Acta Agronomica Sinica ›› 2022, Vol. 48 ›› Issue (9): 2242-2254.doi: 10.3724/SP.J.1006.2022.11079
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
TAN Zhao-Guo1,2(), YUAN Shao-Hua2(), LI Yan-Mei2, BAI Jian-Fang2, YUE Jie-Ru2, LIU Zi-Han2, ZHANG Tian-Bao2, ZHAO Fu-Yong1, ZHAO Chang-Ping2, XU Ben-Bo1, ZHANG Sheng-Quan2,*(), PANG Bin-Shuang2,*(), ZHNAG Li-Ping1,2,*()
[1] |
Feng Z J, Xu S C, Liu N, Zhang G W, Hu Q Z, Xu Z S, Gong Y M. Identification of the AQP members involved in abiotic stress responses from Arabidopsis. Gene, 2018, 646: 64-73.
doi: 10.1016/j.gene.2017.12.048 |
[2] | Chaumont F, Moshelion M, Daniels M J. Regulation of plant aquaporin activity. Biol Cell, 2005, 97: 749-764. |
[3] |
Ishikawa F, Suga S, Uemura T, Sato M H, Maeshima M. Novel type aquaporin SIPs are mainly localized to the ER membrane and show cell-specific expression in Arabidopsis thaliana. FEBS Lett, 2005, 579: 5814-5820.
doi: 10.1016/j.febslet.2005.09.076 |
[4] | Azad A K, Ahmed J, Alum M A, Hasan M M, Ishikawa T, Sawa Y, Katsuhara M. Genome-wide characterization of major intrinsic proteins in four grass plants and their non-aqua transport selectivity profiles with comparative perspective. PLoS One, 2016, 11: e0157735. |
[5] |
Chaumont F, Barrieu F, Wojcik E, Chrispeels M J, Jung R. Aquaporins constitute a large and highly divergent protein family in maize. Plant Physiol, 2001, 125: 1206-1215.
pmid: 11244102 |
[6] | Zhang D Y, Ali Z, Wang C B, Xu L, Yi J X, Xu Z L, Liu X Q, He X L, Huang Y H, Khan I A, Trethowan R M, Ma H X. Genome-wide sequence characterization and expression analysis of major intrinsic proteins in soybean (Glycine max L.). PLoS One, 2013, 8: e56312. |
[7] |
Yuan D, Li W, Hua Y P, King G H J, Xu F S, Shi L. Genome-wide identification and characterization of the aquaporin gene family and transcriptional responses to boron deficiency in Brassica napus. Front Plant Sci, 2017, 8: 1336.
doi: 10.3389/fpls.2017.01336 pmid: 28824672 |
[8] |
Javot H, Lauvergeat V, Santoni V, Martin-Laurent F, Guclu J, Vinh J, Heyes J, Franck K I, Schaffner A R, Bouchez D, Maurel C. Role of a single aquaporin isoform in root water uptake. Plant Cell, 2003, 15: 509-522.
doi: 10.1105/tpc.008888 |
[9] |
Flexas J, Ribas-Carbo M, Hanson D T, Bota J, Otto B, Cifre J, McDowell N, Medrano H, Kaldenhoff R. Tobacco aquaporin NtAQP1 is involved in mesophyll conductance to CO2 in vivo. Plant J, 2006, 48: 427-439.
pmid: 17010114 |
[10] |
Takano J, Wada M, Ludewig U, Schaaf G, von Wiren N, Fujiwara T. The Arabidopsis major intrinsic protein NIP5;1 is essential for efficient boron uptake and plant development under boron limitation. Plant Cell, 2006, 18: 1498-1509.
doi: 10.1105/tpc.106.041640 |
[11] |
Ma J F, Tamai K, Yamaji N, Mitani N, Konishi S, Katsuhara M, Ishiguro M, Murata Y, Yano M. A silicon transporter in rice. Nature, 2006, 440: 688-691.
doi: 10.1038/nature04590 |
[12] |
Mao Z L, Sun W N. Arabidopsis seed-specific vacuolar aquaporins are involved in maintaining seed longevity under the control of ABSCISIC ACID INSENSITIVE 3. J Exp Bot, 2015, 66: 4781-4794.
