal crops. Int J Appl Earth Observ Geoinf, 2014, 30: 167-178.
doi: 10.1016/j.jag.2014.02.002
[12] Mon J, Bronson K F, Hunsaker D J, Thorp K R, White J W, French A N. Interactive effects of nitrogen fertilization and irrigation on grain yield, canopy temperature, and nitrogen use efficiency in overhead sprinkler-irrigated durum wheat. Field Crops Res, 2016, 191: 54-65.
doi: 10.1016/j.fcr.2016.02.011
[13] Han M, Zhang H, Dejonge K C, Comas L H, Trout T J. Estimating maize water stress by standard deviation of canopy temperature in thermal imagery. Agric Water Manage, 2016, 177: 400-409.
doi: 10.1016/j.agwat.2016.08.031
[14] Taghvaeian S, Comas L, Dejonge K C, Trout T J. Conventional and simplified canopy temperature indices predict water stress in sunflower. Agric Water Manage, 2014, 144: 69-80.
doi: 10.1016/j.agwat.2014.06.003
[15] Conaty W C, Mahan J R, Neilsen J E, Tan D K Y, Yeates S J, Sutton B G. The relationship between cotton canopy temperature and yield, fibre quality and water-use efficiency. Field Crops Res, 2015, 183: 329-334.
doi: 10.1016/j.fcr.2015.08.010
[16] 王志敏, 张英华, 张永平, 吴永成. 麦类作物穗器官的光合性能研究进展. 麦类作物学报, 2004, 24(4): 136-139.
Wang Z M, Zhang Y H, Zhang Y P, Wu Y C. Review on photosynthetic performance of ear organs in Triticeae crops. J Triticeae Crops, 2004, 24(4): 136-139. (in Chinese with English abstract)
[17] Tambussi E A, Nogués S, Araus J L. Ear of durum wheat under water stress: water relations and photosynthetic metabolism. Planta, 2005, 221: 446-458.
pmid: 15645303
[18] Tambussi E A, Bort J, Guiamet J J. The photosynthetic role of ears in C3 cereals: metabolism, water use efficiency and contribution to grain yield. Crit Rev Plant Sci, 2007, 26: 1-16.
doi: 10.1080/07352680601147901
[19] Wang Y, Xi W, Wang Z M, Wang B, Xu X, Han M, Zhou S, Zhang Y. Contribution of ear photosynthesis to grain yield under rainfed and irrigation conditions for winter wheat cultivars released in the past 30 years in North China Plain. J Integr Agric, 2016, 15: 2247-2256.
doi: 10.1016/S2095-3119(16)61408-9
[20] Maydup M L, Antonietta M, Guiamet J J, Graciano C, López J R, Tambussi E A. The contribution of ear photosynthesis to grain filling in bread wheat (Triticum aestivum L.). Field Crops Res, 2010, 119: 48-58.
doi: 10.1016/j.fcr.2010.06.014
[21] 毕永基, 彭春花, 黄山, 谭雪明, 潘晓华. 不同基因型早籼稻气冠温差的差异及其与产量的关系. 中国农学通报, 2015, 31(21): 9-15.
Bi Y J, Peng C H, Huang S, Tan X M, Pan X H. Genetic differences in canopy temperature depression among different early-rice varieties and its relationship with yield. Chin Agric Sci Bull, 2015, 31(21): 9-15. (in Chinese with English abstract)
[22] 苗芳, 张嵩午, 张宾, 冯佰利, 杨振. 绿豆的冠层温度分异现象及其叶片结构特征. 西北农业学报, 2005, 14(4): 5-9.
