Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2015, Vol. 41 ›› Issue (02): 259-275.doi: 10.3724/SP.J.1006.2015.00259


Structural Characterization and Abiotic Stress Response of Soybean TRK-HKT Family Genes

YIN Gui-Xiang,ZHANG Lei*,SHE Mao-Yun   

  1. Crop Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, China
  • Received:2014-07-02 Revised:2014-09-30 Online:2015-02-12 Published:2014-11-11
  • Contact: 张磊, E-mail: 13955165987@163.com, 佘茂云, E-mail: ahxiaoshe@126.com E-mail:guixiangyin@126.com


Plant TRK-HKT family genes are involved in Na+/K+ transportation and regulation to abiotic stresses. We used six soybean varieties with different potassium use efficiencies (PUE) as materials, cloned four soybean TRK-HKT family genes (GmHKT1;1, GmHKT1;2, GmHKT1;3, and GmHKT1;4) via in silico, and explored the genes structure and expression under low potassium treatment and abiotic stresses with qRT-PCR technique. The results showed that the expression level of GmHKT1;2 was higher than those of the other three members in the roots of soybean seedlings under low potassium stress, which was more obvious in the roots of the soybean varieties with high PUE. Meanwhile, GmHKT1;2 showed high response to various abiotic stresses (chilling, drought, high salinity, and ABA). Protein structure prediction showed that only GmHKT1;2 contains four MPM domains and a "funnel-like" structure of four conserved amino acid residues spatially, which acted as K+/Na+ transport channel and provided energy for transportation, together with the adjacent ATP binding domain. Analysis on gene structure indicated that there are three exons and two introns in all four members with a significant difference in the size of exon I and intron I, resulting in the genomic DNA (gDNA) difference in lenghth of the different GmHKT genes. Promoter analysis revealed that upstream promoter elements of soybean TRK-HKT family genes contained important cis-acting regulatory elements involved in the functional target to seed-specific expression, and response to hormone and diverse abiotic stresses. In evolution, soybean TRK-HKT family genes belonged to clade I with conserved Ser–Gly–Gly–Gly motif.

Key words: Soybean, TRK-HKT family, Molecular characterization, Abiotic stress

[1]Wang Y, Wu W H. Plant sensing and signaling in response to K+-deficiency. Mol Plant, 2010, 3: 280–287

[2]Ashley M K, Grant M, Grabov A. Plant responses to potassium deficiencies: a role for potassium transport proteins. J Exp Bot, 2006, 57: 425–436

[3]Epstein E, Rains D W, Elzam O E. Resolution of dual mechanisms of potassium absorption by barley roots. Proc Natl Acad Sci USA, 1963, 49: 684–692

[4]Fairbairn D J, Liu W, Schachtman D P, Gomez-Gallego S, Day S R, Teasdale R D. Characterization of two distinct HKT1-like potassium transporters from Eucalyptus camaldulensis. Plant Mol Biol, 2000, 43: 515–525

[5]Uozumi N, Kim E J, Rubio F, Yamaguchi T, Muto S, Tsuboi A, Bakker E P, Nakamura T, Schroeder J I. The Arabidopsis HKT1 gene homolog mediates inward Na+ currents in Xenopus laevis oocytes and Na+ uptake in Saccharomyces cerevisiae. Plant Physiol, 2000, 122: 1249–1259

[6]Berthomieu P, Conéjéro G, Nublat A, Brackenbury W J, Lambert C, Savio C, Uozumi N, Oiki S, Yamada K, Cellier F, Gosti F, Simonneau T, Essah P A, Tester M, Véry A A, Sentenac H, Casse F. Functional analysis of AtHKT1 in Arabidopsis shows that Na+ recirculation by the phloem is crucial for salt tolerance. EMBO J, 2003, 22: 2004–2014

[7]Rubio F, Schwarz M, Gassmann W, Schroeder J I. Genetic selection of mutations in the high affinity K+ transporter HKT1 that define functions of a loop site for reduced Na+ permeability and increased Na+ tolerance. J Biol Chem, 1999, 274: 6839–6847

[8]Ren Z H, Gao J P, Li L G, Cai X L, Huang W, Chao D Y, Zhu M Z, Wang Z Y, Luan S, Lin H X. A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nature Gen, 2005, 37: 1141–1146

