Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2022, Vol. 48 ›› Issue (7): 1843-1850.doi: 10.3724/SP.J.1006.2022.13043

• RESEARCH NOTES • Previous Articles    

Molecular characterization of transgenic maize GM11061 based on high-throughput sequencing technology

YANG Ying-Xia1(), ZHANG Guan1,2, WANG Meng-Meng1,2, LU Guo-Qing1, WANG Qian1, CHEN Rui1,*()   

  1. 1Institute of Germplasm Resources and Biotechnology, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China
    2Tianjin Key Laboratory of Food Biotechnology / School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
  • Received:2021-06-03 Accepted:2021-11-30 Online:2022-07-12 Published:2021-12-27
  • Contact: CHEN Rui E-mail:yingxiayang@126.com;chenrui_taas@126.com

Abstract:

Insertion site, integrated sequences, and copy number information of exogenous DNA integrations in host genome are key steps in the safety evaluation of genetically modified plants. Traditional identification techniques for molecular characteristics of transgenic plants are complicated, laborious, inefficient and limited. Here, we reported the molecular characterization of one new transgenic maize event GM11061 via a whole genome (paired-end) sequencing approach and laboratory-developed bioinformatics methods. The results showed there was only one copy of the exogenous DNA inserted, which was located within the region of 198,621,571-198,621,620 bp on chromosome 5 in GM11061 genome, without the vector skeleton sequence. Its upstream and downstream binding sites were validated using conventional PCR and sanger sequencing. Gradient analysis of sequencing data revealed that the lowest 5× resequencing raw data could be used to identify the integration site. The study confirmed that the whole genome resequencing approach combined with bioinformatics methods could achieve simple, rapid, and accurate identification of plant molecular characteristics. These results are helpful to the basic research of functional genomics and provide technical support for the safety evaluation of transgenic plants.

Key words: high throughput sequencing, transgenic maize, molecular characterization

Fig. 1

Pipeline for the molecular characterization of transgenic maize using the WGS method and the schematic diagram of the filtered clean reads"

Table 1

Results of the plasmid sequence compared with maize reference genome"

查询序列Query 目标序列
Subject
一致性
百分比
Identity
(%)
区域长度
Alignment length
错配数Mismatch Gap数目
Gap
opening
查询序列
起始位点Query
start site
查询序列
终止位点Query
end site
目标序列
起始位点
Subject
start site
目标序列
终止位点
Subject
end site
E-value Bit score
GM11061 NC_024463.2 99.950 1993 0 1 6861 8853 84,635,058 84,633,067 0 3674
GM11061 NC_024463.2 89.778 225 12 4 8189 8405 84,633,511 84,633,290 4.30E-71 278
GM11061 NC_024463.2 89.778 225 12 4 8409 8630 84,633,731 84,633,515 4.30E-71 278
GM11061 NC_024466.2 99.876 804 1 0 5135 5938 174,182,636 174,181,833 0 1480

Fig. 2

Sequence alignments of LB and RB junction-region reads for maize transgenic GM11061 A: the flanking sequences of the 5' end of the T-DNA, red and black nucleotide sequences represent the maize genome and the T-DNA sequence, respectively; B: the flanking sequences of the 3' end of the T-DNA, black and green nucleotide sequences represent the T-DNA and maize genome sequence, respectively."

Fig. 3

IGV analysis of transgenic maize GM11061 Pink boxes indicate the junction regions between the T-DNA border and maize genome."

Fig. 4

Experimental verification of maize transgenic GM11061 insertion site and flanking sequence A: the position of the primer pair designed for the upstream and downstream of the T-DNA insertion site. B: the PCR amplification result. Lanes 1 and 3 are transgenic corn GM11061, respectively; lanes 2 and 4 are non-transgenic receptor materials, respectively. C: Sanger sequencing peaks map of the upstream PCR amplification products; D: Sanger sequencing peaks map of the downstream PCR amplification products."

