Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2022, Vol. 48 ›› Issue (9): 2255-2264.doi: 10.3724/SP.J.1006.2022.12033

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

QTL mapping of seed storage tolerance in rice (Oryza sativa L.)

HUANG Yi-Wen1,2(), SUN Bin2(), CHENG Can2, NIU Fu-An2, ZHOU Ji-Hua2, ZHANG An-Peng2, TU Rong-Jian2, LI Yao2,3, YAO Yao1,2, DAI Yu-Ting1,2, XIE Kai-Zhen2,3, CHEN Xiao-Rong1, CAO Li-Ming2,*(), CHU Huang-Wei2,*()   

  1. 1. School of Agricultural Sciences, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, China
    2. Institute of crop breeding and cultivation, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
    3. College of Fisheries and life, Shanghai Ocean University, Shanghai 201306, China
  • Received:2021-05-06 Accepted:2022-01-05 Online:2022-09-12 Published:2022-02-14
  • Contact: CAO Li-Ming,CHU Huang-Wei E-mail:1564903141@qq.com;sunbin@saas.sh.cn;caoliming@saas.sh.cn;chuhuangwei@saas.sh.cn
  • About author:First author contact:

    ** Contributed equally to this work

Abstract:

Rice seed storability is great significance in seed production and grain storage. In this study, 15 three-line hybrid rice restorer varieties were screened by artificial aging method, and 5 varieties with good storage tolerance (namely Fan 11, Fan 12, Fan 31, Fan 32, and Fan 38) were obtained. A Double Haploid (DH) population including 154 lines was constructed using F1 derived from the crossing between storage tolerance variety, Fan 38, and japonica restorer line, Fan 26. The parents and DH lines were sequenced using 2bB-RAD Reduced-Representation Genome Sequencing, and a genetic linkage map of SNP marker was constructed. QTLs related to storage tolerance after 10 days and 15 days artificial aging for were analyzed, respectively. A total of 6 QTL loci related to rice storage tolerance were detected on chromosomes 3, 5, 6, 11, and 12, with LOD values ranging from 3.4509 to 6.8036, explaining phenotypic variation of 6.1575%-12.9979%, and the additive effect ranged from -6.7586% to 6.1235%. The qSI-12 locus could be detected under both 10-day and 15-day aging conditions. qSI-5a and qSI-6 were detected only after 10 days of artificial aging, while qSI-3, qSI-5b, and qSI-11 were detected only after 15 days of artificial aging. In addition, 32 pairs of epistatic interaction sites were detected. These results enriched the genetic resources for the breeding of storage tolerance varieties, and laid a foundation for further fine mapping of QTLs related to storage tolerance.

Key words: rice, storage, artificial aging, QTLs analysis, double haploid population

Table 1

Selection of storage tolerant in rice varieties"

品种
Variety
发芽率(%, 平均值±标准差) Germination rate (%, mean±SD) 耐储藏指数
Storability index (%)
籼型指数
Indica index Fi
对照 Control 陈化15 d Aged for 15 days
繁1 Fan 1 91.67±2.36 13.33±4.71 14.55 0.12
繁3 Fan 3 92.22±1.92 23.33±3.33 25.30 0.18
繁6 Fan 6 90.00±3.33 2.22±1.92 2.47 0.15
繁9 Fan 9 90.00±8.81 0.00±0.00 0 0.15
繁10 Fan 10 93.33±4.71 0.00±0.00 0 0.15
繁11 Fan 11 83.33±6.67 46.67±6.67 56.00 0.41
繁12 Fan 12 90.00±5.77 63.33±0.00 70.37 0.18
繁14 Fan 14 87.78±5.09 0.00±0.00 0 0.18
繁16 Fan 16 96.67±0.00 30.00±3.33 31.03 0.21
繁24 Fan 24 95.56±5.09 0.00±0.00 0 0.21
繁26 Fan26 96.67±3.33 4.44±3.85 4.60 0.21
繁29 Fan 29 97.78±1.92 0.00±0.00 0.00 0.24
繁31 Fan 31 91.11±3.85 48.33±7.07 53.05 0.85
繁32 Fan 32 93.33±5.77 58.89±5.09 63.10 0.91
繁38 Fan 38 97.78±3.84 72.22±8.39 73.86 0.88

Fig. 1

Germination status (a) and rate (b) of rice parents with different artificial aging time"

