Acta Agronomica Sinica ›› 2022, Vol. 48 ›› Issue (7): 1832-1842.doi: 10.3724/SP.J.1006.2022.12028
• RESEARCH NOTES • Previous Articles Next Articles
HUANG Fu-Deng1(), HUANG Yan2, JIN Ze-Yan2, HE Huan-Huan2, LI Chun-Shou1,*(
), CHENG Fang-Min2, PAN Gang2
[1] |
Lim P O, Kim H J, Nam H G. Leaf senescence. Annu Rev Plant Biol, 2007, 58: 115-136.
doi: 10.1146/annurev.arplant.57.032905.105316 |
[2] |
Woo H R, Kim H J, Lim P O, Nam H G. Leaf senescence: systems and dynamics aspects. Annu Rev Plant Biol, 2019, 70: 347-376.
doi: 10.1146/annurev-arplant-050718-095859 |
[3] | 田广丽, 孔亚丽, 张瑞卿, 周新国, 郭世伟. 不同氮水平下功能叶片数量和位置对水稻产量性状的影响. 植物营养与肥料学报, 2019, 25: 721-728. |
Tian G L, Kong Y L, Zhang R Q, Zhou X G, Guo S W. Effects of the number and position of functional leaves on yield traits of rice under different nitrogen levels. Plant Nutr Fert Sci, 2019, 25: 721-728. (in Chinese with English abstract) | |
[4] |
Thomas H, Smart C M. Crops that stay green. Ann Appl Biol, 1993, 123: 193-219.
doi: 10.1111/j.1744-7348.1993.tb04086.x |
[5] | 陆定志, 潘裕才, 马跃芳, 林宗达, 鮑为群, 金逸民, 游树鹏. 杂交水稻抽穗结实期间叶片衰老的生理生化研究. 中国农业科学, 1988, 21(3): 21-26. |
Lu D Z, Pan Y C, Ma Y F, Lin Z D, Bao W Q, Jin Y M, You S P. The physiological and biochemical research of leaf senescence during heading stage in hybrid rice. Sci Agric Sin, 1988, 21(3): 21-26. (in Chinese with English abstract) | |
[6] | 刘道宏. 植物叶片的衰老. 植物生理学通讯, 1983, (2): 14-19. |
Liu D H. Plant leaf senescence. Plant Physiol Commun, 1983, (2): 14-19. (in Chinese) | |
[7] |
Leng Y J, Ye G Y, Zeng D L. Genetic dissection of leaf senescence in rice. Int J Mol Sci, 2017, 18: 2686.
doi: 10.3390/ijms18122686 |
[8] |
Chen K, Guo J L, Ray A B, Song C P, Zhu J K, Zhao Y. Abscisic acid dynamics, signaling, and functions in plants. J Integr Plant Biol, 2020, 62: 25-54.
doi: 10.1111/jipb.12899 |
[9] |
Asad M A U, Zakari S A, Zhao Q, Zhou L J, Ye Y, Cheng F M. Abiotic stresses intervene with ABA signaling to induce destructive metabolic pathways leading to death: premature leaf senescence in plants. Int J Mol Sci, 2019, 20: 256.
doi: 10.3390/ijms20020256 |
[10] |
Mao C J, Lu S C, Lyu B, Zhang B, Shen J B, He J M, Luo L Q, Xi D D, Chen X, Ming F. A rice NAC transcription factor promotes leaf senescence via ABA biosynthesis. Plant Physiol, 2017, 174: 1747-1763.
doi: 10.1104/pp.17.00542 |
[11] |
Sperotto R A, Ricachenevsky F K, Duarte G L, Boff T, Lopes K L, Sperb E R, Grusak M A, Fett J P. Identification of up-regulated genes in flag leaves during rice grain filling and characterization of OsNAC5, a new ABA-dependent transcription factor. Planta, 2009, 230: 985-1002.
doi: 10.1007/s00425-009-1000-9 pmid: 19697058 |
[12] |
Liang C Z, Wang Y Q, Zhu Y N, Tang J Y, Hu B, Liu L C, Ou S J, Wu H K, Sun X H, Chu J F, Chu C C. OsNAP connects abscisic acid and leaf senescence by fine-tuning abscisic acid biosynthesis and directly targeting senescence-associated genes in rice. Proc Natl Acad Sci USA, 2014, 111: 10013-10018.
doi: 10.1073/pnas.1321568111 |
[13] |
Kang K, Shim Y, Gi E, An G, Paek N C. Mutation of ONAC096 enhances grain yield by increasing panicle number and delaying leaf senescence during grain filling in rice. Int J Mol Sci, 2019, 20: 5241.