doi: 10.1093/jxb/erv244 |
[13] |
Secchi F, Schubert A, Lovisolo C. Changes in air CO2 concentration differentially alter transcript levels of NtAQP1 and NtPIP2;1 Aquaporin genes in tobacco leaves. Int J Mol Sci, 2016, 17: 567.
doi: 10.3390/ijms17040567 |
[14] |
Uehlein N, Lovisolo C, Siefritz F, Kaldenhoff R. The tobacco aquaporin NtAQP1 is a membrane CO2 pore with physiological functions. Nature, 2003, 425: 734-737.
doi: 10.1038/nature02027 |
[15] |
Holm L M, Jahn T P, Moller A L, Schjoerring J K, Ferri D, Klaerke D A, Zeuthen T. NH3 and NH4+ permeability in aquaporin-expressing Xenopus oocytes. Pflugers Arch-Eur J Physiol, 2005, 450: 415-428.
doi: 10.1007/s00424-005-1399-1 |
[16] | Baluška F. Plant Aquaporins from Transport to Signaling. Signaling and Communication in Plants. Berlin: Springer Nature, 2017. pp 1-333. |
[17] |
Azad A K, Sawa Y, Ishikawa T, Shibata H. Characterization of protein phosphatase 2A acting on phosphorylated plasma membrane aquaporin of tulip petals. Biosci Biotechnol Biochem, 2004, 68: 1170-1174.
doi: 10.1271/bbb.68.1170 |
[18] |
Bai J F, Wang Y K, Wang P, Yuan S H, Gao J G, Duan W J, Wang N, Zhang F T, Zhang W J, Qin M Y, Zhao C P, Zhang L P. Genome-wide identification and analysis of the COI gene family in wheat (Triticum aestivum L.). BMC Genomics, 2018, 19: 754.
doi: 10.1186/s12864-018-5116-9 |
[19] |
Wilson Z A, Song J, Taylor B, Yang C. The final split: the regulation of anther dehiscence. J Exp Bot, 2011, 62: 1633-1649.
doi: 10.1093/jxb/err014 pmid: 21325605 |
[20] | Bots M, Feron R, Uehlein N, Weterings K, Kaldenhoff R, Mariani T. PIP1 and PIP2 aquaporins are differentially expressed during tobacco anther and stigma development. J Exp Bot, 2005, 56: 113-121. |
[21] | 谭照国, 李艳梅, 白建芳, 郭昊宇, 栗婷婷, 段文静, 刘子涵, 苑少华, 张天豹, 张风廷, 陈兆波, 赵福永, 赵昌平, 张立平. 小麦TaBG的克隆及其在花药开裂中的潜在功能. 中国农业科学, 2021, 54: 2711-2723. |
Tan Z G, Li Y M, Bai J F, Guo H Y, Li T T, Duan W J, Liu Z H, Yuan S H, Zhang T B, Zhang F T, Chen Z B, Zhao F Y, Zhao C P, Zhang L P. Cloning of TaBG and analysis of its function in anther dehiscence in wheat. Sci Agric Sin, 2021, 54: 2711-2723. (in Chinese with English abstract) | |
[22] | 卢奕霏, 顾迎港, 陈威, 王娜, 康珍, 侯泽豪, 张迎新, 方正武, 马东方, 刘易科, 朱展望, 张改生, 王书平. 高温胁迫对小麦花药活性氧代谢的影响. 麦类作物学报, 2020, 40: 488-493. |
Lu Y F, Gu Y G, Chen W, Wang N, Kang Z, Hou Z H, Zhang Y X, Fang Z W, Ma D F, Liu Y K, Zhu Z W, Zhang G S, Wang S P. Effect of high-temperature stress on reactive oxygen metabolism of wheat anther. J Triticeae Crops, 2020, 40: 488-493. (in Chinese with English abstract) | |
[23] | 孙鹤, 郎志宏, 朱莉, 黄大昉. 玉米、小麦、水稻原生质体制备条件优化. 生物工程学报, 2013, 29: 224-234. |
Sun H, Lang Z H, Zhu L, Huang D F. Optimized condition for protoplast isolation from maize, wheat and rice leaves. Chin J Biotech, 2013, 29: 224-234. (in Chinese with English abstract) | |
[24] |
Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 2001, 25: 402-408.
