Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2022, Vol. 48 ›› Issue (9): 2242-2254.doi: 10.3724/SP.J.1006.2022.11079

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Cloning of TaPIP1 gene and its potential function in anther dehiscence in wheat

TAN Zhao-Guo1,2(), YUAN Shao-Hua2(), LI Yan-Mei2, BAI Jian-Fang2, YUE Jie-Ru2, LIU Zi-Han2, ZHANG Tian-Bao2, ZHAO Fu-Yong1, ZHAO Chang-Ping2, XU Ben-Bo1, ZHANG Sheng-Quan2,*(), PANG Bin-Shuang2,*(), ZHNAG Li-Ping1,2,*()   

  1. 1. College of Life Sciences, Yangtze University, Jingzhou 434025, Hubei, China
    2. Beijing Academy of Agriculture and Forestry Science Research Institute of Hybrid Wheat / Beijing Key Laboratory of Molecular Genetics in Hybrid Wheat, Beijing 100097, China
  • Received:2021-09-08 Accepted:2022-01-05 Online:2022-09-12 Published:2022-02-15
  • Contact: ZHANG Sheng-Quan,PANG Bin-Shuang,ZHNAG Li-Ping E-mail:tanzhaoguo@foxmail.com;keaidehuahua0830@126.com;lpzhang8@126.com;cp_zhao@vip.sohu.com;zsq8200@126.com
  • About author:First author contact:

    ** Contributed equally to this work

  • Supported by:
    National Natural Science Foundation of China(31872881);Beijing Excellent Talents Project and Outstanding Scientist Program of BAAFS(JKZX201907);Special Project of Science and Technology Innovation Ability Construction of BAAFS(KJCX20210439)

Abstract:

Hybrid wheat breeding is one of the important ways to improve wheat yield. The development and dehiscence of anthers in photoperiod-temperature sensitive genic male sterile (PTGMS) wheat affect the seed production efficiency and yield of hybrid wheat directly. Anther dehiscence is closely related to dehydration. Aquaporins (AQPs) are membrane intrinsic proteins that efficiently transport water and specific small molecules. Plasma membrane intrinsic proteins (PIPs) play an important role in water absorption and efflux in plant cells. In order to understand the roles of PIP in anther dehiscence of PTGMS. In this study, TaPIP1 was cloned from the anther of PTGMS line BS366. The gene contained an open reading frame (ORF) of 879 bp, encoding a total of 292 amino acids. There were cis-responsive elements such as gibberellin, abscisic acid, jasmonic acid, and light in the promoter region of TaPIP1. The promoter region of TaPIP1 contained elements of gibberellin, abscisic acid, jasmonic acid, and light. TaPIP1 belonged to MIP superfamily, and had a typical NPA conserved domain, subcellular localication in the plasma membrane and nuclear membrane. The interaction between miRNAs and TaPIP1 was predicted by bioinformatics analysis, and the results showed that TaPIP1 may be regulated by tae-miR1131 and tae-miR408 that related to the antioxidant capacity of plants. Protein-protein interaction networks (PPI) and qRT-PCR experiments revealed that TaPIP1 could interact with heat shock protein 90 (TaHSP90), participating in the regulation of anther cell wall turgor under the combined stress of high temperature and drought, thus regulating anther dehiscence.

Key words: wheat, aquaporins, heat shock protein, miRNA, anther dehiscence

Table S1

Primer sequences used in this study"

引物名称
Primer name
引物序列
Primer sequence (5′-3′)
用途
Usage
TaPIP1-F CACCTCTCTCAACCAAGCCAA 基因扩增
Gene amplification
TaPIP1-R TTGCACGCGGTTTAATGGAG
TaPIP1-DF TATCTCTAGAGGATCCATGGAGGGCAAGGAGGA 亚细胞定位
Subcellular localization
TaPIP1-DR TGCTCACCATGGATCCCTTCAAGAGCCGCGAC
TaPIP1-QF TTCCAGACCACGCTGTACCA 实时荧光定量PCR
qPCR
TaPIP1-QR TGTTGGGACGTTCGTGCTGGTG
TaHSP90-QF TGAGTCCTAGTGGTCGCTGC
TaHSP90-QR CAGGGAACAAACTCCCTCAGT
tae-miR1131-F TACCGGTTCGTGGCTAACCAA
TaActin1-QF CCTACATTGCCCTGGACTACGAC 内参基因
Reference gene
TaActin1-QR GCAACGGAAACGCTCAGAACCA
TaU6-F GGAACGATACAGAGAAGATTAGC