Table 2

Result of the contigs assembled by megahit compared with GM11061_Molecular_Characteristics.fa"

查询序列Query 目标序列Subject 一致性
百分比Identity (%)
区域长度
Alignment length
错配数Mismatch Gap数目
Gap
opening
查询序列
起始位点Query
start site
查询序列
终止位点Query
end site
目标序列
起始位点Subject
start site
目标序列
终止位点
Subject
end site
E-value Bit score
k141_0 T-DNA 100 408 0 0 1 408 6313 6720 0 754
k141_0 T-DNA 100 266 0 0 1 266 6214 5949 2.61E-142 492
k141_0 T-DNA 99.306 144 1 0 265 408 10,099 10,242 8.01E-73 261
k141_3 T-DNA 100 437 0 0 1 437 10,102 10,538 0 808
k141_3 T-DNA 100 253 0 0 1 253 6580 6832 6.25E-135 468
k141_1 T-DNA 100 141 0 0 1 141 8713 8853 8.31E-73 261
k141_5 T-DNA 99.876 804 1 0 428 1231 5135 5938 0.00E+00 1480
k141_7 T-DNA 100 1993 0 0 1 1993 8853 6861 0 3681
k141_7 T-DNA 89.778 225 12 4 224 445 8405 8189 4.61E-77 278
k141_7 T-DNA 89.778 225 12 4 449 665 8630 8409 4.61E-77 278
k141_6 T-DNA 100 1530 0 0 1 1530 10,242 8713 0 2826
k141_6 T-DNA 99.306 144 1 0 1 144 6720 6577 3.08E-72 261
k141_9 T-DNA 99.761 4602 1 1 141 4732 155 4756 0.00E+00 8429
k141_9 T-DNA 100 498 0 0 4471 4968 4756 5253 0 920

Fig. 5

Sequence similarity between contigs assembled by megahit and T-DNA"

