Acta Agronomica Sinica ›› 2022, Vol. 48 ›› Issue (7): 1843-1850.doi: 10.3724/SP.J.1006.2022.13043
• RESEARCH NOTES • Previous Articles
YANG Ying-Xia1(), ZHANG Guan1,2, WANG Meng-Meng1,2, LU Guo-Qing1, WANG Qian1, CHEN Rui1,*(
)
[1] |
Babekova R, Funk T, Pecoraro S, Engel K H, Busch U. Development of an event-specific real-time PCR detection method for the transgenic Bt rice line KMD1. Eur Food Res Technol, 2009, 228: 707-716.
doi: 10.1007/s00217-008-0981-0 |
[2] |
Arai-Kichise Y, Shiwa Y, Nagasaki H, Ebana K, Yoshikawa H, Yano M, Wakasa K. Discovery of genome-wide DNA polymorphisms in a landrace cultivar of Japonica rice by whole-genome sequencing. Plant Cell Physiol, 2011, 52: 274-282.
doi: 10.1093/pcp/pcr003 pmid: 21258067 |
[3] | Bonfini L, Van den Bulcke M H, Mazzara M, Ben E, Patak A. GMOMETHODS: the European Union database of reference methods for GMO analysis. J AOAC Int, 2012, 95: 1713-1719. |
[4] |
Tan G H, Gao Y, Shi M, Zhang X Y, He S P, Chen Z L, An C C. SiteFinding-PCR: a simple and efficient PCR method for chromosome walking. Nucleic Acids Res, 2005, 33: e122.
doi: 10.1093/nar/gni124 |
[5] |
Trinh Q, Xu W T, Shi H, Luo Y B, Huang K L. An A-T linker adapter polymerase chain reaction method for chromosome walking without restriction site cloning bias. Anal Biochem, 2012, 425: 62-67.
doi: 10.1016/j.ab.2012.02.029 |
[6] |
Trinh Q, Shi H, Xu W T, Hao J R, Luo Y B, Huang K L. Loop-linker PCR: an advanced PCR technique for genome walking. IUBMB Life, 2012, 64: 841-845.
doi: 10.1002/iub.1069 |
[7] |
Spalinskas R, Van den Bulcke M, Van den Eede G, Milcamps A. LT-RADE: an efficient user-friendly genome walking method applied to the molecular characterization of the insertion site of genetically modified maize MON810 and rice LLRICE62. Food Anal Methods, 2013, 6: 705-713.
doi: 10.1007/s12161-012-9438-y |
[8] |
Fraiture M A, Herman P, Taverniers I, Taverniers I, Loose M D, Nieuwerburgh F V, Deforce D, Roosens N H. Validation of a sensitive DNA walking strategy to characterize unauthorized GMOs using model food matrices mimicking common rice products. Food Chem, 2015, 173: 1259-1265.
doi: 10.1016/j.foodchem.2014.09.148 |
[9] | Kovalic D, Garnaat C, Guob L, Yan Y P, Groat J, Silvanovich A, Ralston L, Huang M Y, Tian Q, Christian A, Cheikh N, Hjelle J, Padgette S, Bannon G. The use of next generation sequencing and junction sequence analysis bioinformatics to achieve molecular characterization of crops improved through modern biotechnology. Plant Genome, 2012, 5: 149-163. |
[10] |
Wahler D, Schauser L, Bendiek J, Grohmann L. Next-generation sequencing as a tool for detailed molecular characterization of genomic insertions and flanking regions in genetically modified plants: a pilot study using a rice event unauthorized in the EU. Food Anal Methods, 2013, 6: 1718-1727.
doi: 10.1007/s12161-013-9673-x |
[11] |
Yang L T, Wang C M, Holst-Jensen A, Morisset D, Lin Y J, Zhang D B. Characterization of GM events by insert knowledge adapted re-sequencing approaches. Sci Rep, 2013, 3: 2839.
doi: 10.1038/srep02839 |
[12] |
Liang C J, van Dijk J P, Scholtens I M J, Staats M, Prins T W, Voorhuijzen M M, da Silva A M, Arisi A C M, den Dunnen J T, Kok E J. Detecting authorized and unauthorized genetically modified organisms containing vip3A by real-time PCR and next-generation sequencing. Anal Bioanal Chem, 2014, 406: 2603-2611.
doi: 10.1007/s00216-014-7667-1 |
[13] |
Fraiture M A, Vandamme J, Herman P, Roosens N H C. Development and validation of an integrated DNA walking strategy to detect GMO expressing cry genes. BMC Biotechnol, 2018, 18: 40.
doi: 10.1186/s12896-018-0446-x |
[14] |
Fraiture M A, Saltykova A, Hoffman S, Winand R, Deforce D, Vanneste K, De Keersmaecker S C J, Roosens N H C. Nanopore sequencing technology: a new route for the fast detection of unauthorized GMO. Sci Rep, 2018, 8: 7903.
doi: 10.1038/s41598-018-26259-x |
[15] |
Lepage É, Zampini É, Boyle B, Brisson N. Time- and cost- efficient identification of T-DNA insertion sites through targeted genomic sequencing. PLoS One, 2013, 8: e70912.