Table S2

Database and software used for bioinformatics analysis in this study"

工具Tool 网址Website
Ensembl plants http://plants.ensembl.org/
ExPaSy http://web.expasy.org/
Prabi https://npsa-prabi.ibcp.fr/
SWISSMODEL http://swissmodel.expasy.org/
NCBI conserved domains https://www.ncbi.nlm.nih.gov/
SignalP 4.1 Server http://www.cbs.dtu/
ProtScale https://web.expasy.org/
NetPhos http://www.cbs.dtu/
Plant CARE http://bioinformatics.psb.ugent.be/
MEME http://meme-suite.org/
PsRNA Target http://www.zhaolab.org/
STRING https://version11.string-db.org/
plantgrn http://plantgrn.noble.org/
Cell-PLoc 2.0 http://www.csbio.sjtu.edu.cn/
expvip http://www.wheat-expression.com/

Fig. 1

PCR amplification and sequence analysis of TaPIP1 gene A: cloning of TaPIP1 gene; M: DL2000 marker; 1: TaPIP1 PCR product. B: CDS sequence analysis of TaPIP1 gene."

Fig. 2

Prediction of signal peptide and domain of TaPIP1 A: signal peptide; B-C: tertiary structure of the protein; D: conservative domain; E: exon regions."

Table 1

Analysis of promoter elements"

上游启动子元件
Upstream promoter element
功能
Function
TATA-box 核心启动子元件 Core promoter element
ABRE 脱落酸响应元件 Abscisic acid responsiveness element
CGTCA-motif, TGACG-motif 茉莉酸甲酯响应元件 MeJA-responsiveness element
GARE-motif 赤霉素响应元件 Gibberellin responsive element
MRE, ACE, TCT-motif, GATA-motif, I-box 光响应元件 Light responsiveness element

Fig. 3

Amino acid sequence alignment of TaPIP1 and PIP in other plants LOC100839000: Brachypodium distachyon (L.) Beauv.; LOC100839000: Hordeum vulgare L.; LOC112879877: Panicum hallii var. hallii; LOC8059708: Sorghum bicolor (L.) Moench; LOC542014: Zea mays L.; LOC101785185: Setaria italica (L.) Beauv.; LOC102719100: Oryza brachyantha."

Fig. 4

Phylogenetic tree of TaPIP1 and PIP in other species and their corresponding motif prediction LOC109743575: Aegilops tauschii subsp. strangulata; LOC119325066: Triticum dicoccoides; KAE8779834: Hordeum vulgare L.; AHX84137: Leymus chinensis; 778372 Hordeum vulgare L.; LOC100845597: Brachypodium distachyon (L.) Beauv.; LOC8059708: Sorghum bicolor (L.) Moench; LOC112879877: Panicum hallii var. halli; LOC542014: Zea mays L.; LOC101785185: Setaria italica (L.) Beauv.; LOC109708083: Ananas comosus (Linn.) Merr.; THU54116: Musa balbisiana; LOC102719100: Oryza brachyantha; LOC100839000: Brachypodium distachyon (L.) Beauv.; ASF57558: Paspalum vaginatum."

Table 2

Motif sequences of TaPIP1"

基序Motif 基序序列Motif sequence
Motif 1 WSFGGMIFVLVYCTAGISGGHINPAVTFGLFLARKLSLTRAVFYIVMQCL
Motif 2 PIGFAVFLVHLATIPITGTGINPARSLGAAIIYNKKQAWDDHWIFWVGPF
Motif 3 DEKDYKEPPPAPLFEAGELTSWSFYRAGIAEFLATFLFLYISVLTVMGVV
Motif 4 GANSVAPGYTKGDGLGAEIVGTFVLVYTVFSATDAKRSARDSHVPILAPL
Motif 5 MEGKEEDVRLGANRYSERQPI
Motif 6 AALAAIYHVVVIRAIPFKSRD
Motif 7 GAICGAGVVKGFQTTLYQGNG
Motif 8 PSGSKCGTVGIQGIA
Motif 9 GTAAQG

Fig. 5

Interaction analysis of TaPIP1 with miRNA A: TaPIP1 and miRNA interaction; B: miRNA hairpin of tae-miR1131; C: miRNA hairpin of tae-miR408."