Miao F, Zhang S W, Zhang B, Feng B L, Yang Z. Canopy temperature difference of mung bean and its leaf structure characteristics. Acta Agric Boreali-Occident Sin, 2005, 14(4): 5-9. (in Chinese with English abstract)
[23] Fischer R A, Rees D, Sayre K D, Lu Z M, Condon A G, Larque Saavedra A. Wheat yield progress associated with higher stomatal conductance and photosynthetic rate, and cooler canopies. Crop Sci, 1998, 38: 1467-1475.
doi: 10.2135/cropsci1998.0011183X003800060011x
[24] Ayeneh A, van Ginkel M, Reynolds M P, Ammar K. Comparison of leaf, spike, peduncle and canopy temperature depression in wheat under heat stress. Field Crops Res, 2002, 79: 173-184.
doi: 10.1016/S0378-4290(02)00138-7
[25] 张文忠, 韩亚东, 杜宏绢, 黄瑞东, 陈温福. 水稻开花期冠层温度与土壤水分及产量结构的关系. 中国水稻科学, 2007, 21: 99-102.
Zhang W Z, Han Y D, Du H J, Huang R D, Chen W F. Relationship between canopy temperature and soil water content, yield components at flowering stage in rice. Chin J Rice Sci, 2007, 21: 99-102. (in Chinese with English abstract)
[26] 周红亮, 徐林峰, 张丽娟, 费聪, 李阳阳, 苏继霞, 樊华. 水分胁迫及复水对滴灌甜菜冠层温度及光合生理特性的影响. 石河子大学学报(自然科学版), 2020, 38(1): 24-30.
Zhou H L, Xu L F, Zhang L J, Fei C, Li Y Y, Su J X, Fan H. Effects of water stress and rewatering on canopy temperature and photosynthetic physiological characteristics of sugarbeet under drip irrigation. J Shihezi Univ (Nat Sci), 2020, 38(1): 24-30. (in Chinese with English abstract)
[27] Hu W, Lu Z, Meng F, Li X, Cong R, Ren T, Lu J. Potassium fertilization reduces silique canopy temperature variation in Brassica napus to enhance seed yield. Ind Crop Prod, 2021, 168: 113604.
[28] 张鑫, 孔祥, 李勇, 骆永丽, 黄翠, 金敏. 外源ABA对干旱条件下小麦冠层温度及光合同化物积累与分配的调控效应. 麦类作物学报, 2019, 39: 1080-1094.
Zhang X, Kong X, Li Y, Luo Y, Huang C, Jin M. Effect of exogenous ABA on the canopy temperature and accumulation and distribution of photo assimilates in wheat under drought conditions. J Triticeae Crops, 2019, 39: 1080-1094. (in Chinese with English abstract)
[29] Thapa S, Jessup K E, Pradhan G P, Rudd J C, Liu S, Mahan J R, Devkota R N, Baker J A, Xue Q. Canopy temperature depression at grain filling correlates to winter wheat yield in the US Southern High Plains. Field Crops Res, 2018, 217: 11-19.
[30] 刘建军, 肖永贵, 祝芳彬, 程敦公, 李豪圣, 刘爱峰, 宋健民. 不同基因型冬小麦冠层温度与产量性状的关系. 麦类作物学报, 2009, 29: 283-288. (in Chinese with English abstract)
Liu J J, Xiao Y G, Zhu F B, Cheng D G, Li H S, Liu A F, Song J M. Effect of canopy temperature on yield traits of different genotypes of winter wheat. J Triticeae Crops, 2009, 29: 283-288.
[31] 张冬玲, 张洪娜, 郝晨阳, 王兰芬, 李甜, 张学勇. 花后冠层温度对小麦产量的影响及几个关联SSR位点的效应分析. 作物学报, 2015, 41: 548-556.
doi: 10.3724/SP.J.1006.2015.00548
Zhang D L, Zhang H N, Hao C Y, Wang L F, Li T, Zhang X Y. Influence of canopy temperature (CT) during grain-filling period on yield and effects of several CT-associated SSR loci. Acta Agron Sin, 2015, 41: 548-556. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2015.00548
[32] 张娜, 张永强, 徐文修, 仵妮平, 吴培杰, 程雪峰, 张波. 滴灌量对冬小麦田间小气候及产量的影响研究. 中国生态农业学报, 2016, 24: 64-73.