Fig. 2

Distribution of storage tolerance index of rice DH population at artificial aging time of 10 days (a) and 15 days (b)"

Table 2

Storage tolerance index of parents and DH population after 10 days and 15 days artificial aging"

陈化天数
Artificial aging time
亲本Parents 单双倍体群体DH population
繁26
Fan 26
繁38
Fan 38
平均值±标准差Mean±SD 区间
Range
偏斜
Skewness
峰度
Kurtosis
10 d 43.10 79.55 58.16±21.08 7.09-99.26 -0.20 -0.32
15 d 4.60 73.86 14.20±14.84 0-65.19 1.47 1.69

Table 3

QTL mapping for storage tolerance of rice seeds under artificial aging"

性状
Trait
位点
Locus
位置
Position (cM)
标记区间
Marker range
范围
Range (bp)
LOD值
LOD value
贡献率
PVE (%)
加性效应
Additive effect (%)
0-10 d qSI-5a 40 Chr. 5: 56-59 7,208,572-7,851,620 4.5867 8.9836 -6.7586
qSI-6 59 Chr. 6: 143-200 7,984,061-9,393,696 3.7526 7.2240 6.1235
qSI-12 109 Chr. 12: 338-357 27,172,724-27,529,089 4.5403 8.8263 -6.7220
0-15 d qSI-3 23 Chr. 3: 191-195 9,836,591-9,908,839 6.8036 12.9979 -6.6611
qSI-5b 54 Chr. 5: 21-36 1,425,225-6,314,136 3.4682 7.7014 -4.3016
qSI-11 31 Chr. 11: 63-65 3,179,591-3,286,377 6.2939 11.7685 5.5123
qSI-12 109 Chr. 12: 338-357 27,172,724-27,529,089 3.4509 6.1575 -3.8607

Table S2

Distribution of genetic markers across the 12 chromosomes in rice"

染色体 连锁群 标记个数 遗传长度 平均区间 最大区间长度 标记之间的平均物理距离
Chromosome Linkage group No. of markers Genetic length (cM) Average interval (cM) Max. interval length (cM) Average physical distance between markers (kb)
1 1-1 9 17.07 1.9 5.99 479.7
1-2 74 100.47 1.36 7.96 381.38
2 2-1 13 15.18 1.17 1.97 921.47
2-2 10 13.26 1.33 3.28 902.32
2-3 16 38.9 2.43 21.69 651.16
3 3 77 125.84 1.63 13.95 472.91
4 4-1 44 70.97 1.61 4.71 571.43
4-2 16 13.94 0.87 1.98 169.8
5 5 53 109.26 2.06 23.08 565.25
6 6-1 4 5.39 1.35 3.41 270.57
6-2 51 106.92 2.1 18.22 567.39
7 7 33 94.59 2.87 15.84 899.93
8 8 66 123.28 1.87 15.55 430.95
9 9 33 80.73 2.45 15.11 697.36
10 10 64 80.48 1.26 10 362.61
11 11 56 112.48 2.01 15.4 518.23
12 12-1 9 6.66 0.74 1.35 244.07
12-2 38 53.44 1.41 8.13 484.94
总计Overal 总计Overal 666 1168.86 1.69 23.08 594.64

Fig. 3

Chromosome distribution of QTLs for storage tolerance of rice seeds in DH population under artificial aging (a) and Epistasis analysis (b) The red and blue dashed lines indicate epistatic effects detected at 10- and 15-days artificial aging, respectively."

Table S3

Epistatic analysis for storage tolerance of rice seeds under artificial aging"