Fig. 6

Protein interaction prediction and heatmap of TaPIP1 A: network diagram of TaPIP1 protein interaction; B: cluster heat maps of protein interactions under different stress (Blue point: TaHSP90; Green point: TaPIP1)."

Fig. 7

Subcellular localization of TaPIP1 in wheat protoplasts"

Fig. 8

Relative expression of TaPIP1 and TaHSP90 in different anther development stages and tissues in wheat A: FPKM values of TaPIP1 and HSP90; B: relative expression of TaPIP1 and TaHSP90 during the development of different flower medicines in wheat under different breeding environments; C: relative expression of TaPIP1 in different tissues of wheat. “a, b, c, and d”: significant different at P = 0.005 level for the relative expression of TaPIP1; “α, β, χ, δ, and ε”: significant different at P = 0.005 level for the relative expression of TaHSP90."

Fig. 9

Relative expression of TaPIP1, TaHSP90, and tae-miR1131 under high and low temperature treatment A: relative expression of TaPIP1, HSP90, and tae-miR1131 in three anther development stages under different treatments; B: relative expression of TaPIP1, HSP90 and tae-miR1131 in leaf, stem and gume under different treatments. “a, b, c, d, and e”: significant different at P=0.005 level for the relative expression of TaPIP1; “α, β, χ, δ, and ε”: significant different at P = 0.005 level for the relative expression of TaHSP90; “1, 2, 3, 4, 5, and 6”: significant different at P = 0.005 level for the relative expression of tae-miR1131."

