Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2022, Vol. 48 ›› Issue (7): 1832-1842.doi: 10.3724/SP.J.1006.2022.12028

• RESEARCH NOTES • Previous Articles     Next Articles

Physiological characters and gene mapping of a precocious leaf senescence mutant ospls7 in rice (Orzo sativa L.)

HUANG Fu-Deng1(), HUANG Yan2, JIN Ze-Yan2, HE Huan-Huan2, LI Chun-Shou1,*(), CHENG Fang-Min2, PAN Gang2   

  1. 1Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
    2College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, Zhejiang, China
  • Received:2021-04-20 Accepted:2021-10-20 Online:2022-07-12 Published:2021-11-15
  • Contact: LI Chun-Shou E-mail:pahfd@126.com;lichunshou@126.com
  • About author:First author contact:

    ** Contributed equally to this work

  • Supported by:
    National Natural Science Foundation of China(31771688);National Natural Science Foundation of China(31971819);Major Projects of Rice Breeding in the 14th Five Year Plan of Zhejiang Province(2021C02063-1)

Abstract:

Leaf senescence is the final stage of leaf development, however, premature aging of leaves, especially functional leaves, leads to reduction of yield and quality. Thus, it is very important for developing novel crop germplasms with delayed leaf-senescence characteristics through investigating the molecular and physiological mechanism of leaf senescence. In this study, a stable precocious leaf senescence mutant ospls7 was obtained from 60Co γ-radiated upland rice cultivar Monolaya, and its morphology, physiological characteristics of leaf senescence, cytological observation of internodes, genetic analysis and gene mapping were investigated. Under field conditions, leaf senescence was noticed as early as the 3-4-leaf seedling stage, featuring yellowing and browning at the edge of tip and the upper middle parts of old leaves and finally wilting. Due to shorter length of the parenchyma cells, panicle length and all internodes length of ospls7 were significantly shorter compared with wild type plants at the mature stage, resulting in dwarf phenotype in ospls7. Physiological analysis of leaf senescence indicated that compared to the wild type plants, the total chlorophyll contents, net photosynthetic rate, soluble protein content, and catalase (CAT) activity of the second and third leaves from top in ospls7 were significantly declined at the booting stage, which in turn resulting in the accumulation of H2O2 and a steady increase of malondialdehyde (MDA) contents in the mutant leaves. Moreover, due to significant up-regulation of ABA biosynthetic genes (OsNCED3 and OsAAO3) and significant down-regulation of the ABA catabolism genes (OsABA8ox2 and OsABA8ox3), the endogenous ABA levels in the leaves of ospls7 were significantly higher compared with the wild type at the booting stage. Genetic analysis and gene mapping showed that ospls7 was controlled by a single recessive nuclear gene, located in a region of 207 kb between SSR marker RM25040 and the InDel marker ID74-33/34 of chromosome 10. These results would further facilitate the cloning and functional analysis of OsPLS7 gene.

Key words: rice, ospls7, precocious leaf senescence, physiological analysis, gene mapping

Table S1

Primers for qRT-PCR analysis of ABA biosynthetic and metabolic genes"

基因
Gene
基因号
Locus ID
正向引物
Forward primer (5'-3')
反向引物
Reverse primer (5'-3')
OsZEP1 LOC_Os04g37619 GGTGCGATAACGTCGTTGATC GTATGGTCTATAAGTGGTAGC
OsNCED1 LOC_Os02g47510 ACCATGAAGTCCATGAGGCT TCTCGTAGTCTTGGTCTTGG
OsNCED2 LOC_Os12g24800 ATGGAAACGAGGATAGTGGT CTTATTGTTGTGCGAGAAGT
OsNCED3 LOC_Os03g44380 CTCCCAAACCATCCAAACCG TGAGCATATCCTGGCGTCGT
OsNCED4 LOC_Os07g05940 ATCTCCTTCTCCCTCCTCCCA TCGCACCCTGCTTGATCTTGC
OsNCED5 LOC_Os12g42280 TCCGAGCTCCTCGTCGTGAA AGGTGTTTTGGAATGAACCA
OsSDR LOC_Os03g59610 GACCTGACGAGACGATGTCC GCAACCTTGCTTTCCAACC
OsAAO1 LOC_Os07g18154 TTCGCCATTTGTTCGTAA CAGAGGAGGTTGCTCAAG
OsAAO2 LOC_Os07g18158 CCCTTGACGCCAACACTG CCGCTTTCGCCACTTATT
OsAAO3 LOC_Os07g07050 CGCCTGGTAAAGTGTCTA AATTGCTCCTTGAGTGGT
OsABA8ox1 LOC_Os02g47470 AAGCTGGCAAAACCAACATC CCGTGCTAATACGGAATCCA
OsABA8ox2 LOC_Os08g36860 CTACTGCTGATGGTGGCTGA CCCATGGCCTTTGCTTTAT
OsABA8ox3 LOC_Os09g28390 AGTACAGCCCATTCCCTGTG ACGCCTAATCAAACCATTGC