doi: 10.1006/meth.2001.1262 pmid: 11846609 |
[25] | Tang J Y, Chu C C. MicroRNAs in crop improvement: fine-tuners for complex traits. Nature Plants, 2017, 3: 17077. |
[26] |
Fotiadis D, Jeno P, Mini T, Wirtz S, Muller S A, Fraysse L, Kjellbom P, Engel A. Structural characterization of two aquaporins isolated from native spinach leaf plasma membranes. J Biol Chem, 2001, 276: 1707-1714.
doi: 10.1074/jbc.M009383200 pmid: 11050104 |
[27] |
Hu J, Mitchum M G, Barnaby N, Ayele B T, Ogawa M, Nam E, Lai W C, Hanada A, Alonso J M, Ecker J R, Swain S M, Yamaguchi S, Kamiya Y, Sun T P. Potential sites of bioactive gibberellin production during reproductive growth in Arabidopsis Plant Cell, 2008, 20: 320-336.
doi: 10.1105/tpc.107.057752 |
[28] |
Werner M, Uehlein N, Proksch P, Kaldenhoff R. Characterization of two tomato aquaporins and expression during the incompatible interaction of tomato with the plant parasite Cuscuta reflexa. Planta, 2001, 213: 550-555.
pmid: 11556787 |
[29] |
Morillon R, Catterou M, Sangwan R S, Sangwan B S, Lassalles J P. Brassinolide may control aquaporin activities in Arabidopsis thaliana. Planta, 2001, 212: 199-204.
pmid: 11216840 |
[30] |
Phillips A L, Huttly A K. Cloning of two gibberellin-regulated cDNAs from Arabidopsis thaliana by subtractive hybridization: expression of the tonoplast water channel, γ-TIP, is increased by GA3. Plant Mol Biol, 1994, 24: 603-615.
pmid: 8155880 |
[31] |
Hu W, Yuan Q Q, Wang Y Y, Cai R, Deng X M, Wang J, Zhou S Y, Chen M J, Chen L H, Huang C, Ma Z B, Yang G X, He G Y. Overexpression of a wheat aquaporin gene, TaAQP8, enhances salt stress tolerance in transgenic tobacco. Plant Cell Physiol, 2012, 53: 2127-2141.
doi: 10.1093/pcp/pcs154 |
[32] |
Kaldenhoff R, Kölling A, Richter G. Regulation of the Arabidopsis thaliana aquaporin gene AthH2 (PIP1b). J Photochem Photobiol B: Biol, 1996, 36: 351-354.
doi: 10.1016/S1011-1344(96)07392-7 |
[33] |
He W D, Gao J, Dou T X, Shao X H, Bi F C, Sheng O, Deng G M, Li C Y, Hu C H, Liu J H, Zhang S, Yang Q S, Yi G J. Early cold-induced peroxidases and aquaporins are associated with high cold tolerance in Dajiao (musa spp. ‘Dajiao’). Front Plant Sci, 2018, 9: 282.
doi: 10.3389/fpls.2018.00282 |
[34] |
Ahamed A, Murai-Hatano M, Ishikawa-Sakurai J, Hayashi H, Kawamura Y, Uemura M. Cold stress-induced acclimation in rice is mediated by root-specific aquaporins. Plant Cell Physiol, 2012, 53: 1445-1456.
doi: 10.1093/pcp/pcs089 pmid: 22711693 |
[35] |
Yamamori K, Ogasawara K, Ishiguro S, Koide Y, Takamure I, Fujino K, Sato Y, Kishima Y. Revision of the relationship between anther morphology and pollen sterility by cold stress at the booting stage in rice. Ann Bot, 2021, 128: 559-575.
doi: 10.1093/aob/mcab091 |
[36] | Bots M, Feron R, Uehlein N, Weterings K, Kaldenhoff R, Mariani T. PIP1 and PIP2 aquaporins are differentially expressed during tobacco anther and stigma development. J Exp Bot, 2005, 56: 113-121. |
[37] |
Tornroth-Horsefield S, Wang Y, Hedfalk K, Johanson U, Karlsson M, Tajkhorshid E, Neutze R, Kjellbom P. Structural mechanism of plant aquaporin gating. Nature, 2006, 439: 688-694.