[1] Babekova R, Funk T, Pecoraro S, Engel K H, Busch U. Development of an event-specific real-time PCR detection method for the transgenic Bt rice line KMD1. Eur Food Res Technol, 2009, 228: 707-716.
doi: 10.1007/s00217-008-0981-0
[2] Arai-Kichise Y, Shiwa Y, Nagasaki H, Ebana K, Yoshikawa H, Yano M, Wakasa K. Discovery of genome-wide DNA polymorphisms in a landrace cultivar of Japonica rice by whole-genome sequencing. Plant Cell Physiol, 2011, 52: 274-282.
doi: 10.1093/pcp/pcr003 pmid: 21258067
[3] Bonfini L, Van den Bulcke M H, Mazzara M, Ben E, Patak A. GMOMETHODS: the European Union database of reference methods for GMO analysis. J AOAC Int, 2012, 95: 1713-1719.
[4] Tan G H, Gao Y, Shi M, Zhang X Y, He S P, Chen Z L, An C C. SiteFinding-PCR: a simple and efficient PCR method for chromosome walking. Nucleic Acids Res, 2005, 33: e122.
doi: 10.1093/nar/gni124
[5] Trinh Q, Xu W T, Shi H, Luo Y B, Huang K L. An A-T linker adapter polymerase chain reaction method for chromosome walking without restriction site cloning bias. Anal Biochem, 2012, 425: 62-67.
doi: 10.1016/j.ab.2012.02.029
[6] Trinh Q, Shi H, Xu W T, Hao J R, Luo Y B, Huang K L. Loop-linker PCR: an advanced PCR technique for genome walking. IUBMB Life, 2012, 64: 841-845.
doi: 10.1002/iub.1069
[7] Spalinskas R, Van den Bulcke M, Van den Eede G, Milcamps A. LT-RADE: an efficient user-friendly genome walking method applied to the molecular characterization of the insertion site of genetically modified maize MON810 and rice LLRICE62. Food Anal Methods, 2013, 6: 705-713.
doi: 10.1007/s12161-012-9438-y
[8] Fraiture M A, Herman P, Taverniers I, Taverniers I, Loose M D, Nieuwerburgh F V, Deforce D, Roosens N H. Validation of a sensitive DNA walking strategy to characterize unauthorized GMOs using model food matrices mimicking common rice products. Food Chem, 2015, 173: 1259-1265.
doi: 10.1016/j.foodchem.2014.09.148
[9] Kovalic D, Garnaat C, Guob L, Yan Y P, Groat J, Silvanovich A, Ralston L, Huang M Y, Tian Q, Christian A, Cheikh N, Hjelle J, Padgette S, Bannon G. The use of next generation sequencing and junction sequence analysis bioinformatics to achieve molecular characterization of crops improved through modern biotechnology. Plant Genome, 2012, 5: 149-163.
[10] Wahler D, Schauser L, Bendiek J, Grohmann L. Next-generation sequencing as a tool for detailed molecular characterization of genomic insertions and flanking regions in genetically modified plants: a pilot study using a rice event unauthorized in the EU. Food Anal Methods, 2013, 6: 1718-1727.
doi: 10.1007/s12161-013-9673-x
[11] Yang L T, Wang C M, Holst-Jensen A, Morisset D, Lin Y J, Zhang D B. Characterization of GM events by insert knowledge adapted re-sequencing approaches. Sci Rep, 2013, 3: 2839.
doi: 10.1038/srep02839
[12] Liang C J, van Dijk J P, Scholtens I M J, Staats M, Prins T W, Voorhuijzen M M, da Silva A M, Arisi A C M, den Dunnen J T, Kok E J. Detecting authorized and unauthorized genetically modified organisms containing vip3A by real-time PCR and next-generation sequencing. Anal Bioanal Chem, 2014, 406: 2603-2611.
doi: 10.1007/s00216-014-7667-1
[13] Fraiture M A, Vandamme J, Herman P, Roosens N H C. Development and validation of an integrated DNA walking strategy to detect GMO expressing cry genes. BMC Biotechnol, 2018, 18: 40.
doi: 10.1186/s12896-018-0446-x
[14] Fraiture M A, Saltykova A, Hoffman S, Winand R, Deforce D, Vanneste K, De Keersmaecker S C J, Roosens N H C. Nanopore sequencing technology: a new route for the fast detection of unauthorized GMO. Sci Rep, 2018, 8: 7903.
doi: 10.1038/s41598-018-26259-x
[15] Lepage É, Zampini É, Boyle B, Brisson N. Time- and cost- efficient identification of T-DNA insertion sites through targeted genomic sequencing. PLoS One, 2013, 8: e70912.
doi: 10.1371/journal.pone.0070912
[16] Guo B F, Guo Y, Hong H L, Qiu L J. Identification of genomic insertion and flanking sequence of G2-EPSPS and GAT transgenes in soybean using whole genome sequencing method. Front Plant Sci, 2016, 7: 1009.