Fig. 1

Phenotypes of ospls7 and its wild-type (WT) plants at different growth stages A: seedling stage; B: booting stage; C: leaves at the booting stage, and F means flag leaf and 2-4 means 2nd to 4th leaf from top, respectively; D: panicle and the internodes at the mature stage, P means panicle, 1-6 means the 1st to 6th internode from top, respectively; E: the length of different internodes at the mature stage in 2020; F-I: longitudinal sections of the 2nd internode from top (F-G) and leaf (H-I) in wild-type plants (F, G) and ospls7 (G, I); Bar: 20 cm in A-E; Bar: 50 μm in F-G; Bar: 20 μm in H-I. ** : P < 0.01."

Table 1

Main agronomic traits of ospls7 and its wild-type (WT) plants"

性状
Trait
2019 2020
野生型WT 突变体ospls7 野生型WT 突变体ospls7
株高 Plant height (cm) 92.27±3.13 74.23±4.65** 89.63±1.67 74.08±2.92**
穗长 Panicle length (cm) 24.87±1.04 19.34±1.15* 23.81±0.95 18.97±1.13*
有效穗数 Effective panicle number 7.75±0.96 5.23±0.45* 9.67±0.58 8.52±0.58*
每穗粒数 Grain number per panicle 176.61±15.83 112.63±11.76** 176.68±9.07 100.24±10.51**
结实率 Seed-setting rate (%) 82.81±5.83 69.84±3.97** 81.76±5.76 72.14±6.93**
千粒重 1000-grain weight (g) 19.57±0.94 15.98±0.59** 18.94±0.53 15.88±0.71**
单株产量 Yield per plant (g) 21.91±2.13 7.09±1.04** 27.38±3.78 8.84±1.37**

Fig. 2

Photosynthetic characteristics of leaves in the ospls7 and its wild-type (WT) plants at the booting stage A-D: Chl a (A), Chl b (B), the total Chl contents (C), and Chl a/b ratio (D) of leaves in ospls7 and wild-type plants; E-F: net photosynthesis rate (E) and Fv/Fm ratio (F) of leaves in ospls7 and wild-type plants. 1: flag leaves; 2: 2nd leaves from top; 3: 3rd leaves from top. *: P < 0.05; **: P < 0.01."

Fig. 3

O2?and H2O2 levels, and CAT and SOD activities in the leaves of ospls7 and its wild-type (WT) plants at the booting stage ?and H2O2 levels, and CAT and SOD activities in the leaves of ospls7 and its wild-type (WT) plants at the booting stage 1: flag leaves; 2: 2nd leaves from top; 3: 3rd leaves from top. *: P < 0.05; **: P < 0.01."

Fig. 4

MDA and soluble protein contents in the leaves of ospls7 and its wild-type (WT) plants at the booting stage 1: flag leaves; 2: 2nd leaves from top; 3: 3rd leaves from top. *: P < 0.05; **: P < 0.01."

Fig. 5

Phenotypes of ospls7 and its wild type (WT) seedlings in response to exogenous ABA A: the phenotypes of ospls7 and its wild-type (WT) plants under different exogenous ABA levels for seven days; B-C: shoot and root length of ospls7 and its WT plants under different ABA levels for seven days. Bar: 20 cm. *: P < 0.05."

Fig. 6

Endogenous ABA levels and qRT-PCR analysis of ABA biosynthetic and metabolic genes in leaves of ospls7 and its wild-type (WT) plants at the booting stage 1: flag leaves; 2: 2nd leaves from top; 3: 3rd leaves from top. *: P < 0.05; ** : P < 0.01."