[1] Feng Z J, Xu S C, Liu N, Zhang G W, Hu Q Z, Xu Z S, Gong Y M. Identification of the AQP members involved in abiotic stress responses from Arabidopsis. Gene, 2018, 646: 64-73.
doi: 10.1016/j.gene.2017.12.048
[2] Chaumont F, Moshelion M, Daniels M J. Regulation of plant aquaporin activity. Biol Cell, 2005, 97: 749-764.
[3] Ishikawa F, Suga S, Uemura T, Sato M H, Maeshima M. Novel type aquaporin SIPs are mainly localized to the ER membrane and show cell-specific expression in Arabidopsis thaliana. FEBS Lett, 2005, 579: 5814-5820.
doi: 10.1016/j.febslet.2005.09.076
[4] Azad A K, Ahmed J, Alum M A, Hasan M M, Ishikawa T, Sawa Y, Katsuhara M. Genome-wide characterization of major intrinsic proteins in four grass plants and their non-aqua transport selectivity profiles with comparative perspective. PLoS One, 2016, 11: e0157735.
[5] Chaumont F, Barrieu F, Wojcik E, Chrispeels M J, Jung R. Aquaporins constitute a large and highly divergent protein family in maize. Plant Physiol, 2001, 125: 1206-1215.
pmid: 11244102
[6] Zhang D Y, Ali Z, Wang C B, Xu L, Yi J X, Xu Z L, Liu X Q, He X L, Huang Y H, Khan I A, Trethowan R M, Ma H X. Genome-wide sequence characterization and expression analysis of major intrinsic proteins in soybean (Glycine max L.). PLoS One, 2013, 8: e56312.
[7] Yuan D, Li W, Hua Y P, King G H J, Xu F S, Shi L. Genome-wide identification and characterization of the aquaporin gene family and transcriptional responses to boron deficiency in Brassica napus. Front Plant Sci, 2017, 8: 1336.
doi: 10.3389/fpls.2017.01336 pmid: 28824672
[8] Javot H, Lauvergeat V, Santoni V, Martin-Laurent F, Guclu J, Vinh J, Heyes J, Franck K I, Schaffner A R, Bouchez D, Maurel C. Role of a single aquaporin isoform in root water uptake. Plant Cell, 2003, 15: 509-522.
doi: 10.1105/tpc.008888
[9] Flexas J, Ribas-Carbo M, Hanson D T, Bota J, Otto B, Cifre J, McDowell N, Medrano H, Kaldenhoff R. Tobacco aquaporin NtAQP1 is involved in mesophyll conductance to CO2 in vivo. Plant J, 2006, 48: 427-439.
pmid: 17010114
[10] Takano J, Wada M, Ludewig U, Schaaf G, von Wiren N, Fujiwara T. The Arabidopsis major intrinsic protein NIP5;1 is essential for efficient boron uptake and plant development under boron limitation. Plant Cell, 2006, 18: 1498-1509.
doi: 10.1105/tpc.106.041640
[11] Ma J F, Tamai K, Yamaji N, Mitani N, Konishi S, Katsuhara M, Ishiguro M, Murata Y, Yano M. A silicon transporter in rice. Nature, 2006, 440: 688-691.
doi: 10.1038/nature04590
[12] Mao Z L, Sun W N. Arabidopsis seed-specific vacuolar aquaporins are involved in maintaining seed longevity under the control of ABSCISIC ACID INSENSITIVE 3. J Exp Bot, 2015, 66: 4781-4794.
doi: 10.1093/jxb/erv244
[13] Secchi F, Schubert A, Lovisolo C. Changes in air CO2 concentration differentially alter transcript levels of NtAQP1 and NtPIP2;1 Aquaporin genes in tobacco leaves. Int J Mol Sci, 2016, 17: 567.
doi: 10.3390/ijms17040567
[14] Uehlein N, Lovisolo C, Siefritz F, Kaldenhoff R. The tobacco aquaporin NtAQP1 is a membrane CO2 pore with physiological functions. Nature, 2003, 425: 734-737.
doi: 10.1038/nature02027
[15] Holm L M, Jahn T P, Moller A L, Schjoerring J K, Ferri D, Klaerke D A, Zeuthen T. NH3 and NH4+ permeability in aquaporin-expressing Xenopus oocytes. Pflugers Arch-Eur J Physiol, 2005, 450: 415-428.
doi: 10.1007/s00424-005-1399-1
[16] Baluška F. Plant Aquaporins from Transport to Signaling. Signaling and Communication in Plants. Berlin: Springer Nature, 2017. pp 1-333.
[17] Azad A K, Sawa Y, Ishikawa T, Shibata H. Characterization of protein phosphatase 2A acting on phosphorylated plasma membrane aquaporin of tulip petals. Biosci Biotechnol Biochem, 2004, 68: 1170-1174.