doi: 10.1371/journal.pone.0070912 |
[16] | Guo B F, Guo Y, Hong H L, Qiu L J. Identification of genomic insertion and flanking sequence of G2-EPSPS and GAT transgenes in soybean using whole genome sequencing method. Front Plant Sci, 2016, 7: 1009. |
[17] |
Guttikonda S K, Marri P, Mammadov J, Ye L, Soe K, Richey K, Cruse J, Zhang M B, Gao Z F, Evans C, Rounsley S, Kumpatla S P. Molecular characterization of transgenic events using next generation sequencing approach. PLoS One, 2016, 11: e0149515.
doi: 10.1371/journal.pone.0149515 |
[18] |
Park D, Park S H, Ban Y W, Kim Y S, Park K C, Kim N S, Kim J K, Choi I Y. A bioinformatics approach for identifying transgene insertion sites using whole genome sequencing data. BMC Biol, 2017, 17: 67.
doi: 10.1186/s12915-019-0676-y |
[19] |
Wang X J, Jiao Y, Ma S, Yang J T, Wang Z X. Whole-Genome Sequencing: an effective strategy for insertion information analysis of foreign genes in transgenic plants. Front Plant Sci, 2020, 11: 573871.
doi: 10.3389/fpls.2020.573871 |
[20] |
Zhang Y C, Zhang H W, Qu Z, Zhang X J, Cui J J, Wang C H, Yang L T. Comprehensive analysis of the molecular characterization of GM rice G6H1 using a paired-end sequencing approach. Food Chem, 2020, 309: 125760.
doi: 10.1016/j.foodchem.2019.125760 |
[21] | 马硕, 焦悦, 杨江涛, 王旭静, 王志兴. 基因组测序技术解析耐除草剂转基因水稻G2-7的分子特征. 作物学报, 2020, 46: 1703-1710. |
Ma S, Jiao Y, Yang J T, Wang X J, Wang Z X.Molecular characterization identification by genome sequencing of transgenic glyphosate-tolerant rice G2-7. Acta Agron Sin, 2020, 46: 1703-1710. | |
[22] | Cade R M, Burgin K, Schiling K, Lee T J, Ngam P, Devitt N, Fajardo D. Evaluation of whole genome sequencing and an insertion site characterization method for molecular characterization of GM maize. J Regul Sci, 2018, 6: 1-14. |
[23] |
Siddique K, Wei J, Li R, Zhang D B, Shi J X. Identification of T-DNA insertion site and flanking sequence of a genetically modified maize event IE09S034 using next-generation sequencing technology. Mol Biotechnol, 2019, 61: 694-702.
doi: 10.1007/s12033-019-00196-0 pmid: 31256331 |
[24] |
Duan L J, Zhang S S, Yang Y X, Wang Q, Lan Q K, Wang Y, Xu W T, Jin W J, Li L, Chen R. A feasible method for detecting unknown GMOs via a combined strategy of PCR-based suppression subtractive hybridization and next-generation sequencing. Food Control, 2020, 119: 107448.
doi: 10.1016/j.foodcont.2020.107448 |
[1] | MA Shuo, JIAO Yue, YANG Jiang-Tao, WANG Xu-Jing, WANG Zhi-Xing. Molecular characterization identification by genome sequencing of transgenic glyphosate-tolerant rice G2-7 [J]. Acta Agronomica Sinica, 2020, 46(11): 1703-1710. |
[2] | Qiang PENG,Jia-Li LI,Da-Shuang ZHANG,Xue JIANG,Ru-Yue DENG,Jian-Qiang WU,Su-Song ZHU. QTL Mapping for Rice Appearance Quality Traits Based on a High-density Genetic Map in Different Environments [J]. Acta Agronomica Sinica, 2018, 44(8): 1248-1255. |
[3] | YIN Gui-Xiang,ZHANG Lei*,SHE Mao-Yun. Structural Characterization and Abiotic Stress Response of Soybean TRK-HKT Family Genes [J]. Acta Agron Sin, 2015, 41(02): 259-275. |
[4] | ZHANG Guang-Yuan,SUN Hong-Wei,LI Fan,YANG Shu-Ke,LU Xing-Bo,ZHAO Lei. Construction and Application of a Reference Plasmid Molecule Suitable for phyA2 of Phytase Transgenic Maize [J]. Acta Agron Sin, 2013, 39(08): 1501-1506. |
[5] | LU Xing-Bo,WU Hai-Bin,WANG Min,LI Bao-Du,YANG Chong-Liang,SUN Hong-Wei. Developing a Method of Oligonucleotide Microarray for Event Specific Detection of Transgenic Maize(Zea mays) [J]. Acta Agron Sin, 2009, 35(8): 1432-1438. |
[6] | CHENG Ji-Hua;LI Yun-Chang;HU Qiong;MEI De-Sheng;LI Ying-De;XU Yu-Song;WANG Wei-Min. Molecular Identification and Distinctness of NSa Male Sterile Cytoplasm in Brassica napus [J]. Acta Agron Sin, 2008, 34(11): 1946-1952. |
|