Table S2

Molecular markers for OsPLS7 gene mapping"

标记
Marker
正向引物
Forward primer (5'-3')
反向引物
Reverse primer (5'-3')
RM25000 CATTGAAGCAGGAGAAGGAGTTGC GATGCATCTGCTCCATCAATTCG
RM25011 AAGCTGCTGCTTCCACTTCACTTCG GTGGCCTCCTCGAGATCGAACG
RM25020 AATCCCTCTCGGCCCATCTCC CGAAGACGACGGCGATGACG
RM25030 GTGATGACGTGGACAAATCTCG GGGTAATCACTACTCACAGAGTTTGG
RM25034 TGTCATGTGGCAATATGAGAGC GACCTTTACCAAGCACATAGTCC
RM25038 CTTTAGAGGTTGCCGAACTGG GAGCGTTTGTAGGAAGTCTTATGG
RM25040 GGCTGGACTTCACTTGACTTTGG CCACACGACCATCTAAGTGAACAGG
ID74-31/32 TCATCTGGTGTTTTGTACCC GGAATGCCTTGGTTAGGTAT
ID74-33/34 GAAAATTGGAGGAGGAGGTA ACCCAAGGAGATAGCAAGTC
ID74-35/36 AGGTCTACCCAAAACAGGAG GTAAGGCCTGACTGGAAGTT

Table 2

Gene names and their functional annotations in the target interval"

基因号
Locus ID
功能注释
Function annotation
LOC_Os10g07150 转座子蛋白 Transposon protein
LOC_Os10g07160 反转座子 Retrotransposon
LOC_Os10g07200 Hsp20/α晶体家族蛋白 Hsp20/alpha crystallin family protein
LOC_Os10g07210 Hsp20/α晶体家族蛋白 Hsp20/alpha crystallin family protein, putative, expressed
LOC_Os10g07229 脱氢酶 Dehydrogenase
LOC_Os10g07248 转座子蛋白 Transposon protein
LOC_Os10g07270 泛素羧基末端水解酶5 Ubiquitin carboxyl-terminal hydrolase 5
LOC_Os10g07280 表达蛋白 Expressed protein
LOC_Os10g07290 糖苷水解酶家族17 Glycosyl hydrolases family 17
LOC_Os10g07320 假定蛋白 Hypothetical protein
LOC_Os10g07340 表达蛋白 Expressed protein
LOC_Os10g07370 表达蛋白 Expressed protein
基因号
Locus ID
功能注释
Function annotation
LOC_Os10g07380 表达蛋白 Expressed protein
LOC_Os10g07390 假定蛋白 Hypothetical protein
LOC_Os10g07400 类RPP13抗病蛋白1 Disease resistance RPP13-like protein 1
LOC_Os10g07420 表达蛋白 Expressed protein
LOC_Os10g07430 表达蛋白 Expressed protein
LOC_Os10g07440 表达蛋白 Expressed protein
LOC_Os10g07450 表达蛋白 Expressed protein

Fig. 7

Molecular mapping of OsPLS7 gene on chromosome 10"

Fig. 8

qRT-PCR analysis of genes expressed in the leaves in the target interval"

Fig. S1

Heatmap of gene expression in the target interval"