TraitID TraitName Chromosome1 Position1 LeftMarker1 RightMarker1 Chromosome2 Position2 LeftMarker2 RightMarker2 LOD PVE (%) Add1 Add2 AddbyAdd
1 10d 1 178 ch1-770 ch1-773 4 109 ch4-643 ch4-649 2.5344 2.9461 -0.3359 -0.3593 4.7714
1 10d 1 125 ch1-336 ch1-344 5 97 ch5-385 ch5-388 3.1207 4.8485 -1.9963 1.7157 5.3383
1 10d 4 5 ch4-89 ch4-90 6 63 ch6-263 ch6-289 2.6415 3.022 0.9242 1.6863 5.1041
1 10d 3 24 ch3-191 ch3-195 7 8 ch7-23 ch7-25 2.8394 3.8246 -3.0147 1.7443 -6.2923
1 10d 2 39 ch2-64 ch2-90 7 60 ch7-278 ch7-280 2.6974 12.0232 4.3933 -2.356 9.5701
1 10d 7 9 ch7-25 ch7-36 7 89 ch7-307 ch7-308 2.6536 4.1307 -2.7874 -2.5645 -5.1543
1 10d 10 5 ch10-97 ch10-129 10 42 ch10-567 ch10-573 2.5463 3.1451 -1.1836 1.1202 5.879
1 10d 11 32 ch11-65 ch11-86 11 63 ch11-427 ch11-433 2.5051 3.056 1.9739 0.7077 5.8484
1 10d 10 41 ch10-563 ch10-567 12 105 ch12-325 ch12-334 2.5924 2.9598 -0.0015 1.2774 -5.0737
2 15d 1 42 ch1-159 ch1-161 3 23 ch3-171 ch3-183 3.5395 4.97 5.9472 -2.188 -7.6707
2 15d 2 39 ch2-64 ch2-90 3 23 ch3-171 ch3-183 3.8744 4.1072 -5.6799 -0.9674 6.492
2 15d 3 100 ch3-807 ch3-837 3 105 ch3-843 ch3-864 2.8365 3.4799 1.4227 -0.2099 -10.9405
2 15d 3 1 ch3-7 ch3-10 4 62 ch4-556 ch4-560 3.2662 1.9326 1.7679 -1.934 3.8366
2 15d 1 117 ch1-290 ch1-297 4 97 ch4-596 ch4-598 3.3181 1.9115 -0.3325 -0.1728 3.8793
2 15d 4 35 ch4-469 ch4-475 5 89 ch5-356 ch5-363 2.641 1.4086 0.4091 0.6815 -3.2696
2 15d 3 23 ch3-171 ch3-183 6 3 ch6-25 ch6-26 2.5169 1.3794 0.1209 2.6377 -3.943
2 15d 4 79 ch4-596 ch4-598 6 132 ch6-615 ch6-617 3.2659 2.8512 -1.5125 -1.146 4.521
2 15d 3 23 ch3-171 ch3-183 7 8 ch7-23 ch7-25 3.0178 1.5174 -1.5646 3.1367 -4.459
2 15d 1 1 ch1-13 ch1-43 8 2 ch8-10 ch8-11 3.1271 1.5583 0.0639 0.042 3.5058
2 15d 3 44 ch3-315 ch3-341 8 123 ch8-640 ch8-644 4.0312 2.9516 -3.7635 5.5518 -5.5205
2 15d 2 87 ch2-301 ch2-313 9 61 ch9-298 ch9-306 2.6537 1.3775 5.363 0.5894 6.4891
2 15d 5 50 ch5-169 ch5-187 9 62 ch9-306 ch9-308 2.5355 1.3666 -6.8271 2.2675 -7.3989
2 15d 3 24 ch3-191 ch3-195 9 80 ch9-406 ch9-407 3.5678 5.5949 -11.0377 5.6481 -6.6336
2 15d 3 50 ch3-428 ch3-431 10 6 ch10-132 ch10-135 2.5985 1.859 -4.8706 5.944 -5.3614
2 15d 10 16 ch10-361 ch10-375 10 25 ch10-417 ch10-425 3.2299 2.1018 4.075 -3.7495 -6.864
2 15d 6 133 ch6-615 ch6-617 10 80 ch10-725 ch10-734 3.6547 2.7463 -1.5399 1.8084 -4.0638
2 15d 8 2 ch8-10 ch8-11 11 59 ch11-194 ch11-319 2.9629 1.5471 1.5843 0.9499 3.7992
2 15d 6 65 ch6-289 ch6-533 11 62 ch11-411 ch11-427 3.309 1.86 -2.9826 -0.1096 -3.9808
2 15d 7 36 ch7-243 ch7-247 11 87 ch11-459 ch11-467 3.0592 2.1895 -0.3598 -1.324 -4.0831
2 15d 12 25 ch12-43 ch12-46 12 27 ch12-43 ch12-46 3.5769 8.1352 -6.8067 8.0638 -4.4508
2 15d 4 3 ch4-66 ch4-72 12 31 ch12-43 ch12-46 2.7726 2.8824 0.0306 -0.4339 -4.8661
2 15d 3 105 ch3-843 ch3-864 12 72 ch12-232 ch12-235 2.9506 1.6021 0.5047 0.7086 -3.5864
[1] 云昌杰. 我国农村储粮问题研究. 粮食储藏, 1996, 69(6): 24-27.
Yun C J. Research on rural grain storage in China. Grain Storage, 1996, 69(6): 24-27.