[9]Wang T B, Gassmann W, Rubio F, Schroeder J I, Glass D M. Rapid up-regulation of HKT1, a high-affinity potassium transporter gene, in roots of barley and wheat following withdrawal of potassium. Plant Physiol, 1998, 118: 651–659

[10]Chen H, He H, Yu D. Overexpression of a novel soybean gene modulating Na+ and K+ transport enhances salt tolerance in transgenic tobacco plants. Physiol Plant, 2011, 141: 11–18

[11]Chen H T, Chen X, Gu H P, Wu B Y, Zhang H M, Yuan X X, Cui X Y. GmHKT1;4, a novel soybean gene regulating Na+/K+ ratio in roots enhances salt tolerance in transgenic plants. Plant Growth Regul, 2014, 73: 299–308

[12]Anderson J A, Huprikar S S, Kochian L V, Lucas W J, Gaber R F. Functional expression of a probable Arabidopsis thaliana potassium channel in Saccharomyces cerevisiae. Proc Natl Acad Sci USA, 1992, 89: 3736–3740

[13]Schachtman D P, Schroeder J I. Structure and transport mechanism of a high-affinity potassium uptake transporter from higher plants. Nature, 1994, 370: 655–658

[14]Gassmann W, Rubio F, Schroeder J I. Alkali cation selectivity of the wheat root high-affinity potassium transporter HKT1. Plant J, 1996, 10: 869–882

[15]Rubio F, Gassmann W, Schroeder J I. Sodium-driven potassium uptake by the plant potassium transporter HKT1 and mutations conferring salt tolerance. Science, 1995, 270: 1660–1663

[16]Aleman F, Nieves-Cordones M, Nieves-Cordones M, Martinez V, Rubio F. Root K(+) acquisition in plants: the Arabidopsis thaliana model. Plant Cell Physiol, 2011, 52: 1603–1612

[17]Kato Y, Sakaguchi M, Mori Y, Saito K, Nakamura T, Bakker E P, Sato Y, Goshima S, Uozumi N. Evidence in support of a four transmembrane-pore-transmembrane topology model for the Arabidopsis thaliana Na+/K+ translocating AtHKT1 protein, a member of the superfamily of K+ transporters. Proc Natl Acad Sci USA, 2001, 98: 6488–6493

[18]Durell S R, Hao Y, Nakamura T, Bakker E P, Guy H R. Evolutionary relationship between K+ channels and symporters. Biophys J, 1999, 77: 775–788

[19]M?ser P, Hosoo Y, Goshima S, Horie T, Eckelman B, Yamada K, Yoshida K, Bakker E P, Shinmyo A, Oiki S, Schroeder J I, Uozumi N. Glycine residues in potassium channel-like selectivity filters determine potassium selectivity in four-loop-per-subunit HKT transporters from plants. Proc Natl Acad Sci USA, 2002, 99: 6428–6433

[20]Wang Y, Wu W H. Potassium transport and signaling in higher plants. Annu Rev Plant Biol, 2013, 64: 451–476

[21]Véry A A, Sentenac H. Molecular mechanisms and regulation of K+ transport in higher plants. Annu Rev Plant Biol, 2003, 54: 575–603

[22]Waters S, Gilliham M, Hrmova M. Plant high-affinity potassium (HKT) transporters involved in salinity tolerance: structural insights to probe differences in ion selectivity. Int J Mol Sci, 2013, 14: 7660–7680

[23]Kader M A, Lindberg S. Uptake of sodium in protoplasts of salt-sensitive and salt-tolerant cultivars of rice, Oryza sativa L. determined by the fluorescent dye SBFI. J Exp Bot, 2005, 56: 3149–3158

[24]Tester M, Davenport R. Na+ tolerance and Na+ transport in higher plants. Ann Bot (Lond.), 2003, 91: 503–527

[25]M?ser P, Eckelman B, Vaidyanathan R, Horie T, Fairbairn D J, Kubo M, Yamagami M, Yamaguchi K, Nishimura M, Uozumi N, Robertson W, Sussman M R, Schroeder J I. Altered shoot/root Na+ distribution and bifurcating salt sensitivity in Arabidopsis by genetic disruption ofthe Na+ transporter AtHKT1. FEBS Lett, 2002, 531: 157–161