doi: 10.1271/bbb.68.1170
[18] Bai J F, Wang Y K, Wang P, Yuan S H, Gao J G, Duan W J, Wang N, Zhang F T, Zhang W J, Qin M Y, Zhao C P, Zhang L P. Genome-wide identification and analysis of the COI gene family in wheat (Triticum aestivum L.). BMC Genomics, 2018, 19: 754.
doi: 10.1186/s12864-018-5116-9
[19] Wilson Z A, Song J, Taylor B, Yang C. The final split: the regulation of anther dehiscence. J Exp Bot, 2011, 62: 1633-1649.
doi: 10.1093/jxb/err014 pmid: 21325605
[20] Bots M, Feron R, Uehlein N, Weterings K, Kaldenhoff R, Mariani T. PIP1 and PIP2 aquaporins are differentially expressed during tobacco anther and stigma development. J Exp Bot, 2005, 56: 113-121.
[21] 谭照国, 李艳梅, 白建芳, 郭昊宇, 栗婷婷, 段文静, 刘子涵, 苑少华, 张天豹, 张风廷, 陈兆波, 赵福永, 赵昌平, 张立平. 小麦TaBG的克隆及其在花药开裂中的潜在功能. 中国农业科学, 2021, 54: 2711-2723.
Tan Z G, Li Y M, Bai J F, Guo H Y, Li T T, Duan W J, Liu Z H, Yuan S H, Zhang T B, Zhang F T, Chen Z B, Zhao F Y, Zhao C P, Zhang L P. Cloning of TaBG and analysis of its function in anther dehiscence in wheat. Sci Agric Sin, 2021, 54: 2711-2723. (in Chinese with English abstract)
[22] 卢奕霏, 顾迎港, 陈威, 王娜, 康珍, 侯泽豪, 张迎新, 方正武, 马东方, 刘易科, 朱展望, 张改生, 王书平. 高温胁迫对小麦花药活性氧代谢的影响. 麦类作物学报, 2020, 40: 488-493.
Lu Y F, Gu Y G, Chen W, Wang N, Kang Z, Hou Z H, Zhang Y X, Fang Z W, Ma D F, Liu Y K, Zhu Z W, Zhang G S, Wang S P. Effect of high-temperature stress on reactive oxygen metabolism of wheat anther. J Triticeae Crops, 2020, 40: 488-493. (in Chinese with English abstract)
[23] 孙鹤, 郎志宏, 朱莉, 黄大昉. 玉米、小麦、水稻原生质体制备条件优化. 生物工程学报, 2013, 29: 224-234.
Sun H, Lang Z H, Zhu L, Huang D F. Optimized condition for protoplast isolation from maize, wheat and rice leaves. Chin J Biotech, 2013, 29: 224-234. (in Chinese with English abstract)
[24] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 2001, 25: 402-408.
doi: 10.1006/meth.2001.1262 pmid: 11846609
[25] Tang J Y, Chu C C. MicroRNAs in crop improvement: fine-tuners for complex traits. Nature Plants, 2017, 3: 17077.
[26] Fotiadis D, Jeno P, Mini T, Wirtz S, Muller S A, Fraysse L, Kjellbom P, Engel A. Structural characterization of two aquaporins isolated from native spinach leaf plasma membranes. J Biol Chem, 2001, 276: 1707-1714.
doi: 10.1074/jbc.M009383200 pmid: 11050104
[27] Hu J, Mitchum M G, Barnaby N, Ayele B T, Ogawa M, Nam E, Lai W C, Hanada A, Alonso J M, Ecker J R, Swain S M, Yamaguchi S, Kamiya Y, Sun T P. Potential sites of bioactive gibberellin production during reproductive growth in Arabidopsis Plant Cell, 2008, 20: 320-336.
doi: 10.1105/tpc.107.057752
[28] Werner M, Uehlein N, Proksch P, Kaldenhoff R. Characterization of two tomato aquaporins and expression during the incompatible interaction of tomato with the plant parasite Cuscuta reflexa. Planta, 2001, 213: 550-555.
pmid: 11556787
[29] Morillon R, Catterou M, Sangwan R S, Sangwan B S, Lassalles J P. Brassinolide may control aquaporin activities in Arabidopsis thaliana. Planta, 2001, 212: 199-204.
pmid: 11216840
[30] Phillips A L, Huttly A K. Cloning of two gibberellin-regulated cDNAs from Arabidopsis thaliana by subtractive hybridization: expression of the tonoplast water channel, γ-TIP, is increased by GA3. Plant Mol Biol, 1994, 24: 603-615.
pmid: 8155880
[31] Hu W, Yuan Q Q, Wang Y Y, Cai R, Deng X M, Wang J, Zhou S Y, Chen M J, Chen L H, Huang C, Ma Z B, Yang G X, He G Y. Overexpression of a wheat aquaporin gene, TaAQP8, enhances salt stress tolerance in transgenic tobacco. Plant Cell Physiol, 2012, 53: 2127-2141.
doi: 10.1093/pcp/pcs154
[32] Kaldenhoff R, Kölling A, Richter G. Regulation of the Arabidopsis thaliana aquaporin gene AthH2 (PIP1b). J Photochem Photobiol B: Biol, 1996, 36: 351-354.
doi: 10.1016/S1011-1344(96)07392-7