[2] Xu H W, Zhu Y, Ling L, Zhang J. Antisense suppression of lox3 gene expression in rice endosperm enhances seed longevity. Plant Biotech J, 2013, 13: 526-539.
doi: 10.1111/pbi.12277
[3] Yuan Z, Fan K, Xia L, Ding X, Tian L, Sun W. Genetic dissection of seed storability and validation of candidate gene associated with antioxidant capability in rice (Oryza sativa L.). Int J Mol Sci, 2020, 20: 4442.
doi: 10.3390/ijms20184442
[4] 黄上志, 傅家瑞. 贮藏温度和相对湿度对杂交水稻种子耐藏性的影响. 植物生理学通讯, 1986, 11(6): 38-41.
Huang S Z, Fu J R. Effects of storage temperature and relative humidity on storage tolerance of hybrid rice seeds. Plant Phys Commun, 1986, 11(6): 38-41.
[5] 曾大力, 钱前, 国广泰史, 滕胜, 藤本宽. 稻谷储藏特性及其与籼粳特性的关系研究. 作物学报, 2002, 28: 551-554.
Zeng D L, Qian Q, Kunihiro Y, Teng S, Fujimoto H. Study on storage characteristics of rice and its relationship with indica and japonica characteristics. Acta Agron Sin, 2002, 28: 551-554.
[6] Jeevan K S P, Rajendra P S, Banerjee R, Thammineni C. Seed birth to death: dual functions of reactive oxygen species in seed physiology. Ann Bot, 2015, 116: 663-668.
doi: 10.1093/aob/mcv098
[7] Yasumatsu K, Moritaka S. Fatty acid compositions of rice lipid and their changes during storage. Agric Biol Chem, 1964, 28: 257-264.
doi: 10.1080/00021369.1964.10858241
[8] Aibara S, Ismail I A, Honami Y, Hiroyuki O, Futoshi S, Yuhei M. Changes in rice bran lipids and free amino acids during storage. Agric Biol Chem, 2014, 50: 665-673.
[9] Ramarathnam N, Osawa T, Namiki M, Tashiro T. Studies on the relationship between antioxidative activity of rice hull and germination ability of rice seeds. J Sci Food Agric, 2010, 37: 719-726.
doi: 10.1002/jsfa.2740370803
[10] Sattler S E, Gilliland L U, Magallanes L M, Pollard M, DellaPenna D. Vitamin E is essential for seed longevity and for preventing lipid peroxidation during germination. Plant Cell, 2004, 16: 1419-1432.
pmid: 15155886
[11] Ren R J, Wang P, Wang L N, Su J P, & Chen X W. Os4bglu14, a monolignol β-glucosidase, negatively affects seed longevity by influencing primary metabolism in rice. Plant Mol Biol, 2020, 104: 513-527.
doi: 10.1007/s11103-020-01056-1
[12] 张瑛, 吴跃进, 吴敬德, 童继平, 郑乐娅. 脂肪氧化酶与稻谷贮藏的陈化变质. 安徽农业科学, 2001, 29(5): 565-566.
Zhang Y, Wu Y J, Wu J D, Tong J P, Zheng L Y. Lipoxygenase and aging deterioration of rice storage. Anhui Agric Sci, 2001, 29(5): 565-566.
[13] Shoji I, Yuji M, Yuhei M. The isolation of multiple forms and product specificity of rice lipoxygenase. Agric Biol Chem, 2014, 47: 637-641.
[14] Suzuki Y. Screening and mode of inheritance of a rice (Oryza sativa) variety lacking lipoxygenase-3. Gamma Field Symp, 1995, 33: 51-62.
[15] Lei M, Zhu F, Li Z, Zhang J, Li X, Dong J. Talen-based mutagenesis of lipoxygenase lox3 enhances the storage tolerance of rice (Oryza sativa) seeds. PLoS One, 2015, 10: e0143877.
[16] 刘霞, 杜雅荣, 李喜宏, 马文, 王威, 刘香军, 高玉敏, 李丽秀. 水稻贮藏特性与籼粳基因型的关系. 中国粮油学报, 2015, 30(11): 1-5.
Liu X, Du Y R, Li X H, Ma W, Wang W, Liu X J, Gao Y M, Li L X. Relationship between storage characteristics of rice and indica-japonica genotypes. Chin J Grain Oil, 2015, 30(11): 1-5.