[1] Lim P O, Kim H J, Nam H G. Leaf senescence. Annu Rev Plant Biol, 2007, 58: 115-136.
doi: 10.1146/annurev.arplant.57.032905.105316
[2] Woo H R, Kim H J, Lim P O, Nam H G. Leaf senescence: systems and dynamics aspects. Annu Rev Plant Biol, 2019, 70: 347-376.
doi: 10.1146/annurev-arplant-050718-095859
[3] 田广丽, 孔亚丽, 张瑞卿, 周新国, 郭世伟. 不同氮水平下功能叶片数量和位置对水稻产量性状的影响. 植物营养与肥料学报, 2019, 25: 721-728.
Tian G L, Kong Y L, Zhang R Q, Zhou X G, Guo S W. Effects of the number and position of functional leaves on yield traits of rice under different nitrogen levels. Plant Nutr Fert Sci, 2019, 25: 721-728. (in Chinese with English abstract)
[4] Thomas H, Smart C M. Crops that stay green. Ann Appl Biol, 1993, 123: 193-219.
doi: 10.1111/j.1744-7348.1993.tb04086.x
[5] 陆定志, 潘裕才, 马跃芳, 林宗达, 鮑为群, 金逸民, 游树鹏. 杂交水稻抽穗结实期间叶片衰老的生理生化研究. 中国农业科学, 1988, 21(3): 21-26.
Lu D Z, Pan Y C, Ma Y F, Lin Z D, Bao W Q, Jin Y M, You S P. The physiological and biochemical research of leaf senescence during heading stage in hybrid rice. Sci Agric Sin, 1988, 21(3): 21-26. (in Chinese with English abstract)
[6] 刘道宏. 植物叶片的衰老. 植物生理学通讯, 1983, (2): 14-19.
Liu D H. Plant leaf senescence. Plant Physiol Commun, 1983, (2): 14-19. (in Chinese)
[7] Leng Y J, Ye G Y, Zeng D L. Genetic dissection of leaf senescence in rice. Int J Mol Sci, 2017, 18: 2686.
doi: 10.3390/ijms18122686
[8] Chen K, Guo J L, Ray A B, Song C P, Zhu J K, Zhao Y. Abscisic acid dynamics, signaling, and functions in plants. J Integr Plant Biol, 2020, 62: 25-54.
doi: 10.1111/jipb.12899
[9] Asad M A U, Zakari S A, Zhao Q, Zhou L J, Ye Y, Cheng F M. Abiotic stresses intervene with ABA signaling to induce destructive metabolic pathways leading to death: premature leaf senescence in plants. Int J Mol Sci, 2019, 20: 256.
doi: 10.3390/ijms20020256
[10] Mao C J, Lu S C, Lyu B, Zhang B, Shen J B, He J M, Luo L Q, Xi D D, Chen X, Ming F. A rice NAC transcription factor promotes leaf senescence via ABA biosynthesis. Plant Physiol, 2017, 174: 1747-1763.
doi: 10.1104/pp.17.00542
[11] Sperotto R A, Ricachenevsky F K, Duarte G L, Boff T, Lopes K L, Sperb E R, Grusak M A, Fett J P. Identification of up-regulated genes in flag leaves during rice grain filling and characterization of OsNAC5, a new ABA-dependent transcription factor. Planta, 2009, 230: 985-1002.
doi: 10.1007/s00425-009-1000-9 pmid: 19697058
[12] Liang C Z, Wang Y Q, Zhu Y N, Tang J Y, Hu B, Liu L C, Ou S J, Wu H K, Sun X H, Chu J F, Chu C C. OsNAP connects abscisic acid and leaf senescence by fine-tuning abscisic acid biosynthesis and directly targeting senescence-associated genes in rice. Proc Natl Acad Sci USA, 2014, 111: 10013-10018.
doi: 10.1073/pnas.1321568111
[13] Kang K, Shim Y, Gi E, An G, Paek N C. Mutation of ONAC096 enhances grain yield by increasing panicle number and delaying leaf senescence during grain filling in rice. Int J Mol Sci, 2019, 20: 5241.
doi: 10.3390/ijms20205241
[14] Sakuraba Y, Kim D, Han S H, Kim S H, Piao W L, Yanagisawa S, An G, Paek N C. Multilayered regulation of membrane-bound ONAC054 is essential for abscisic acid-induced leaf senescence in rice. Plant Cell, 2020, 32: 630-649.
doi: 10.1105/tpc.19.00569
[15] Kim T, Kang K, Kim S H, An G, Paek N C. OsWRKY5 promotes rice leaf senescence via senescence-associated NAC and abscisic acid biosynthesis pathway. Int J Mol Sci, 2019, 20: 4437.