[33] He W D, Gao J, Dou T X, Shao X H, Bi F C, Sheng O, Deng G M, Li C Y, Hu C H, Liu J H, Zhang S, Yang Q S, Yi G J. Early cold-induced peroxidases and aquaporins are associated with high cold tolerance in Dajiao (musa spp. ‘Dajiao’). Front Plant Sci, 2018, 9: 282.
doi: 10.3389/fpls.2018.00282
[34] Ahamed A, Murai-Hatano M, Ishikawa-Sakurai J, Hayashi H, Kawamura Y, Uemura M. Cold stress-induced acclimation in rice is mediated by root-specific aquaporins. Plant Cell Physiol, 2012, 53: 1445-1456.
doi: 10.1093/pcp/pcs089 pmid: 22711693
[35] Yamamori K, Ogasawara K, Ishiguro S, Koide Y, Takamure I, Fujino K, Sato Y, Kishima Y. Revision of the relationship between anther morphology and pollen sterility by cold stress at the booting stage in rice. Ann Bot, 2021, 128: 559-575.
doi: 10.1093/aob/mcab091
[36] Bots M, Feron R, Uehlein N, Weterings K, Kaldenhoff R, Mariani T. PIP1 and PIP2 aquaporins are differentially expressed during tobacco anther and stigma development. J Exp Bot, 2005, 56: 113-121.
[37] Tornroth-Horsefield S, Wang Y, Hedfalk K, Johanson U, Karlsson M, Tajkhorshid E, Neutze R, Kjellbom P. Structural mechanism of plant aquaporin gating. Nature, 2006, 439: 688-694.
doi: 10.1038/nature04316
[38] He X Y, Zhen H, Yin H Y, Chen F, Dong Y H, Zhang L F, Lu X Q, Zang J B, Ma W J, Mu P. High-throughput sequencing-based identification of miRNAs and their target mRNAs in wheat variety Qing Mai 6 under salt stress condition. Front Genet, 2021, 12: 724527.
[39] Duan F M, Ding J, Lee D S, Lu X L, Feng Y Q, Song W W. Overexpression of SoCYP85A1, a spinach cytochrome p450 gene in transgenic tobacco enhances root development and drought stress tolerance. Front Plant Sci, 2017, 8: 1909.
doi: 10.3389/fpls.2017.01909
[40] Shen J, Diao W, Zhang L, Acharya B R, Zhang W. Secreted peptide PIP1 induces stomatal closure by activation of guard cell anion channels in Arabidopsis. Front Plant Sci, 2020, 11: 1029.
doi: 10.3389/fpls.2020.01029
[41] Hendrick J P, Hartl F U. Molecular chaperone functions of heat-shock proteins. Annu Rev Biochem, 1993, 62: 349-384.
pmid: 8102520
[42] Banerjee A, Roychoudhury A. The role of aquaporins during plant abiotic stress responses. Plant Life Under Changing Environment. United Kingdom: Elsevier Academic Press, 2020. pp 643-661.
[43] Kumar K, Mosa K A, Meselhy A G, Dhankher O P. Molecular insights into the plasma membrane intrinsic proteins roles for abiotic stress and metalloids tolerance and transport in plants. Indian J Plant Physiol, 2018, 23: 721-730.
[44] de Paula Santos Martins C, Pedrosa A M, Du D, Gonçalves L P, Yu Q, Gmitter F G Jr, Costa M G C. Genome-wide characterization and expression analysis of major intrinsic proteins during abiotic and biotic stresses in sweet orange (Citrus sinensis L. Osb.). PLoS One, 2015, 10: e0138786.
[45] Shafqat W, Jaskani M J, Maqbool R, Chattha W S, Ali Z, Naqvi S A, Haider M S, Khan I A, Vincent C I. Heat shock protein and aquaporin expression enhance water conserving behavior of citrus under water deficits and high temperature conditions. Environ Exp Bot, 2021, 181: 104270.
[46] Ma W, Xiao Y, Li Y, Hu P, Wang Z, Yang G, Wang J. Overexpression of CfPIP1-1, CfPIP1-2, and CfPIP1-4 genes of Catalpa fargesii in transgenic Arabidopsis thaliana under drought stress. J For Res, 2020, 32: 285-296.
doi: 10.1007/s11676-019-01082-w
[1] ZHANG Yi-Duo, LI Guo-Qiang, KONG Zhong-Xin, WANG Yu-Quan, LI Xiao-Li, RU Zhen-Gang, JIA Hai-Yan, MA Zheng-Qiang. Breeding of FHB-resistant wheat line Bainong 4299 by gene pyramiding [J]. Acta Agronomica Sinica, 2022, 48(9): 2221-2227.