[17] Hang N T, Lin Q Y, Liu L L, Liu X, Liu S J, Wang W Y, Li L F, He N Q, Liu Z, Jiang L, Wan J M. Mapping QTLs related to rice seed storability under natural and artificial aging storage conditions. Euphytica, 2015, 203: 673-681.
doi: 10.1007/s10681-014-1304-0
[18] Li C S, Shao G S, Wang L, Wang Z F, Mao Y J, Wang X Q, Zhang X H, Liu S T, Zhang H S. QTL Identification and fine mapping for seed storability in rice (Oryza sativa L.). Euphytica, 2017, 213: 127.
doi: 10.1007/s10681-017-1913-5
[19] Li L F, Lin Q Y, Liu S J, Liu X, Wang W Y, Hang N T, Liu F, Zhao Z G, Jiang L, Wan J M. Identification of quantitative trait loci for seed storability in rice (Oryza sativa L.). Plant Breed, 2012, 131: 739-743.
doi: 10.1111/j.1439-0523.2012.02007.x
[20] Lin Q Y, Wang W Y, Ren Y K, Jiang Y M, Sun A L, Qian Y, Zhang Y F, He N Q, Hang N T, Liu Z, Li L F, Liu L L, Jiang L, Wan J M. Genetic dissection of seed storability using two different populations with a same parent rice cultivar N22. Breed Sci, 2015, 65: 411-419.
doi: 10.1270/jsbbs.65.411
[21] Miura K, Lin Y, Yano M, Nagamine T. Mapping quantitative trait loci controlling seed longevity in rice (Oryza sativa L.). Theor Appl Genet, 2002, 104: 981-986.
pmid: 12582603
[22] Sasaki K, Fukuta Y, Sato T. Mapping of quantitative trait loci controlling seed longevity of rice (Oryza sativa L.) after various periods of seed storage. Plant Breed, 2005, 124: 361-366.
doi: 10.1111/j.1439-0523.2005.01109.x
[23] Xue Y, Zhang S Q, Yao Q H. Identification of quantitative trait loci for seed storability in rice (Oryza sativa L.). Euphytica, 2008, 164: 739-744.
doi: 10.1007/s10681-008-9696-3
[24] Zeng D L. QTL analysis of seed storability in rice. Plant Breed, 2006, 125: 57-60.
doi: 10.1111/j.1439-0523.2006.01169.x
[25] 刘进, 姚晓云, 余丽琴, 李慧, 周慧颖, 王嘉宇, 黎毛毛. 水稻耐储藏特性三年动态鉴定与QTL分析. 植物学报, 2019, 54: 464-473.
doi: 10.11983/CBB18188
Liu J, Yao X Y, Yu L Q, Li H, Zhou H Y, Wang J Y, Li M M. Three year dynamic identification and QTL analysis of rice storage tolerance. Acta Bot Sin, 2019, 54: 464-473.
[26] 沈圣泉, 庄杰云, 王淑珍, 杨国花, 夏英武. 水稻种子耐贮藏性QTL主效应和上位性效应分析. 分子植物育种, 2005, 3: 323-328.
Shen S Q, Zhuang J Y, Wang S Z, Yang G H, Xia Y W. Analysis of QTL main effect and epistasis effect of rice seed storage tolerance. Mol Plant Breed, 2005, 3: 323-328.
[27] Jiang W, Lee J, Jin Y M. Identification of QTLs for seed germination capability after various storage periods using two RIL populations in rice. Mol Cells, 2011, 31: 385-392.
doi: 10.1007/s10059-011-0049-z
[28] Lee J S, Velasco P M, Pacleb M, Valdez R, Kretzschmar T, McNally K L, Ismail A M, Cruz P C S, Sackville H N R, Hay F R. Variation in seed longevity among diverse indica rice varieties. Ann Bot, 2019, 124: 447-460.
doi: 10.1093/aob/mcz093
[29] Sasaki K, Takeuchi Y, Miura K. Fine mapping of a quantitative trait locus, qLG-9, controlling seed longevity of rice (Oryza sativa L.). Theor Appl Genet, 2015, 128: 769-778.
doi: 10.1007/s00122-015-2471-7 pmid: 25687128