[26]Rus A, Lee B H, Mu?oz-Mayor A, Sharkhuu A, Miura K, Zhu J K, Bressan R A, Hasegawa PM. AtHKT1 facilitates Na+ homeostasis and K+ nutrition in planta. Plant Physiol, 2004, 136: 2500–2511

[27]Sunarpi, Horie T, Motoda J, Kubo M, Yang H, Yoda K, Horie R, Chan W Y, Leung H Y, Hattori K, Konomi M, Osumi M, Yamagami M, Schroeder J I, Uozumi N. Enhanced salt tolerance mediated by AtHKT1 transporter-induced Na+ unloading from xylem parenchyma cells. Plant J, 2005, 44: 928–938

[28]Horie T, Costa A, Kim T H, Han M J, Horie R, Leung H Y, Miyao A, Hirochika H, An G, Schroeder J I. Rice OsHKT2;1 transporter mediates large Na+ influx component into K+-starved roots for growth. EMBO J, 2007, 26: 3003–3014

[29]Zhu J K, Liu J, Xiong L. Genetic analysis of salt tolerance in Arabidopsis: evidence for a critical role of potassium nutrition. Plant Cell, 1998, 10: 1181–1191

[30]Alemán F, Nieves-Cordones M, Martínez V, Rubio F. Potassium/sodium steady-state homeostasis in Thellungiella halophila and Arabidopsis thaliana under long-term salinity conditions. Plant Sci, 2009, 176: 768–774

[31]Zhu J K. Cell signaling under salt, water and cold stresses. Curr Opin Plant Biol, 2001, 4: 401–406

[32]唐劲驰, 曹敏建, 祝子平, 闫洪奎, 刘绍鹏. 不同基因型大豆对低钾的耐性极限及缺钾症状研究简报. 大豆科学, 2001, 20: 295–297

Tang J C, Cao M J, Zhu Z P, Yan H K, Liu S P. Resistence limit and symptom of different genotypes of soybean to low potassium. Soybean Sci, 2001, 20: 295–297 (in Chinese with English abstract)

[33]权月伟, 李喜焕, 常文锁, 张彩英. 大豆耐低钾种质资源筛选研究. 华北农学报, 2011, 26(增刊): 51–55

Quan Y W, Li X H, Chang W S, Zhang C Y. Screening of low potassium tolerant soybean (Glycine max) varieties from Hebei soybean-growing-areas. Acta Agric Boreali-Sin, 2011, 26 (suppl): 51–55 (in Chinese with English abstract)

[34]王伟, 曹敏建, 綦左莹, 何萍, 许海涛. 不同大豆品种对钾素吸收和利用效率差异的比较研究. 大豆科学, 2007, 26: 561–564

Wang W, Cao M J, Qi Z Y, He P, Xu H T. Comparison of potassium absorb and use efficiency in soybean (Glycine max L. Merr.) varieties. Soybean Sci, 2007, 26: 561–564 (in Chinese with English abstract)

[35]Damien Platten J, Cotsaftis O, Berthomieu P, Bohnert H, Davenport R J, Fairbairn D J, Horie T, Leigh R A, Lin H X, Luan S, M?ser P, Pantoja O, Rodríguez-Navarro A, Schachtman D P, Schroeder J I, Sentenac H, Uozumi N, Véry A, Zhu J K, Dennis E S, Tester M. Nomenclature for HKT transporters, key determinants of plant salinity tolerance. Trends Plant Sci, 2006, 11: 372–374

[36]Kato N, Akai M, Zulkifli L, Matsuda N, Kato Y, Goshima S, Hazama A, Yamagami M, Guy H R, Uozumi N. Role of positively charged amino acids in the M2(D) transmembrane helix of Ktr/Trk/HKT type cation transporters. Channels, 2007, 1: 161–171

[37]Cao Y, Jin X, Huang H, Derebe M G, Levin E J, Kabaleeswaran V, Pan Y, Punta M, Love J, Weng J, Quick M, Ye S, Kloss B, Bruni R, Martinez-Hackert E, Hendrickson W A, Rost B, Javitch J A, Rajashankar K R, Jiang Y, Zhou M. Crystal structure of a potassium ion transporter, TrkH. Nature, 2011, 471: 336–340