Zhang N, Zhang Y Q, Xu W X, Wu N P, Wu P J, Cheng X F, Zhang B. Effect of different drip irrigation amounts on microclimate and yield of winter wheat. Chin J Eco-Agric, 2016, 24: 64-73. (in Chinese with English abstract)
[33] Gautam A, Prasad S V S, Jajoo A, Ambati D. Canopy temperature as a selection parameter for grain yield and its components in durum wheat under terminal heat stress in late sown conditions. Agric Res, 2015, 4: 238-244.
doi: 10.1007/s40003-015-0174-6
[34] Sanchez-Bragado R, Vicente R, Molero G, Serret M D, Maydup M L, Araus J L. New avenues for increasing yield and stability in C3 cereals: exploring ear photosynthesis. Curr Opin Plant Biol, 2020, 56: 223-234.
doi: S1369-5266(20)30002-9 pmid: 32088154
[35] 殷文, 柴强, 于爱忠, 赵财, 樊志龙, 胡发龙, 范虹, 郭瑶. 间作小麦秸秆还田对地膜覆盖玉米灌浆期冠层温度及光合生理特性的影响. 中国农业科学, 2020, 53: 4748-4760.
Yin W, Chai Q, Yu A Z, Zhao C, Fan Z L, Hu F L, Fan H, Guo Y. Effects of intercropped wheat straw retention on canopy temperature and photosynthetic physiological characteristics of intercropped maize mulched with plastic during grain filling stage. Sci Agric Sin, 2020, 53: 4764-4776. (in Chinese with English abstract)
[36] Luan Y, Xu J, Lü Y, Liu X, Wang H, Liu S. Improving the performance in crop water deficit diagnosis with canopy temperature spatial distribution information measured by thermal imaging. Agric Water Manage, 2021, 246: 106699.
[37] Graß R, Ulf B, Holger L, Peer W, Henning K. Is canopy temperature suitable for high throughput field phenotyping of drought resistance of winter rye in temperate climate? Eur J Agron, 2020, 120: 126104.
[38] Kashiwagi J, Yoshioka Y, Nakayama S, Inoue Y, An P, Nakashima T. Potential importance of the ear as a post-anthesis carbon source to improve drought tolerance in spring wheat (Triticum aestivum L.). J Agron Crop Sci, 2021, 207: 936-945.
doi: 10.1111/jac.12541
[1] ZHANG Yi-Duo, LI Guo-Qiang, KONG Zhong-Xin, WANG Yu-Quan, LI Xiao-Li, RU Zhen-Gang, JIA Hai-Yan, MA Zheng-Qiang. Breeding of FHB-resistant wheat line Bainong 4299 by gene pyramiding [J]. Acta Agronomica Sinica, 2022, 48(9): 2221-2227.
[2] TAN Zhao-Guo, YUAN Shao-Hua, LI Yan-Mei, BAI Jian-Fang, YUE Jie-Ru, LIU Zi-Han, ZHANG Tian-Bao, ZHAO Fu-Yong, ZHAO Chang-Ping, XU Ben-Bo, ZHANG Sheng-Quan, PANG Bin-Shuang, ZHNAG Li-Ping. Cloning of TaPIP1 gene and its potential function in anther dehiscence in wheat [J]. Acta Agronomica Sinica, 2022, 48(9): 2242-2254.
[3] ZHOU Qun, YUAN Rui, ZHU Kuan-Yu, WANG Zhi-Qin, YANG Jian-Chang. Characteristics of grain yield and nitrogen absorption and utilization of indica/japonica hybrid rice Yongyou 2640 under different nitrogen application rates [J]. Acta Agronomica Sinica, 2022, 48(9): 2285-2299.
[4] FENG Zi-Heng, LI Xiao, DUAN Jian-Zhao, GAO Fei, HE Li, YANG Tian-Chong, RONG Ya-Si, SONG Li, YIN Fei, FENG Wei. Hyperspectral remote sensing monitoring of wheat powdery mildew based on feature band selection and machine learning [J]. Acta Agronomica Sinica, 2022, 48(9): 2300-2314.