[17] Guttikonda S K, Marri P, Mammadov J, Ye L, Soe K, Richey K, Cruse J, Zhang M B, Gao Z F, Evans C, Rounsley S, Kumpatla S P. Molecular characterization of transgenic events using next generation sequencing approach. PLoS One, 2016, 11: e0149515.
doi: 10.1371/journal.pone.0149515
[18] Park D, Park S H, Ban Y W, Kim Y S, Park K C, Kim N S, Kim J K, Choi I Y. A bioinformatics approach for identifying transgene insertion sites using whole genome sequencing data. BMC Biol, 2017, 17: 67.
doi: 10.1186/s12915-019-0676-y
[19] Wang X J, Jiao Y, Ma S, Yang J T, Wang Z X. Whole-Genome Sequencing: an effective strategy for insertion information analysis of foreign genes in transgenic plants. Front Plant Sci, 2020, 11: 573871.
doi: 10.3389/fpls.2020.573871
[20] Zhang Y C, Zhang H W, Qu Z, Zhang X J, Cui J J, Wang C H, Yang L T. Comprehensive analysis of the molecular characterization of GM rice G6H1 using a paired-end sequencing approach. Food Chem, 2020, 309: 125760.
doi: 10.1016/j.foodchem.2019.125760
[21] 马硕, 焦悦, 杨江涛, 王旭静, 王志兴. 基因组测序技术解析耐除草剂转基因水稻G2-7的分子特征. 作物学报, 2020, 46: 1703-1710.
Ma S, Jiao Y, Yang J T, Wang X J, Wang Z X.Molecular characterization identification by genome sequencing of transgenic glyphosate-tolerant rice G2-7. Acta Agron Sin, 2020, 46: 1703-1710.
[22] Cade R M, Burgin K, Schiling K, Lee T J, Ngam P, Devitt N, Fajardo D. Evaluation of whole genome sequencing and an insertion site characterization method for molecular characterization of GM maize. J Regul Sci, 2018, 6: 1-14.
[23] Siddique K, Wei J, Li R, Zhang D B, Shi J X. Identification of T-DNA insertion site and flanking sequence of a genetically modified maize event IE09S034 using next-generation sequencing technology. Mol Biotechnol, 2019, 61: 694-702.
doi: 10.1007/s12033-019-00196-0 pmid: 31256331
[24] Duan L J, Zhang S S, Yang Y X, Wang Q, Lan Q K, Wang Y, Xu W T, Jin W J, Li L, Chen R. A feasible method for detecting unknown GMOs via a combined strategy of PCR-based suppression subtractive hybridization and next-generation sequencing. Food Control, 2020, 119: 107448.
doi: 10.1016/j.foodcont.2020.107448
[1] MA Shuo, JIAO Yue, YANG Jiang-Tao, WANG Xu-Jing, WANG Zhi-Xing. Molecular characterization identification by genome sequencing of transgenic glyphosate-tolerant rice G2-7 [J]. Acta Agronomica Sinica, 2020, 46(11): 1703-1710.
[2] Qiang PENG,Jia-Li LI,Da-Shuang ZHANG,Xue JIANG,Ru-Yue DENG,Jian-Qiang WU,Su-Song ZHU. QTL Mapping for Rice Appearance Quality Traits Based on a High-density Genetic Map in Different Environments [J]. Acta Agronomica Sinica, 2018, 44(8): 1248-1255.
[3] YIN Gui-Xiang,ZHANG Lei*,SHE Mao-Yun. Structural Characterization and Abiotic Stress Response of Soybean TRK-HKT Family Genes [J]. Acta Agron Sin, 2015, 41(02): 259-275.
[4] ZHANG Guang-Yuan,SUN Hong-Wei,LI Fan,YANG Shu-Ke,LU Xing-Bo,ZHAO Lei. Construction and Application of a Reference Plasmid Molecule Suitable for phyA2 of Phytase Transgenic Maize [J]. Acta Agron Sin, 2013, 39(08): 1501-1506.
[5] LU Xing-Bo,WU Hai-Bin,WANG Min,LI Bao-Du,YANG Chong-Liang,SUN Hong-Wei. Developing a Method of Oligonucleotide Microarray for Event Specific Detection of Transgenic Maize(Zea mays[J]. Acta Agron Sin, 2009, 35(8): 1432-1438.
[6] CHENG Ji-Hua;LI Yun-Chang;HU Qiong;MEI De-Sheng;LI Ying-De;XU Yu-Song;WANG Wei-Min. Molecular Identification and Distinctness of NSa Male Sterile Cytoplasm in Brassica napus [J]. Acta Agron Sin, 2008, 34(11): 1946-1952.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[5] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[6] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[7] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[8] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[9] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .
[10] XING Guang-Nan, ZHOU Bin, ZHAO Tuan-Jie, YU De-Yue, XING Han, HEN Shou-Yi, GAI Jun-Yi. Mapping QTLs of Resistance to Megacota cribraria (Fabricius) in Soybean[J]. Acta Agronomica Sinica, 2008, 34(03): 361 -368 .