[38]Ardie S W, Xie L N, Takahashi R, Liu S K, Takano T. Cloning of a high-affinity K+ transporter gene PutHKT2;1 from Puccinellia tenuiflora and its functional comparison with OsHKT2;1 from rice in yeast and Arabidopsis. J Exp Bot, 2009, 60: 3491–3502

[39]Munns R, James R A, Xu B, Athman A, Conn S J, Jordans C, Byrt C S, Hare R A, Tyerman S D, Tester M, Plett D, Gilliham M. Wheat grain yield on saline soils is improved by an ancestral Na+ transporter gene. Nature Biotech, 2012, 30: 360–366

[40]Ali Z, Park H C, Ali A, Oh D H, Aman R, Kropornicka A, Hong H, Choi W, Chung W S, Kim W Y, Bressan R A, Bohnert H J, Lee S Y, Yun D J. TsHKT1;2, a HKT1 homolog from the extremophile Arabidopsis relative Thellungiella salsuginea, shows K+ specificity in the presence of NaCl. Plant Physiol, 2012, 158: 1463–1474

[41]Asins M J, Villalta I, Aly M M, Olías R, álvarez De Morales P, Huertas R, Li J, Jaime-Pérez N, Haro R, Raga V, Carbonell E A, Belver A. Two closely linked tomato HKT coding genes are positional candidates for the major tomato QTL involved in Na+/K+ homeostasis. Plant Cell Environ, 2013, 36: 1171–1191

[42]Almeida P, de Boer G J, de Boer A H. Differences in shoot Na+ accumulation between two tomato species are due to differences in ion affinity of HKT1;2. J Plant Physiol, 2014, 171: 438–447

[43]Cotsaftis O, Plett D, Shirley N, Tester M, Hrmova M. A two-stage model of Na+ exclusion in rice explained by 3D modeling of HKT transporters and alternative splicing. PLoS One, 2012, 7: e39865

[44]Lan W Z, Wang W, Wang S M, Li L G, Buchanan B B, Lin H X, Gao J P, Luan S. A rice high-affinity potassium transporter (HKT) conceals a calcium-permeable cation channel. Proc Natl Acad Sci USA, 2010, 107: 7089–7094

[45]Koltunow A M, Truettner J, Cox K H, Wallroth M, Goldberg R. Different temporal and spatial gene expression patterns occur during anther development. Plant Cell, 1990, 2: 1201–1224

[46]Schauer A, Ranes M, Santamaria R, Guijarro J, Lawlor E, Mendez C, Chater K, Losick R. Visualizing gene expression in time and space in the filamentous bacterium Streptomyces coelicolor. Science, 1988, 240: 768–772

[47]McGuire S E, Roman G, Davis R L. Gene expression systems in Drosophila: a synthesis of time and space. Trends Genet, 2004, 20: 384–391

[48]Liang P, Acerboukh L, Pardee A B. Distribution and cloning of eukarytic mRNAs by means of differential display: refinements and optimization. Nucl Acids Res, 1993, 21: 3269–3275