[5] CHEN Zhi-Qing, FENG Yuan, WANG Rui, CUI Pei-Yuan, LU Hao, WEI Hai-Yan, ZHANG Hai-Peng, ZHANG Hong-Cheng. Effects of exogenous molybdenum on yield formation and nitrogen utilization in rice [J]. Acta Agronomica Sinica, 2022, 48(9): 2325-2338.
[6] CAO Ji-Ling, ZENG Qing, ZHU Jian-Guo. Responses of photosynthetic characteristics and gene expression in different wheat cultivars to elevated ozone concentration at grain filling stage [J]. Acta Agronomica Sinica, 2022, 48(9): 2339-2350.
[7] LI Yong-Bo, CUI De-Zhou, HUANG Chen, SUI Xin-Xia, FAN Qing-Qi, CHU Xiu-Sheng. Preparation of highly specific wheat ATG8 antibody and its application in the detection of autophagy [J]. Acta Agronomica Sinica, 2022, 48(9): 2390-2399.
[8] DU Qi-Di, GUO Hui-Jun, XIONG Hong-Chun, XIE Yong-Dun, ZHAO Lin-Shu, GU Jia-Yu, ZHAO Shi-Rong, DING Yu-Ping, SONG Xi-Yun, LIU Lu-Xiang. Gene mapping of apical spikelet degeneration mutant asd1 in wheat [J]. Acta Agronomica Sinica, 2022, 48(8): 1905-1913.
[9] LIU Kun, HUANG Jian, ZHOU Shen-Qi, ZHANG Wei-Yang, ZHANG Hao, GU Jun-Fei, LIU Li-Jun, YANG Jian-Chang. Effects of panicle nitrogen fertilizer rates on grain yield in super rice varieties with different panicle sizes and their mechanism [J]. Acta Agronomica Sinica, 2022, 48(8): 2028-2040.
[10] LI Xin, WANG Jian, LI Ya-Bing, HAN Ying-Chun, WANG Zhan-Biao, FENG Lu, WANG Guo-Ping, XIONG Shi-Wu, LI Cun-Dong, LI Xiao-Fei. Effects of different intercropping systems on cotton yield, biomass accumulation, and allocation [J]. Acta Agronomica Sinica, 2022, 48(8): 2041-2052.
[11] LI Pei-Ting, ZHAO Zhen-Li, HUANG Chao-Hua, HUANG Guo-Qiang, XU Liang-Nian, DENG Zu-Hu, ZHANG Yu, ZHAO Xin-Wang. Analysis of drought responsive regulatory network in sugarcane based on transcriptome and WGCNA [J]. Acta Agronomica Sinica, 2022, 48(7): 1583-1600.
[12] FENG Ya-Juan, LI Ting-Xuan, PU Yong, ZHANG Xi-Zhou. Characteristics of cadmium accumulation and distribution in different organs of wheat with different cadmium-accumulating type [J]. Acta Agronomica Sinica, 2022, 48(7): 1761-1770.
[13] LIU A-Kang, MA Rui-Qi, WANG De-Mei, WANG Yan-Jie, YANG Yu-Shuang, ZHAO Guang-Cai, CHANG Xu-Hong. Effects of filming and supplemental nitrogen fertilizer application on plant growth and population quality of late sowing winter wheat before winter [J]. Acta Agronomica Sinica, 2022, 48(7): 1771-1786.
[14] WANG Juan, LIU Yi, YAO Dan-Yu, ZOU Jing-Wei, XIAO Shi-He, SUN Guo-Zhong. Identification on sensitivity of wheat to low temperature at reproductive stages [J]. Acta Agronomica Sinica, 2022, 48(7): 1721-1729.
[15] YANG Fei, ZHANG Zheng-Feng, NAN Bo, XIAO Ben-Ze. Genome-wide association analysis and candidate gene selection of yield related traits in rice [J]. Acta Agronomica Sinica, 2022, 48(7): 1813-1821.
Full text



No Suggested Reading articles found!