doi: 10.3390/ijms20184437
[16] Piao W, Kim S H, Lee B D, An G, Sakuraba Y, Paek N C. Rice transcription factor OsMYB102 delays leaf senescence by down-regulating abscisic acid accumulation and signaling. J Exp Bot, 2019, 70: 2699-2715.
doi: 10.1093/jxb/erz095
[17] Zhao Y, Chan Z L, Gao J H, Xing L, Cao M J, Yu C M, Hu Y L, You J, Shi H T, Zhu Y F, Gong Y H, Mu Z X, Wang H Q, Deng X, Wang P C, Bressan R A, Zhu J K. ABA receptor PYL9 promotes drought resistance and leaf senescence. Proc Natl Acad Sci USA, 2016, 113: 1949-1954.
doi: 10.1073/pnas.1522840113
[18] Huang Y, Guo Y M, Liu Y T, Zhang F, Wang Z K, Wang H Y, Wang F, Li D P, Mao D D, Luan S, Liang M Z, Chen L B. 9-cis-epoxycarotenoid dioxygenase 3 regulates plant growth and enhances multi-abiotic stress tolerance in rice. Front Plant Sci, 2018, 9: 162.
doi: 10.3389/fpls.2018.00162 pmid: 29559982
[19] Huang Y, Jiao Y, Xie N K, Guo Y M, Zhang F, Xiang Z P, Wang R, Wang F, Gao Q M, Tian L F, Li D P, Chen L B, Liang M Z. OsNCED5, a 9-cis-epoxycarotenoid dioxygenase gene, regulates salt and water stress tolerance and leaf senescence in rice. Plant Sci, 2019, 287: 110188.
doi: 10.1016/j.plantsci.2019.110188
[20] He Y, Zhang Z H, Li L J, Tang S Q, Wu J L.Genetic and physio-biochemical characterization of a novel premature senescence leaf mutant in rice (Oryza sativa L.). Int J Mol Sci, 2018, 19: 2339.
doi: 10.3390/ijms19082339
[21] Akhter D, Qin R, Nath U K, Alamin M, Jin X L, Shi C H. The brown midrib leaf (bml) mutation in rice (Oryza sativa L.) causes premature leaf senescence and the induction of defense responses. Genes (Basel), 2018, 9: 203.
doi: 10.3390/genes9040203
[22] Wang S H, Lim J H, Kim S S, Cho S H, Yoo S C, Koh H J, Sakuraba Y, Paek N C. Mutation of SPOTTED LEAF3 (SPL3) impairs abscisic acid-responsive signaling and delays leaf senescence in rice. J Exp Bot, 2015, 66: 7045-7059.
doi: 10.1093/jxb/erv401
[23] 黄妍, 贺焕焕, 谢之耀, 李丹莹, 赵超越, 吴鑫, 黄福灯, 程方民, 潘刚. 水稻矮化宽叶突变体osdwl1的生理特性和基因定位. 作物学报, 2021, 47: 50-60.
doi: 10.3724/SP.J.1006.2021.92069
Huang Y, He H H, Xie Z Y, Li D Y, Zhao C Y, Wu X, Huang F D, Cheng F M, Pan G. Physiological characters and gene mapping of a dwarf and wide-leaf mutant osdwl1 in rice(Oryza sativa L.). Acta Agron Sin 2021, 47: 50-60 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2021.92069
[24] Chen W, Gong L, Guo Z L, Wang W S, Zhang H Y, Liu X Q, Yu S B, Xiong L Z, Luo J. A novel integrated method for large-scale detection, identification, and quantification of widely targeted metabolites: application in the study of rice metabolomics. Mol Plant, 2013, 6: 1769-1780.
doi: 10.1093/mp/sst080 pmid: 23702596
[25] 曹剑波, 程珂, 袁猛. 水稻组织半薄切片法. In: 袁猛, 都浩, 李香花编. Rice Protocol eBook. 袁猛, 都浩, 李香花编. Bio-101, 2018. https://bio-protocol.org/bio101/e1010142 .
Cao J B, Cheng K, Yuan M. Observation of rice tissue with semi-thin section. In: Yuan M, Du H, Li C H, eds. Rice Protocol eBook. Bio-101, 2018. https://bio-protocol.org/bio101/e1010142 . (in Chinese)
[26] Murashige T, Skoog F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant, 1962, 15: 473-497.
doi: 10.1111/j.1399-3054.1962.tb08052.x