doi: 10.3390/ijms20205241 |
[14] |
Sakuraba Y, Kim D, Han S H, Kim S H, Piao W L, Yanagisawa S, An G, Paek N C. Multilayered regulation of membrane-bound ONAC054 is essential for abscisic acid-induced leaf senescence in rice. Plant Cell, 2020, 32: 630-649.
doi: 10.1105/tpc.19.00569 |
[15] |
Kim T, Kang K, Kim S H, An G, Paek N C. OsWRKY5 promotes rice leaf senescence via senescence-associated NAC and abscisic acid biosynthesis pathway. Int J Mol Sci, 2019, 20: 4437.
doi: 10.3390/ijms20184437 |
[16] |
Piao W, Kim S H, Lee B D, An G, Sakuraba Y, Paek N C. Rice transcription factor OsMYB102 delays leaf senescence by down-regulating abscisic acid accumulation and signaling. J Exp Bot, 2019, 70: 2699-2715.
doi: 10.1093/jxb/erz095 |
[17] |
Zhao Y, Chan Z L, Gao J H, Xing L, Cao M J, Yu C M, Hu Y L, You J, Shi H T, Zhu Y F, Gong Y H, Mu Z X, Wang H Q, Deng X, Wang P C, Bressan R A, Zhu J K. ABA receptor PYL9 promotes drought resistance and leaf senescence. Proc Natl Acad Sci USA, 2016, 113: 1949-1954.
doi: 10.1073/pnas.1522840113 |
[18] |
Huang Y, Guo Y M, Liu Y T, Zhang F, Wang Z K, Wang H Y, Wang F, Li D P, Mao D D, Luan S, Liang M Z, Chen L B. 9-cis-epoxycarotenoid dioxygenase 3 regulates plant growth and enhances multi-abiotic stress tolerance in rice. Front Plant Sci, 2018, 9: 162.
doi: 10.3389/fpls.2018.00162 pmid: 29559982 |
[19] |
Huang Y, Jiao Y, Xie N K, Guo Y M, Zhang F, Xiang Z P, Wang R, Wang F, Gao Q M, Tian L F, Li D P, Chen L B, Liang M Z. OsNCED5, a 9-cis-epoxycarotenoid dioxygenase gene, regulates salt and water stress tolerance and leaf senescence in rice. Plant Sci, 2019, 287: 110188.
doi: 10.1016/j.plantsci.2019.110188 |
[20] |
He Y, Zhang Z H, Li L J, Tang S Q, Wu J L.Genetic and physio-biochemical characterization of a novel premature senescence leaf mutant in rice (Oryza sativa L.). Int J Mol Sci, 2018, 19: 2339.
doi: 10.3390/ijms19082339 |
[21] |
Akhter D, Qin R, Nath U K, Alamin M, Jin X L, Shi C H. The brown midrib leaf (bml) mutation in rice (Oryza sativa L.) causes premature leaf senescence and the induction of defense responses. Genes (Basel), 2018, 9: 203.
doi: 10.3390/genes9040203 |
[22] |
Wang S H, Lim J H, Kim S S, Cho S H, Yoo S C, Koh H J, Sakuraba Y, Paek N C. Mutation of SPOTTED LEAF3 (SPL3) impairs abscisic acid-responsive signaling and delays leaf senescence in rice. J Exp Bot, 2015, 66: 7045-7059.
doi: 10.1093/jxb/erv401 |
[23] |
黄妍, 贺焕焕, 谢之耀, 李丹莹, 赵超越, 吴鑫, 黄福灯, 程方民, 潘刚. 水稻矮化宽叶突变体osdwl1的生理特性和基因定位. 作物学报, 2021, 47: 50-60.
doi: 10.3724/SP.J.1006.2021.92069 |
Huang Y, He H H, Xie Z Y, Li D Y, Zhao C Y, Wu X, Huang F D, Cheng F M, Pan G. Physiological characters and gene mapping of a dwarf and wide-leaf mutant osdwl1 in rice(Oryza sativa L.). Acta Agron Sin 2021, 47: 50-60 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2021.92069 |
|
[24] |
Chen W, Gong L, Guo Z L, Wang W S, Zhang H Y, Liu X Q, Yu S B, Xiong L Z, Luo J. A novel integrated method for large-scale detection, identification, and quantification of widely targeted metabolites: application in the study of rice metabolomics. Mol Plant, 2013, 6: 1769-1780.
doi: 10.1093/mp/sst080 pmid: 23702596 |
[25] | 曹剑波, 程珂, 袁猛. 水稻组织半薄切片法. In: 袁猛, 都浩, 李香花编. Rice Protocol eBook. 袁猛, 都浩, 李香花编. Bio-101, 2018. https://bio-protocol.org/bio101/e1010142 . |
Cao J B, Cheng K, Yuan M. Observation of rice tissue with semi-thin section. In: Yuan M, Du H, Li C H, eds. Rice Protocol eBook. Bio-101, 2018. https://bio-protocol.org/bio101/e1010142 . (in Chinese) | |
[26] |
Murashige T, Skoog F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant, 1962, 15: 473-497.