[30] Lin Q Y, Jiang Y M, Sun A L, Cao P H, Li L F, Liu X, Tian Y L, He J, Liu S J, Chen L M, Jiang L. Fine mapping of qSS-9, a major and stable quantitative trait locus, for seed storability in rice (Oryza sativa L.). Plant Breed, 2015, 134: 293-299.
doi: 10.1111/pbr.12264
[31] Wang W, Meyer E, McKay J K, Matz M V. 2b-RAD: a simple and flexible method for genome-wide genotyping. Nat Meth, 2012, 9: 808-810.
[32] Gu S, Fang L, Xu X. Using SOAPaligner for short reads alignment. Curr Prot Bioinfor, 2013, 44: 1-17.
[33] Meng L, Li H H, Zhang L Y, Wang J K. QTL IciMapping: integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. Crop J, 2015, 3: 269-283.
doi: 10.1016/j.cj.2015.01.001
[34] Li H H, Ye G Y, Wang J K. A modified algorithm for the improvement of composite interval mapping. Genetics, 2007, 175: 361-374.
doi: 10.1534/genetics.106.066811
[35] Li H H, Ribaut J-M, Li Z L, Wang J K. Inclusive composite interval mapping (ICIM) for digenic epistasis of quantitative traits in biparental populations. Theor Appl Genet, 2008, 116: 243-260.
doi: 10.1007/s00122-007-0663-5
[36] Lu B, Cai X, Xin J. Efficient indica and japonica rice identification based on the InDel molecular method: its implication in rice breeding and evolutionary research. Prog Nat Sci, 2009, 19: 1241-1252.
doi: 10.1016/j.pnsc.2009.01.011
[37] 张安鹏, 钱前, 高振宇. 水稻种子活力的研究进展. 中国水稻科学, 2018, 32: 296-303.
doi: 10.16819/j.1001-7216.2018.7140
Zhang A P, Qian Q, Gao Z Y. Research progress of rice seed vigor. China Rice Sci, 2018, 32: 296-303.
[38] 杨振玉, 李志彬, 东丽, 朱崴, 蔡卓, 曲丽君, 华泽田. 中国杂交粳稻发展与展望. 科学通报, 2016, 61: 3770-3777.
Yang Z Y, Li Z B, Dong L, Zhu W, Cai Z, Qu L J, Hua Z T. Development and prospect of japonica hybrid rice in China. Sci Bull, 2016, 61: 3770-3777.
[1] XUE Jiao, LU Dong-Bai, LIU Wei, LU Zhan-Hua, WANG Shi-Guang, WANG Xiao-Fei, FANG Zhi-Qiang, HE Xiu-Ying. Genetic analysis and fine mapping of a bacterial blight resistance major QTL qBB-11-1 in high-quality rice ‘Yuenong Simiao’ [J]. Acta Agronomica Sinica, 2022, 48(9): 2210-2220.
[2] ZHOU Qun, YUAN Rui, ZHU Kuan-Yu, WANG Zhi-Qin, YANG Jian-Chang. Characteristics of grain yield and nitrogen absorption and utilization of indica/japonica hybrid rice Yongyou 2640 under different nitrogen application rates [J]. Acta Agronomica Sinica, 2022, 48(9): 2285-2299.
[3] WU La-Mei, YANG Hao-Na, WANG Li-Feng, LI Zu-Ren, DENG Xi-Le, BAI Lian-Yang. Application of weeding bast fiber film in rice seedling field and its effect on rice [J]. Acta Agronomica Sinica, 2022, 48(9): 2315-2324.
[4] CHEN Zhi-Qing, FENG Yuan, WANG Rui, CUI Pei-Yuan, LU Hao, WEI Hai-Yan, ZHANG Hai-Peng, ZHANG Hong-Cheng. Effects of exogenous molybdenum on yield formation and nitrogen utilization in rice [J]. Acta Agronomica Sinica, 2022, 48(9): 2325-2338.
[5] WANG Quan, WANG Le-Le, ZHU Tie-Zhong, REN Hao-Jie, WANG Hui, CHEN Ting-Ting, JIN Ping, WU LI-Quan, YANG Ru, YOU Cui-Cui, KE Jian, HE Hai-Bing. Effects of HgCl2 on photosynthetic characteristics and its physiological mechanism of rice leaves in vitro feeding [J]. Acta Agronomica Sinica, 2022, 48(9): 2377-2389.