[2] FENG Zi-Heng, LI Xiao, DUAN Jian-Zhao, GAO Fei, HE Li, YANG Tian-Chong, RONG Ya-Si, SONG Li, YIN Fei, FENG Wei. Hyperspectral remote sensing monitoring of wheat powdery mildew based on feature band selection and machine learning [J]. Acta Agronomica Sinica, 2022, 48(9): 2300-2314.
[3] CAO Ji-Ling, ZENG Qing, ZHU Jian-Guo. Responses of photosynthetic characteristics and gene expression in different wheat cultivars to elevated ozone concentration at grain filling stage [J]. Acta Agronomica Sinica, 2022, 48(9): 2339-2350.
[4] LI Yong-Bo, CUI De-Zhou, HUANG Chen, SUI Xin-Xia, FAN Qing-Qi, CHU Xiu-Sheng. Preparation of highly specific wheat ATG8 antibody and its application in the detection of autophagy [J]. Acta Agronomica Sinica, 2022, 48(9): 2390-2399.
[5] WANG Yun-Qi, GAO Fu-Li, LI Ao, GUO Tong-Ji, QI Liu-Ran, ZENG Huan-Yu, ZHAO Jian-Yun, WANG Xiao-Ge, GAO Guo-Ying, YANG Jia-Peng, BAI Jin-Ze, MA Ya-Huan, LIANG Yue-Xin, ZHANG Rui. Variation of ear temperature after anthesis and its relationship with yield in wheat [J]. Acta Agronomica Sinica, 2022, 48(9): 2400-2408.
[6] DU Qi-Di, GUO Hui-Jun, XIONG Hong-Chun, XIE Yong-Dun, ZHAO Lin-Shu, GU Jia-Yu, ZHAO Shi-Rong, DING Yu-Ping, SONG Xi-Yun, LIU Lu-Xiang. Gene mapping of apical spikelet degeneration mutant asd1 in wheat [J]. Acta Agronomica Sinica, 2022, 48(8): 1905-1913.
[7] DAI Li-Shi, CHANG Wei, ZHANG Sai, QIAN Ming-Chao, LI Xiao-Dong, ZHANG Kai, LI Jia-Na, QU Cun-Min, LU Kun. Functional validation of Bna-novel-miR36421 regulating plant architecture and flower organ development in Arabidopsis thaliana [J]. Acta Agronomica Sinica, 2022, 48(7): 1635-1644.
[8] FENG Ya-Juan, LI Ting-Xuan, PU Yong, ZHANG Xi-Zhou. Characteristics of cadmium accumulation and distribution in different organs of wheat with different cadmium-accumulating type [J]. Acta Agronomica Sinica, 2022, 48(7): 1761-1770.
[9] LIU A-Kang, MA Rui-Qi, WANG De-Mei, WANG Yan-Jie, YANG Yu-Shuang, ZHAO Guang-Cai, CHANG Xu-Hong. Effects of filming and supplemental nitrogen fertilizer application on plant growth and population quality of late sowing winter wheat before winter [J]. Acta Agronomica Sinica, 2022, 48(7): 1771-1786.
[10] WANG Juan, LIU Yi, YAO Dan-Yu, ZOU Jing-Wei, XIAO Shi-He, SUN Guo-Zhong. Identification on sensitivity of wheat to low temperature at reproductive stages [J]. Acta Agronomica Sinica, 2022, 48(7): 1721-1729.
[11] ZHANG Shao-Hua, DUAN Jian-Zhao, HE Li, JING Yu-Hang, Urs Christoph Schulthess, Azam Lashkari, GUO Tian-Cai, WANG Yong-Hua, FENG Wei. Wheat yield estimation from UAV platform based on multi-modal remote sensing data fusion [J]. Acta Agronomica Sinica, 2022, 48(7): 1746-1760.
[12] HU Wen-Jing, LI Dong-Sheng, YI Xin, ZHANG Chun-Mei, ZHANG Yong. Molecular mapping and validation of quantitative trait loci for spike-related traits and plant height in wheat [J]. Acta Agronomica Sinica, 2022, 48(6): 1346-1356.
[13] GUO Xing-Yu, LIU Peng-Zhao, WANG Rui, WANG Xiao-Li, LI Jun. Response of winter wheat yield, nitrogen use efficiency and soil nitrogen balance to rainfall types and nitrogen application rate in dryland [J]. Acta Agronomica Sinica, 2022, 48(5): 1262-1272.
[14] LEI Xin-Hui, WAN Chen-Xi, TAO Jin-Cai, LENG Jia-Jun, WU Yi-Xin, WANG Jia-Le, WANG Peng-Ke, YANG Qing-Hua, FENG Bai-Li, GAO Jin-Feng. Effects of soaking seeds with MT and EBR on germination and seedling growth in buckwheat under salt stress [J]. Acta Agronomica Sinica, 2022, 48(5): 1210-1221.
[15] FU Mei-Yu, XIONG Hong-Chun, ZHOU Chun-Yun, GUO Hui-Jun, XIE Yong-Dun, ZHAO Lin-Shu, GU Jia-Yu, ZHAO Shi-Rong, DING Yu-Ping, XU Yan-Hao, LIU Lu-Xiang. Genetic analysis of wheat dwarf mutant je0098 and molecular mapping of dwarfing gene [J]. Acta Agronomica Sinica, 2022, 48(3): 580-589.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!