doi: 10.1038/nature04316 |
[38] | He X Y, Zhen H, Yin H Y, Chen F, Dong Y H, Zhang L F, Lu X Q, Zang J B, Ma W J, Mu P. High-throughput sequencing-based identification of miRNAs and their target mRNAs in wheat variety Qing Mai 6 under salt stress condition. Front Genet, 2021, 12: 724527. |
[39] |
Duan F M, Ding J, Lee D S, Lu X L, Feng Y Q, Song W W. Overexpression of SoCYP85A1, a spinach cytochrome p450 gene in transgenic tobacco enhances root development and drought stress tolerance. Front Plant Sci, 2017, 8: 1909.
doi: 10.3389/fpls.2017.01909 |
[40] |
Shen J, Diao W, Zhang L, Acharya B R, Zhang W. Secreted peptide PIP1 induces stomatal closure by activation of guard cell anion channels in Arabidopsis. Front Plant Sci, 2020, 11: 1029.
doi: 10.3389/fpls.2020.01029 |
[41] |
Hendrick J P, Hartl F U. Molecular chaperone functions of heat-shock proteins. Annu Rev Biochem, 1993, 62: 349-384.
pmid: 8102520 |
[42] | Banerjee A, Roychoudhury A. The role of aquaporins during plant abiotic stress responses. Plant Life Under Changing Environment. United Kingdom: Elsevier Academic Press, 2020. pp 643-661. |
[43] | Kumar K, Mosa K A, Meselhy A G, Dhankher O P. Molecular insights into the plasma membrane intrinsic proteins roles for abiotic stress and metalloids tolerance and transport in plants. Indian J Plant Physiol, 2018, 23: 721-730. |
[44] | de Paula Santos Martins C, Pedrosa A M, Du D, Gonçalves L P, Yu Q, Gmitter F G Jr, Costa M G C. Genome-wide characterization and expression analysis of major intrinsic proteins during abiotic and biotic stresses in sweet orange (Citrus sinensis L. Osb.). PLoS One, 2015, 10: e0138786. |
[45] | Shafqat W, Jaskani M J, Maqbool R, Chattha W S, Ali Z, Naqvi S A, Haider M S, Khan I A, Vincent C I. Heat shock protein and aquaporin expression enhance water conserving behavior of citrus under water deficits and high temperature conditions. Environ Exp Bot, 2021, 181: 104270. |
[46] |
Ma W, Xiao Y, Li Y, Hu P, Wang Z, Yang G, Wang J. Overexpression of CfPIP1-1, CfPIP1-2, and CfPIP1-4 genes of Catalpa fargesii in transgenic Arabidopsis thaliana under drought stress. J For Res, 2020, 32: 285-296.
doi: 10.1007/s11676-019-01082-w |
[1] | ZHANG Yi-Duo, LI Guo-Qiang, KONG Zhong-Xin, WANG Yu-Quan, LI Xiao-Li, RU Zhen-Gang, JIA Hai-Yan, MA Zheng-Qiang. Breeding of FHB-resistant wheat line Bainong 4299 by gene pyramiding [J]. Acta Agronomica Sinica, 2022, 48(9): 2221-2227. |
[2] | FENG Zi-Heng, LI Xiao, DUAN Jian-Zhao, GAO Fei, HE Li, YANG Tian-Chong, RONG Ya-Si, SONG Li, YIN Fei, FENG Wei. Hyperspectral remote sensing monitoring of wheat powdery mildew based on feature band selection and machine learning [J]. Acta Agronomica Sinica, 2022, 48(9): 2300-2314. |
[3] | CAO Ji-Ling, ZENG Qing, ZHU Jian-Guo. Responses of photosynthetic characteristics and gene expression in different wheat cultivars to elevated ozone concentration at grain filling stage [J]. Acta Agronomica Sinica, 2022, 48(9): 2339-2350. |
[4] | LI Yong-Bo, CUI De-Zhou, HUANG Chen, SUI Xin-Xia, FAN Qing-Qi, CHU Xiu-Sheng. Preparation of highly specific wheat ATG8 antibody and its application in the detection of autophagy [J]. Acta Agronomica Sinica, 2022, 48(9): 2390-2399. |
[5] | WANG Yun-Qi, GAO Fu-Li, LI Ao, GUO Tong-Ji, QI Liu-Ran, ZENG Huan-Yu, ZHAO Jian-Yun, WANG Xiao-Ge, GAO Guo-Ying, YANG Jia-Peng, BAI Jin-Ze, MA Ya-Huan, LIANG Yue-Xin, ZHANG Rui. Variation of ear temperature after anthesis and its relationship with yield in wheat [J]. Acta Agronomica Sinica, 2022, 48(9): 2400-2408. |
[6] | DU Qi-Di, GUO Hui-Jun, XIONG Hong-Chun, XIE Yong-Dun, ZHAO Lin-Shu, GU Jia-Yu, ZHAO Shi-Rong, DING Yu-Ping, SONG Xi-Yun, LIU Lu-Xiang. Gene mapping of apical spikelet degeneration mutant asd1 in wheat [J]. Acta Agronomica Sinica, 2022, 48(8): 1905-1913. |
[7] | DAI Li-Shi, CHANG Wei, ZHANG Sai, QIAN Ming-Chao, LI Xiao-Dong, ZHANG Kai, LI Jia-Na, QU Cun-Min, LU Kun. Functional validation of Bna-novel-miR36421 regulating plant architecture and flower organ development in Arabidopsis thaliana [J]. Acta Agronomica Sinica, 2022, 48(7): 1635-1644. |
[8] | FENG Ya-Juan, LI Ting-Xuan, PU Yong, ZHANG Xi-Zhou. Characteristics of cadmium accumulation and distribution in different organs of wheat with different cadmium-accumulating type [J]. Acta Agronomica Sinica, 2022, 48(7): 1761-1770. |
[9] | LIU A-Kang, MA Rui-Qi, WANG De-Mei, WANG Yan-Jie, YANG Yu-Shuang, ZHAO Guang-Cai, CHANG Xu-Hong. Effects of filming and supplemental nitrogen fertilizer application on plant growth and population quality of late sowing winter wheat before winter [J]. Acta Agronomica Sinica, 2022, 48(7): 1771-1786. |
[10] | WANG Juan, LIU Yi, YAO Dan-Yu, ZOU Jing-Wei, XIAO Shi-He, SUN Guo-Zhong. Identification on sensitivity of wheat to low temperature at reproductive stages [J]. Acta Agronomica Sinica, 2022, 48(7): 1721-1729. |
[11] | ZHANG Shao-Hua, DUAN Jian-Zhao, HE Li, JING Yu-Hang, Urs Christoph Schulthess, Azam Lashkari, GUO Tian-Cai, WANG Yong-Hua, FENG Wei. Wheat yield estimation from UAV platform based on multi-modal remote sensing data fusion [J]. Acta Agronomica Sinica, 2022, 48(7): 1746-1760. |
[12] | HU Wen-Jing, LI Dong-Sheng, YI Xin, ZHANG Chun-Mei, ZHANG Yong. Molecular mapping and validation of quantitative trait loci for spike-related traits and plant height in wheat [J]. Acta Agronomica Sinica, 2022, 48(6): 1346-1356. |
[13] | GUO Xing-Yu, LIU Peng-Zhao, WANG Rui, WANG Xiao-Li, LI Jun. Response of winter wheat yield, nitrogen use efficiency and soil nitrogen balance to rainfall types and nitrogen application rate in dryland [J]. Acta Agronomica Sinica, 2022, 48(5): 1262-1272. |
[14] | LEI Xin-Hui, WAN Chen-Xi, TAO Jin-Cai, LENG Jia-Jun, WU Yi-Xin, WANG Jia-Le, WANG Peng-Ke, YANG Qing-Hua, FENG Bai-Li, GAO Jin-Feng. Effects of soaking seeds with MT and EBR on germination and seedling growth in buckwheat under salt stress [J]. Acta Agronomica Sinica, 2022, 48(5): 1210-1221. |
[15] | FU Mei-Yu, XIONG Hong-Chun, ZHOU Chun-Yun, GUO Hui-Jun, XIE Yong-Dun, ZHAO Lin-Shu, GU Jia-Yu, ZHAO Shi-Rong, DING Yu-Ping, XU Yan-Hao, LIU Lu-Xiang. Genetic analysis of wheat dwarf mutant je0098 and molecular mapping of dwarfing gene [J]. Acta Agronomica Sinica, 2022, 48(3): 580-589. |
|