[6] SANG Guo-Qing, TANG Zhi-Guang, MAO Ke-Biao, DENG Gang, WANG Jing-Wen, LI Jia. High-resolution paddy rice mapping using Sentinel data based on GEE platform: a case study of Hunan province, China [J]. Acta Agronomica Sinica, 2022, 48(9): 2409-2420.
[7] WANG Tian-Bo, HE Wen-Xue, ZHANG Jun-Ming, LYU Wei-Zeng, LIANG Yu-Huan, LU Yang, WANG Yu-Lu, GU Feng-Xu, SONG Ci, CHEN Jun-Ying. ROS production and ATP synthase subunit mRNAs integrity in artificially aged maize embryos [J]. Acta Agronomica Sinica, 2022, 48(8): 1996-2006.
[8] ZHU Chun-Quan, WEI Qian-Qian, XIANG Xing-Jia, HU Wen-Jun, XU Qing-Shan, CAO Xiao-Chuang, ZHU Lian-Feng, KONG Ya-Li, LIU Jia, JIN Qian-Yu, ZHANG Jun-Hua. Regulation effects of seedling raising by melatonin and methyl jasmonate substrate on low temperature stress tolerance in rice [J]. Acta Agronomica Sinica, 2022, 48(8): 2016-2027.
[9] LIU Kun, HUANG Jian, ZHOU Shen-Qi, ZHANG Wei-Yang, ZHANG Hao, GU Jun-Fei, LIU Li-Jun, YANG Jian-Chang. Effects of panicle nitrogen fertilizer rates on grain yield in super rice varieties with different panicle sizes and their mechanism [J]. Acta Agronomica Sinica, 2022, 48(8): 2028-2040.
[10] XIE Li-Ming, JIANG Zhong-Yu, LIU Hong-Juan, HAN Jun-Jie, LIU Ben-Kui, WANG Xiao-Lu, SHI Chun-Yu. Suitable soil moisture promotes sugar supply and tuberization in sweet potato at root branching stage [J]. Acta Agronomica Sinica, 2022, 48(8): 2080-2087.
[11] WEI Gang, CHEN Dan-Yang, REN De-Yong, YANG Hong-Xia, WU Jing-Wen, FENG Ping, WANG Nan. Identification and gene mapping of slender stem mutant sr10 in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(8): 2125-2133.
[12] ZHOU Chi-Yan, LI Guo-Hui, XU Ke, ZHANG Chen-Hui, YANG Zi-Jun, ZHANG Fen-Fang, HUO Zhong-Yang, DAI Qi-Gen, ZHANG Hong-Cheng. Characteristics of vascular bundle of peduncle and flag leaf and assimilates translocation in leaves and stems of different types of rice varieties [J]. Acta Agronomica Sinica, 2022, 48(8): 2053-2065.
[13] CHEN Chi, CHEN Dai-Bo, SUN Zhi-Hao, PENG Ze-Qun, Adil Abbas, HE Deng-Mei, ZHANG Ying-Xin, CHENG Hai-Tao, YU Ping, MA Zhao-Hui, SONG Jian, CAO Li-Yong, CHENG Shi-Hua, SUN Lian-Ping, ZHAN Xiao-Deng, LYU Wen-Yan. Characterization and genetic mapping of a classic-abortive-type recessive genic-male-sterile mutant ap90 in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(7): 1569-1582.
[14] LI Jie-Ya, LI Hong-Yan, YE Guang-Ji, SU Wang, SUN Hai-Hong, WANG Jian. Changes of anthocyanins and expression analysis of synthesis-related genes in potato during storage period [J]. Acta Agronomica Sinica, 2022, 48(7): 1669-1682.
[15] HUANG Fu-Deng, HUANG Yan, JIN Ze-Yan, HE Huan-Huan, LI Chun-Shou, CHENG Fang-Min, PAN Gang. Physiological characters and gene mapping of a precocious leaf senescence mutant ospls7 in rice (Orzo sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(7): 1832-1842.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!