[1] CHEN Ling-Ling, LI Zhan, LIU Ting-Xuan, GU Yong-Zhe, SONG Jian, WANG Jun, QIU Li-Juan. Genome wide association analysis of petiole angle based on 783 soybean resources (Glycine max L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1333-1345.
[2] YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487.
[3] YU Chun-Miao, ZHANG Yong, WANG Hao-Rang, YANG Xing-Yong, DONG Quan-Zhong, XUE Hong, ZHANG Ming-Ming, LI Wei-Wei, WANG Lei, HU Kai-Feng, GU Yong-Zhe, QIU Li-Juan. Construction of a high density genetic map between cultivated and semi-wild soybeans and identification of QTLs for plant height [J]. Acta Agronomica Sinica, 2022, 48(5): 1091-1102.
[4] LI A-Li, FENG Ya-Nan, LI Ping, ZHANG Dong-Sheng, ZONG Yu-Zheng, LIN Wen, HAO Xing-Yu. Transcriptome analysis of leaves responses to elevated CO2 concentration, drought and interaction conditions in soybean [Glycine max (Linn.) Merr.] [J]. Acta Agronomica Sinica, 2022, 48(5): 1103-1118.
[5] PENG Xi-Hong, CHEN Ping, DU Qing, YANG Xue-Li, REN Jun-Bo, ZHENG Ben-Chuan, LUO Kai, XIE Chen, LEI Lu, YONG Tai-Wen, YANG Wen-Yu. Effects of reduced nitrogen application on soil aeration and root nodule growth of relay strip intercropping soybean [J]. Acta Agronomica Sinica, 2022, 48(5): 1199-1209.
[6] WANG Hao-Rang, ZHANG Yong, YU Chun-Miao, DONG Quan-Zhong, LI Wei-Wei, HU Kai-Feng, ZHANG Ming-Ming, XUE Hong, YANG Meng-Ping, SONG Ji-Ling, WANG Lei, YANG Xing-Yong, QIU Li-Juan. Fine mapping of yellow-green leaf gene (ygl2) in soybean (Glycine max L.) [J]. Acta Agronomica Sinica, 2022, 48(4): 791-800.
[7] LI Rui-Dong, YIN Yang-Yang, SONG Wen-Wen, WU Ting-Ting, SUN Shi, HAN Tian-Fu, XU Cai-Long, WU Cun-Xiang, HU Shui-Xiu. Effects of close planting densities on assimilate accumulation and yield of soybean with different plant branching types [J]. Acta Agronomica Sinica, 2022, 48(4): 942-951.
[8] DU Hao, CHENG Yu-Han, LI Tai, HOU Zhi-Hong, LI Yong-Li, NAN Hai-Yang, DONG Li-Dong, LIU Bao-Hui, CHENG Qun. Improving seed number per pod of soybean by molecular breeding based on Ln locus [J]. Acta Agronomica Sinica, 2022, 48(3): 565-571.
[9] ZHOU Yue, ZHAO Zhi-Hua, ZHANG Hong-Ning, KONG You-Bin. Cloning and functional analysis of the promoter of purple acid phosphatase gene GmPAP14 in soybean [J]. Acta Agronomica Sinica, 2022, 48(3): 590-596.
[10] WANG Juan, ZHANG Yan-Wei, JIAO Zhu-Jin, LIU Pan-Pan, CHANG Wei. Identification of QTLs and candidate genes for 100-seed weight trait using PyBSASeq algorithm in soybean [J]. Acta Agronomica Sinica, 2022, 48(3): 635-643.
[11] WU Yan-Fei, HU Qin, ZHOU Qi, DU Xue-Zhu, SHENG Feng. Genome-wide identification and expression analysis of Elongator complex family genes in response to abiotic stresses in rice [J]. Acta Agronomica Sinica, 2022, 48(3): 644-655.
[12] ZHANG Guo-Wei, LI Kai, LI Si-Jia, WANG Xiao-Jing, YANG Chang-Qin, LIU Rui-Xian. Effects of sink-limiting treatments on leaf carbon metabolism in soybean [J]. Acta Agronomica Sinica, 2022, 48(2): 529-537.
[13] SONG Li-Jun, NIE Xiao-Yu, HE Lei-Lei, KUAI Jie, YANG Hua, GUO An-Guo, HUANG Jun-Sheng, FU Ting-Dong, WANG Bo, ZHOU Guang-Sheng. Screening and comprehensive evaluation of shade tolerance of forage soybean varieties [J]. Acta Agronomica Sinica, 2021, 47(9): 1741-1752.
[14] CAO Liang, DU Xin, YU Gao-Bo, JIN Xi-Jun, ZHANG Ming-Cong, REN Chun-Yuan, WANG Meng-Xue, ZHANG Yu-Xian. Regulation of carbon and nitrogen metabolism in leaf of soybean cultivar Suinong 26 at seed-filling stage under drought stress by exogenous melatonin [J]. Acta Agronomica Sinica, 2021, 47(9): 1779-1790.
[15] ZHANG Ming-Cong, HE Song-Yu, QIN Bin, WANG Meng-Xue, JIN Xi-Jun, REN Chun-Yuan, WU Yao-Kun, ZHANG Yu-Xian. Effects of exogenous melatonin on morphology, photosynthetic physiology, and yield of spring soybean variety Suinong 26 under drought stress [J]. Acta Agronomica Sinica, 2021, 47(9): 1791-1805.
Full text



No Suggested Reading articles found!