[27] Nakatsuka T, Nishihara M, Mishiba K, Yamamura S. Temporal expression of flavonoid biosynthesis-related genes regulates flower pigmentation in gentian plants. Plant Sci, 2005, 168: 1309-1318.
doi: 10.1016/j.plantsci.2005.01.009
[28] Rogers S O, Bendich A J. Extraction of DNA from milligram amounts of fresh, herbarium and mummified plant tissues. Plant Mol Biol, 1985, 5: 69-76.
doi: 10.1007/BF00020088 pmid: 24306565
[29] Jajic I, Sarna T, Strzalka K. Senescence, stress, and reactive oxygen species. Plants (Basel), 2015, 4: 393-411.
doi: 10.3390/plants4030393
[30] Blokhina O, Virolainen E, Fagerstedt K V. Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann Bot, 2003, 91: 179-194.
doi: 10.1093/aob/mcf118
[31] 张涛, 孙玉莹, 郑建敏, 程治军, 蒋开锋, 杨莉, 曹应江, 游书梅, 万建民, 郑家奎. 水稻早衰叶突变体PLS2的遗传分析与基因定位. 作物学报, 2014, 40: 2070-2080.
doi: 10.3724/SP.J.1006.2014.02070
Zhang T, Sun Y Y, Zheng J M, Cheng Z J, Jiang K F, Yang L, Cao Y J, You S M, Wan J M, Zheng J K. Genetic analysis and fine mapping of a premature leaf senescence mutant in rice (Orzya sativa L.). Acta Agron Sin, 2014, 40: 2070-2080. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2014.02070
[32] Rogers H, Munne-Bosch S. Production and scavenging of reactive oxygen species and redox signaling during leaf and flower senescence: similar but different. Plant Physiol, 2016, 17: 1560-1568.
[33] Breeze E, Harrison E, Mchattie S, Hughes L, Hickman R, Hill C, Kiddle S, Kim Y S, Penfold C A, Jenkins D, Zhang C, Morris K, Jenner C, Jackson S, Thomas B, Tabrett A, Legaie R, Moore J D, Wild D L, Ott S, Rand D, Beynon J, Denby K, Mead A, Buchanan-Wollaston V. High-resolution temporal profiling of transcripts during Arabidopsis leaf senescence reveals a distinct chronology of processes and regulation. Plant Cell, 2011, 23: 873-894.
doi: 10.1105/tpc.111.083345
[34] Qi Y, Wang H, Zou Y, Liu C, Wang Y, Zhang W. Overexpression of mitochondrial heat shock protein 70 suppresses programmed cell death in rice. FEBS Lett, 2011, 585: 231-239.
doi: 10.1016/j.febslet.2010.11.051
[35] Kwon J, Mochida K, Wang K, Sekiguchi S, Sankai T, Aoki S, Ogura A, Yoshikawa Y, Wada K. Ubiquitin C-terminal hydrolase l-1 is essential for the early apoptotic wave of germinal cells and for sperm quality control during spermatogenesis. Biol Reprod, 2005, 73: 29-35.
doi: 10.1095/biolreprod.104.037077
[36] Imin N, Kerim T, Weinman J J, Rolfe B G. Low temperature treatment at the young microspore stage induces protein changes in rice anthers. Mol Cell Proteom, 2006, 5: 274-292.
doi: 10.1074/mcp.M500242-MCP200
[1] ZHU Chun-Quan, WEI Qian-Qian, XIANG Xing-Jia, HU Wen-Jun, XU Qing-Shan, CAO Xiao-Chuang, ZHU Lian-Feng, KONG Ya-Li, LIU Jia, JIN Qian-Yu, ZHANG Jun-Hua. Regulation effects of seedling raising by melatonin and methyl jasmonate substrate on low temperature stress tolerance in rice  [J]. Acta Agronomica Sinica, 2022, 48(8): 2016-2027.
[2] LIU Kun, HUANG Jian, ZHOU Shen-Qi, ZHANG Wei-Yang, ZHANG Hao, GU Jun-Fei, LIU Li-Jun, YANG Jian-Chang. Effects of panicle nitrogen fertilizer rates on grain yield in super rice varieties with different panicle sizes and their mechanism [J]. Acta Agronomica Sinica, 2022, 48(8): 2028-2040.
[3] WEI Gang, CHEN Dan-Yang, REN De-Yong, YANG Hong-Xia, WU Jing-Wen, FENG Ping, WANG Nan. Identification and gene mapping of slender stem mutant sr10 in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(8): 2125-2133.