doi: 10.1111/j.1399-3054.1962.tb08052.x |
[27] |
Nakatsuka T, Nishihara M, Mishiba K, Yamamura S. Temporal expression of flavonoid biosynthesis-related genes regulates flower pigmentation in gentian plants. Plant Sci, 2005, 168: 1309-1318.
doi: 10.1016/j.plantsci.2005.01.009 |
[28] |
Rogers S O, Bendich A J. Extraction of DNA from milligram amounts of fresh, herbarium and mummified plant tissues. Plant Mol Biol, 1985, 5: 69-76.
doi: 10.1007/BF00020088 pmid: 24306565 |
[29] |
Jajic I, Sarna T, Strzalka K. Senescence, stress, and reactive oxygen species. Plants (Basel), 2015, 4: 393-411.
doi: 10.3390/plants4030393 |
[30] |
Blokhina O, Virolainen E, Fagerstedt K V. Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann Bot, 2003, 91: 179-194.
doi: 10.1093/aob/mcf118 |
[31] |
张涛, 孙玉莹, 郑建敏, 程治军, 蒋开锋, 杨莉, 曹应江, 游书梅, 万建民, 郑家奎. 水稻早衰叶突变体PLS2的遗传分析与基因定位. 作物学报, 2014, 40: 2070-2080.
doi: 10.3724/SP.J.1006.2014.02070 |
Zhang T, Sun Y Y, Zheng J M, Cheng Z J, Jiang K F, Yang L, Cao Y J, You S M, Wan J M, Zheng J K. Genetic analysis and fine mapping of a premature leaf senescence mutant in rice (Orzya sativa L.). Acta Agron Sin, 2014, 40: 2070-2080. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2014.02070 |
|
[32] | Rogers H, Munne-Bosch S. Production and scavenging of reactive oxygen species and redox signaling during leaf and flower senescence: similar but different. Plant Physiol, 2016, 17: 1560-1568. |
[33] |
Breeze E, Harrison E, Mchattie S, Hughes L, Hickman R, Hill C, Kiddle S, Kim Y S, Penfold C A, Jenkins D, Zhang C, Morris K, Jenner C, Jackson S, Thomas B, Tabrett A, Legaie R, Moore J D, Wild D L, Ott S, Rand D, Beynon J, Denby K, Mead A, Buchanan-Wollaston V. High-resolution temporal profiling of transcripts during Arabidopsis leaf senescence reveals a distinct chronology of processes and regulation. Plant Cell, 2011, 23: 873-894.
doi: 10.1105/tpc.111.083345 |
[34] |
Qi Y, Wang H, Zou Y, Liu C, Wang Y, Zhang W. Overexpression of mitochondrial heat shock protein 70 suppresses programmed cell death in rice. FEBS Lett, 2011, 585: 231-239.
doi: 10.1016/j.febslet.2010.11.051 |
[35] |
Kwon J, Mochida K, Wang K, Sekiguchi S, Sankai T, Aoki S, Ogura A, Yoshikawa Y, Wada K. Ubiquitin C-terminal hydrolase l-1 is essential for the early apoptotic wave of germinal cells and for sperm quality control during spermatogenesis. Biol Reprod, 2005, 73: 29-35.
doi: 10.1095/biolreprod.104.037077 |
[36] |
Imin N, Kerim T, Weinman J J, Rolfe B G. Low temperature treatment at the young microspore stage induces protein changes in rice anthers. Mol Cell Proteom, 2006, 5: 274-292.
doi: 10.1074/mcp.M500242-MCP200 |
[1] | ZHU Chun-Quan, WEI Qian-Qian, XIANG Xing-Jia, HU Wen-Jun, XU Qing-Shan, CAO Xiao-Chuang, ZHU Lian-Feng, KONG Ya-Li, LIU Jia, JIN Qian-Yu, ZHANG Jun-Hua. Regulation effects of seedling raising by melatonin and methyl jasmonate substrate on low temperature stress tolerance in rice [J]. Acta Agronomica Sinica, 2022, 48(8): 2016-2027. |
[2] | LIU Kun, HUANG Jian, ZHOU Shen-Qi, ZHANG Wei-Yang, ZHANG Hao, GU Jun-Fei, LIU Li-Jun, YANG Jian-Chang. Effects of panicle nitrogen fertilizer rates on grain yield in super rice varieties with different panicle sizes and their mechanism [J]. Acta Agronomica Sinica, 2022, 48(8): 2028-2040. |
[3] | WEI Gang, CHEN Dan-Yang, REN De-Yong, YANG Hong-Xia, WU Jing-Wen, FENG Ping, WANG Nan. Identification and gene mapping of slender stem mutant sr10 in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(8): 2125-2133. |
[4] | ZHOU Chi-Yan, LI Guo-Hui, XU Ke, ZHANG Chen-Hui, YANG Zi-Jun, ZHANG Fen-Fang, HUO Zhong-Yang, DAI Qi-Gen, ZHANG Hong-Cheng. Characteristics of vascular bundle of peduncle and flag leaf and assimilates translocation in leaves and stems of different types of rice varieties [J]. Acta Agronomica Sinica, 2022, 48(8): 2053-2065. |
[5] | DU Qi-Di, GUO Hui-Jun, XIONG Hong-Chun, XIE Yong-Dun, ZHAO Lin-Shu, GU Jia-Yu, ZHAO Shi-Rong, DING Yu-Ping, SONG Xi-Yun, LIU Lu-Xiang. Gene mapping of apical spikelet degeneration mutant asd1 in wheat [J]. Acta Agronomica Sinica, 2022, 48(8): 1905-1913. |
[6] | CHEN Chi, CHEN Dai-Bo, SUN Zhi-Hao, PENG Ze-Qun, Adil Abbas, HE Deng-Mei, ZHANG Ying-Xin, CHENG Hai-Tao, YU Ping, MA Zhao-Hui, SONG Jian, CAO Li-Yong, CHENG Shi-Hua, SUN Lian-Ping, ZHAN Xiao-Deng, LYU Wen-Yan. Characterization and genetic mapping of a classic-abortive-type recessive genic-male-sterile mutant ap90 in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(7): 1569-1582. |
[7] | TAO Yu, YAO Yu, WANG Kun-Ting, XING Zhi-Peng, ZHAI Hai-Tao, FENG Yuan, LIU Qiu-Yuan, HU Ya-Jie, GUO Bao-Wei, WEI Hai-Yan, ZHANG Hong-Cheng. Combined effects of panicle nitrogen fertilizer amount and shading during grain filling period on grain quality of conventional japonica rice [J]. Acta Agronomica Sinica, 2022, 48(7): 1730-1745. |
[8] | YANG Fei, ZHANG Zheng-Feng, NAN Bo, XIAO Ben-Ze. Genome-wide association analysis and candidate gene selection of yield related traits in rice [J]. Acta Agronomica Sinica, 2022, 48(7): 1813-1821. |
[9] | YUAN Shen, PENG Shao-Bing. Comparison of grain heavy metal concentration between main and ratoon seasons of ratoon rice [J]. Acta Agronomica Sinica, 2022, 48(7): 1822-1831. |
[10] | TIAN Tian, CHEN Li-Juan, HE Hua-Qin. Identification of rice blast resistance candidate genes based on integrating Meta-QTL and RNA-seq analysis [J]. Acta Agronomica Sinica, 2022, 48(6): 1372-1388. |
[11] | ZHENG Chong-Ke, ZHOU Guan-Hua, NIU Shu-Lin, HE Ya-Nan, SUN wei, XIE Xian-Zhi. Phenotypic characterization and gene mapping of an early senescence leaf H5(esl-H5) mutant in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1389-1400. |
[12] | ZHOU Wen-Qi, QIANG Xiao-Xia, WANG Sen, JIANG Jing-Wen, WEI Wan-Rong. Mechanism of drought and salt tolerance of OsLPL2/PIR gene in rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1401-1415. |
[13] | ZHENG Xiao-Long, ZHOU Jing-Qing, BAI Yang, SHAO Ya-Fang, ZHANG Lin-Ping, HU Pei-Song, WEI Xiang-Jin. Difference and molecular mechanism of soluble sugar metabolism and quality of different rice panicle in japonica rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1425-1436. |
[14] | YAN Jia-Qian, GU Yi-Biao, XUE Zhang-Yi, ZHOU Tian-Yang, GE Qian-Qian, ZHANG Hao, LIU Li-Jun, WANG Zhi-Qin, GU Jun-Fei, YANG Jian-Chang, ZHOU Zhen-Ling, XU Da-Yong. Different responses of rice cultivars to salt stress and the underlying mechanisms [J]. Acta Agronomica Sinica, 2022, 48(6): 1463-1475. |
[15] | YANG Jian-Chang, LI Chao-Qing, JIANG Yi. Contents and compositions of amino acids in rice grains and their regulation: a review [J]. Acta Agronomica Sinica, 2022, 48(5): 1037-1050. |
|