[4] ZHOU Chi-Yan, LI Guo-Hui, XU Ke, ZHANG Chen-Hui, YANG Zi-Jun, ZHANG Fen-Fang, HUO Zhong-Yang, DAI Qi-Gen, ZHANG Hong-Cheng. Characteristics of vascular bundle of peduncle and flag leaf and assimilates translocation in leaves and stems of different types of rice varieties [J]. Acta Agronomica Sinica, 2022, 48(8): 2053-2065.
[5] DU Qi-Di, GUO Hui-Jun, XIONG Hong-Chun, XIE Yong-Dun, ZHAO Lin-Shu, GU Jia-Yu, ZHAO Shi-Rong, DING Yu-Ping, SONG Xi-Yun, LIU Lu-Xiang. Gene mapping of apical spikelet degeneration mutant asd1 in wheat [J]. Acta Agronomica Sinica, 2022, 48(8): 1905-1913.
[6] CHEN Chi, CHEN Dai-Bo, SUN Zhi-Hao, PENG Ze-Qun, Adil Abbas, HE Deng-Mei, ZHANG Ying-Xin, CHENG Hai-Tao, YU Ping, MA Zhao-Hui, SONG Jian, CAO Li-Yong, CHENG Shi-Hua, SUN Lian-Ping, ZHAN Xiao-Deng, LYU Wen-Yan. Characterization and genetic mapping of a classic-abortive-type recessive genic-male-sterile mutant ap90 in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(7): 1569-1582.
[7] TAO Yu, YAO Yu, WANG Kun-Ting, XING Zhi-Peng, ZHAI Hai-Tao, FENG Yuan, LIU Qiu-Yuan, HU Ya-Jie, GUO Bao-Wei, WEI Hai-Yan, ZHANG Hong-Cheng. Combined effects of panicle nitrogen fertilizer amount and shading during grain filling period on grain quality of conventional japonica rice [J]. Acta Agronomica Sinica, 2022, 48(7): 1730-1745.
[8] YANG Fei, ZHANG Zheng-Feng, NAN Bo, XIAO Ben-Ze. Genome-wide association analysis and candidate gene selection of yield related traits in rice [J]. Acta Agronomica Sinica, 2022, 48(7): 1813-1821.
[9] YUAN Shen, PENG Shao-Bing. Comparison of grain heavy metal concentration between main and ratoon seasons of ratoon rice [J]. Acta Agronomica Sinica, 2022, 48(7): 1822-1831.
[10] TIAN Tian, CHEN Li-Juan, HE Hua-Qin. Identification of rice blast resistance candidate genes based on integrating Meta-QTL and RNA-seq analysis [J]. Acta Agronomica Sinica, 2022, 48(6): 1372-1388.
[11] ZHENG Chong-Ke, ZHOU Guan-Hua, NIU Shu-Lin, HE Ya-Nan, SUN wei, XIE Xian-Zhi. Phenotypic characterization and gene mapping of an early senescence leaf H5(esl-H5) mutant in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1389-1400.
[12] ZHOU Wen-Qi, QIANG Xiao-Xia, WANG Sen, JIANG Jing-Wen, WEI Wan-Rong. Mechanism of drought and salt tolerance of OsLPL2/PIR gene in rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1401-1415.
[13] ZHENG Xiao-Long, ZHOU Jing-Qing, BAI Yang, SHAO Ya-Fang, ZHANG Lin-Ping, HU Pei-Song, WEI Xiang-Jin. Difference and molecular mechanism of soluble sugar metabolism and quality of different rice panicle in japonica rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1425-1436.
[14] YAN Jia-Qian, GU Yi-Biao, XUE Zhang-Yi, ZHOU Tian-Yang, GE Qian-Qian, ZHANG Hao, LIU Li-Jun, WANG Zhi-Qin, GU Jun-Fei, YANG Jian-Chang, ZHOU Zhen-Ling, XU Da-Yong. Different responses of rice cultivars to salt stress and the underlying mechanisms [J]. Acta Agronomica Sinica, 2022, 48(6): 1463-1475.
[15] YANG Jian-Chang, LI Chao-Qing, JIANG Yi. Contents and compositions of amino acids in rice grains and their regulation: a review [J]. Acta Agronomica Sinica, 2022, 48(5): 1037-1050.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .