Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2022, Vol. 48 ›› Issue (7): 1813-1821.doi: 10.3724/SP.J.1006.2022.12047

• RESEARCH NOTES • Previous Articles     Next Articles

Genome-wide association analysis and candidate gene selection of yield related traits in rice

YANG Fei1(), ZHANG Zheng-Feng2(), NAN Bo1, XIAO Ben-Ze1,*()   

  1. 1College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
    2School of Life Sciences, Central China Normal University, Wuhan 430079, Hubei, China
  • Received:2021-07-13 Accepted:2021-11-30 Online:2022-07-12 Published:2021-12-24
  • Contact: XIAO Ben-Ze E-mail:1044708754@163.com;zhengfeng@mail.ccnu.edu.cn;benzexiao@mail.hzau.edu.cn
  • About author:First author contact:

    ** Contributed equally to this work

  • Supported by:
    National Major Project for Developing New GM Crops(2016ZX 08001-003)

Abstract:

Rice is the most important food crop for more than half of the world’s population, and the cultivation of rice varieties with high and stable yield is crucial for solving the world’s food problems. In this study, 226 rice core materials with relatively consistent growth stage were selected from “3K Rice Genome Project” and 2429 kb of high density genotype and 10 agronomic traits including growth period, plant height, effective panicle number, panicle length, spikelet density, seed setting rate, thousand-grains weight, yield per plant, spikelet per panicle, and grains per panicle were investigated by genome-wide associate study combined with 2429 kb of high-density genotype data. A total of 43 loci significantly associated with main agronomic traits were identified, including seven known loci, such as qRGP7.2, qPH12, qPL6.2, qSD6.2, qTGW1.1, qGP1, and qGP5.2. Six candidate genes were screened out, including LOC_Os12g18760 related to plant height, LOC_Os03g33530 related to effective panicle number, LOC_Os06g30940 related to panicle length, LOC_Os01g49810 related to thousand grains weight, LOC_Os09g25260 related to yield per plant, and LOC_Os09g32620 related to spikelet density and spikelet per panicle. These results provide important gene resources and the theoretical reference for genetic improvement of rice yield.

Key words: rice, yield, GWAS, candidate genes, genetic improvement

Fig. 1

LD decay diagram of different category groups of materials"

Fig. 2

Phylogenetic tree of population and kinship heatmap"

Table 1

Phenotypic performance of main agronomic traits"

性状
Trait
最小值
Max.
最大值
Min.
平均值±标准差
Mean±SD
变异系数
CV
偏度
Skewness
峰度
Kurtosis
生育期RGP 88.00 141.00 113.69±12.49 0.11 -0.22 -0.33
株高PH 70.83 212.52 125.40±29.63 0.24 0.47 -0.70
有效穗数EPN 1.50 30.00 11.26±4.01 0.36 0.75 2.58
穗长PL 12.19 35.32 24.93±3.78 0.15 -0.12 0.82
穗着粒密度SD 26.71 125.40 55.79±15.95 0.29 0.95 1.45
结实率SSR 2.72 94.48 54.35±21.74 0.40 -0.37 -0.68
千粒重TGW 13.63 34.67 21.48±3.07 0.14 0.52 1.52
单株产量YP 2.09 55.62 18.91±10.26 0.54 0.47 -0.23
每穗颖花数SP 32.56 320.96 139.25±42.67 0.31 0.62 1.28
每穗实粒数GP 10.20 182.85 76.00±37.61 0.49 0.41 -0.35

Table 2

Correlation coefficient for main agronomic traits"

性状
Trait
生育期
RGP
株高
PH
有效穗数
EPN
穗长
PL
穗着粒密度SD 结实率
SSR
千粒重
TGW
单株产量YP 每穗颖花数SP
株高PH 0.334**
有效穗数EPN -0.322** -0.118
穗长PL 0.409** 0.592** -0.068
穗着粒密度SD 0.285** -0.141* -0.194** -0.035
结实率SSR -0.114 0.117 0.265** 0.013 -0.003
千粒重TGW -0.043 0.127 -0.014 0.017 -0.357** -0.064
单株产量YP 0.006 0.148* 0.536** 0.247** 0.242** 0.740** -0.045
每穗颖花数SP 0.419** 0.137* -0.208** 0.420** 0.878** 0.008 -0.299** 0.340**
每穗实粒数GP 0.145* 0.191** 0.067 0.274** 0.459** 0.780** -0.246** 0.799** 0.560**

Fig. 3

Manhattan plot and QQ (quantile-quantile) plot of main agronomic traits"

Table 3

Sites detected by genome-wide association analysis of main agronomic traits"

性状
Trait
位点
Loci
染色体
Chr.
峰值SNP位置
Lead SNP location
等位基因
Allele
P
P-value
表型解释率
R2 (%)
已知基因或QTL
Known gene/QTL
着粒密度SD qSD2 2 23,186,794 G/A 4.62E-08 13.70
qSD3.1 3 1,157,127 G/T 2.32E-07 13.21
qSD3.2 3 1,237,405 C/T 3.23E-07 12.91
qSD4.1 4 624,883 A/G 3.95E-07 12.45
qSD4.2 4 21,988,379 A/T 9.13E-07 11.99
qSD6.1 6 1,288,379 C/G 3.95E-07 13.73
qSD6.2 6 4,195,628 A/C 4.43E-07 13.08 qSD-6[12]
qSD8 8 4,256,879 G/A 5.45E-07 11.94
qSD9 9 19,467,675 C/T 3.61E-10 18.35
qSD11 11 21,384,141 A/T 4.47E-07 13.46
结实率SSR qSSR1 1 5,869,453 C/T 3.99E-07 13.12
qSSR5 5 1,034,218 G/A 7.89E-07 14.62
千粒重TGW qTGW1.1 1 23,551,474 G/T 3.66E-07 12.34 gw1.6[9]
qTGW1.2 1 28,602,321 C/T 1.09E-07 14.27
单株产量YP qYP9 9 15,090,090 C/T 2.05E-07 15.40
每穗颖花数SP qSP9 9 19,467,675 C/T 2.25E-08 15.37
每穗实粒数GP qGP1 1 5,016,026 C/T 4.74E-07 12.88 Gn1a[5]
qGP4 4 4,823,582 A/T 8.26E-08 14.67
qGP5.1 5 4,768,623 G/C 1.70E-07 14.00
qGP5.2 5 24,181,775 G/C 6.36E-07 13.76 qFGP-5[12]
qGP7 7 19,529,904 A/T 9.90E-07 11.90
qGP10 10 1,461,247 C/G 7.41E-07 13.35
qGP12 12 18,869,520 C/T 5.68E-07 13.19
生育期RGP qRGP3 3 9,022,002 G/A 9.18E-08 8.00
qRGP7.1 7 8,213,977 C/T 6.75E-07 8.89
qRGP7.2 7 10,550,765 T/C 5.47E-07 4.61 Ghd7[10]
qRGP7.3 7 26,977,462 G/T 8.28E-07 8.39
qRGP9.1 9 5,217,056 G/A 2.15E-07 7.09
qRGP9.2 9 9,452,746 C/T 4.25E-07 9.68
株高PH qPH12 12 10,850,670 A/G 9.52E-09 13.74 rs10809004[26]
有效穗数EPN qEPN2.1 2 8,414,057 T/G 5.52E-07 12.87
qEPN2.2 2 21,565,076 G/A 4.42E-07 8.32
qEPN2.3 2 23,524,522 G/A 9.55E-08 14.15
qEPN3 3 19,153,885 A/C 3.25E-07 14.46
qEPN4 4 8,551,259 G/A 2.36E-07 13.85
qEPN7 7 9,522,613 C/A 6.85E-07 11.96
qEPN9 9 11,661,903 C/T 4.08E-07 13.23
qEPN10 10 11,248,685 G/A 1.89E-07 12.11
qEPN12 12 23,941,955 C/G 3.44E-07 14.09
穗长PL qPL3 3 4,492,601 A/G 1.31E-07 7.10
qPL6.1 6 7,837,937 G/A 7.68E-07 11.20
qPL6.2 6 18,006,896 C/T 2.95E-07 4.87 PL6-4[13]
qPL10 10 22,711,072 C/T 2.35E-08 4.22

Table 4

Candidate genes related to main agronomic traits"

性状
Trait
染色体
Chr.
Block区间
Block interval
SNP位置
SNP location
P
P-value
突变类型
Mutation type
候选基因
Candidate gene
株高PH 12 9,980,244-10,892,970 10,850,670 9.52E-09 Ile341Val LOC_Os12g18760
10,852,412 2.62E-07 Arg427Trp LOC_Os12g18760
有效穗数EPN 3 18,869,017-19,653,830 19,153,885 3.25E-07 His1596Gln LOC_Os03g33530
穗长PL 6 17,508,688-18,018,169 17,998,194 6.38E-07 Arg145Trp LOC_Os06g30940
17,998,633 5.87E-07 Val291Ala LOC_Os06g30940
17,998,980 5.42E-07 Ser407Pro LOC_Os06g30940
着粒密度SD 9 19,299,911-19,490,308 19,465,897 1.78E-09 Gln242* LOC_Os09g32620
千粒重TGW 1 28,102,929-28,992,862 28,600,008 4.75E-07 Asp238Glu LOC_Os01g49810
单株产量YP 9 14,973,503-15,128,976 15,126,639 3.38E-07 Ser89Leu LOC_Os09g25260
每穗实粒数SP 9 19,299,911-19,490,308 19,465,897 4.89E-08 Gln242* LOC_Os09g32620
[1] Godfray H C, Beddington J R, Crute I R, Haddad L, Lawrence D, Muir J F, Pretty J, Robinson S, Thomas S M, Toulmin C. Food security: the challenge of feeding 9 billion people. Science, 2010, 327: 812-818.
doi: 10.1126/science.1185383
[2] Takahashi Y, Shomura A, Sasaki T, Yano M. Hd6, a rice quantitative trait locus involved in photoperiod sensitivity, encodes the alpha subunit of protein kinase CK2. Proc Natl Acad Sci USA, 2001, 98: 7922-7927.
doi: 10.1073/pnas.111136798
[3] Kojima S, Takahashi Y, Kobayashi Y, Monna L, Sasaki T, Araki T, Yano M. Hd3a, a rice ortholog of the Arabidopsis FT gene, promotes transition to flowering downstream of Hd1 under short-day conditions. Plant Cell Physiol, 2002, 43: 1096-1105.
pmid: 12407188
[4] Doi K, Izawa T, Fuse T, Yamanouchi U, Kubo T, Shimatani Z, Yano M, Yoshimura A. Ehd1, a B-type response regulator in rice, confers short-day promotion of flowering and controls FT-like gene expression independently of Hd1. Genes Dev, 2004, 18: 926-936.
doi: 10.1101/gad.1189604
[5] Ashikari M, Sakakibara H, Lin S, Yamamoto T, Takashi T, Nishimura A, Angeles E R, Qian Q, Kitano H, Matsuoka M. Cytokinin oxidase regulates rice grain production. Science, 2005, 309: 741-745.
doi: 10.1126/science.1113373
[6] Fan C, Xing Y, Mao H, Lu T, Han B, Xu C, Li X, Zhang Q. GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor Appl Genet, 2006, 112: 1164-1171.
doi: 10.1007/s00122-006-0218-1
[7] Song X J, Huang W, Shi M, Zhu M Z, Lin H X. A QTL for rice grain width and weight encodes a previously unknown RING- type E3 ubiquitin ligase. Nat Genet, 2007, 39: 623-630.
doi: 10.1038/ng2014
[8] 赵芳明, 朱海涛, 丁效华, 曾瑞珍, 张泽民, 李文涛, 张桂权. 基于SSSL的水稻重要性状QTL的鉴定及稳定性分析. 中国农业科学, 2007, 40: 447-456.
Zhao F M, Zhu H T, Ding X H, Zeng R Z, Zhang Z M, Li W T, Zhang G Q. Detection of QTLs for traits of agronomic importance and analysis of their stabilities using SSSLs in rice. Sci Agric Sin, 2007, 40: 447-456. (in Chinese with English abstract)
[9] Kaladhar K, Swamy B, Babu A P, Reddy C S, Sarla N. Mapping quantitative trait loci for yield traits in BC2F2 population derived from Swarna × O. nivara cross. Rice Genet News, 2009, 24: 34-36.
[10] Xue W, Xing Y, Weng X, Zhao Y, Tang W, Wang L, Zhou H, Yu S, Xu C, Li X, Zhang Q. Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nat Genet, 2008, 40: 761-767.
doi: 10.1038/ng.143
[11] Li Y, Fan C, Xing Y, Jiang Y, Luo L, Sun L, Shao D, Xu C, Li X, Xiao J, He Y, Zhang Q. Natural variation in GS5 plays an important role in regulating grain size and yield in rice. Nat Genet, 2011, 43: 1266-1269.
doi: 10.1038/ng.977
[12] 陈燕华, 黄大辉, 邱永福, 张月雄, 刘芳, 马增凤, 刘驰, 李容柏. 水稻主要农艺性状的QTL分析. 华南农业大学学报, 2014, 35: 42-51.
Chen Y H, Huang D H, Qiu Y F, Zhang Y X, Liu F, Ma Z F, Liu C, Li R B. A QTL analysis of main agronomic characters in rice,Oryza sativa. J South China Agric Univ, 2014, 35: 42-51. (in Chinese with English abstract)
[13] Sun Z, Yin X, Ding J, Yu D, Hu M, Sun X, Tan Y, Sheng X, Liu L, Mo Y, Ouyang N, Jiang B, Yuan G, Duan M, Yuan D, Fang J. QTL analysis and dissection of panicle components in rice using advanced backcross populations derived from Oryza sativa cultivars HR1128 and ‘Nipponbare’. PLoS One, 2017, 12: e0175692.
doi: 10.1371/journal.pone.0175692
[14] Yu J, Buckler E S. Genetic association mapping and genome organization of maize. Curr Opin Biotechnol, 2006, 17: 155-160.
doi: 10.1016/j.copbio.2006.02.003
[15] Huang X, Wei X, Sang T, Zhao Q, Feng Q, Zhao Y, Li C, Zhu C, Lu T, Zhang Z, Li M, Fan D, Guo Y, Wang A, Wang L, Deng L, Li W, Lu Y, Weng Q, Liu K, Huang T, Zhou T, Jing Y, Li W, Lin Z, Buckler E S, Qian Q, Zhang Q F, Li J, Han B. Genome-wide association studies of 14 agronomic traits in rice landraces. Nat Genet, 2010, 42: 961-967.
doi: 10.1038/ng.695
[16] Zhou L, Liu S, Wu W, Chen D, Zhan X, Zhu A, Zhang Y, Cheng S, Cao L, Lou X, Xu H. Dissection of genetic architecture of rice plant height and heading date by multiple-strategy-based association studies. Sci Rep, 2016, 6: 29718.
doi: 10.1038/srep29718
[17] Begum H, Spindel J E, Lalusin A, Borromeo T, Gregorio G, Hernandez J, Virk P, Collard B, McCouch S R. Genome-wide association mapping for yield and other agronomic traits in an elite breeding population of tropical rice (Oryza sativa). PLoS One, 2015, 10: e0119873.
doi: 10.1371/journal.pone.0119873
[18] Li X, Chen Z, Zhang G, Lu H, Qin P, Qi M, Yu Y, Jiao B, Zhao X, Gao Q, Wang H, Wu Y, Ma J, Zhang L, Wang Y, Deng L, Yao S, Cheng Z, Yu D, Zhu L, Xue Y, Chu C, Li A, Li S, Liang C. Analysis of genetic architecture and favorable allele usage of agronomic traits in a large ppub of Chinese rice accessions. Sci China Life Sci, 2020, 63: 1688-1702.
doi: 10.1007/s11427-019-1682-6
[19] Wang W, Mauleon R, Hu Z, Chebotarov D, Tai S, Wu Z, Li M, Zheng T, Fuentes R R, Zhang F, Mansueto L, Copetti D, Sanciangco M, Palis K C, Xu J, Sun C, Fu B, Zhang H, Gao Y, Zhao X, Shen F, Cui X, Yu H, Li Z, Chen M, Detras J, Zhou Y, Zhang X, Zhao Y, Kudrna D, Wang C, Li R, Jia B, Lu J, He X, Dong Z, Xu J, Li Y, Wang M, Shi J, Li J, Zhang D, Lee S, Hu W, Poliakov A, Dubchak I, Ulat V J, Borja F N, Mendoza J R, Ali J, Li J, Gao Q, Niu Y, Yue Z, Naredo M E B, Talag J, Wang X, Li J, Fang X, Yin Y, Glaszmann J C, Zhang J, Li J, Hamilton R S, Wing R A, Ruan J, Zhang G, Wei C, Alexandrov N, McNally K L, Li Z, Leung H. Genomic variation in 3010 diverse accessions of Asian cultivated rice. Nature, 2018, 557: 43-49.
doi: 10.1038/s41586-018-0063-9
[20] Kawahara Y, de la Bastide M, Hamilton J P, Kanamori H, McCombie W R, Ouyang S, Schwartz D C, Tanaka T, Wu J, Zhou S, Childs K L, Davidson R M, Lin H, Quesada-Ocampo L, Vaillancourt B, Sakai H, Lee S S, Kim J, Numa H, Itoh T, Buell C R, Matsumoto T. Improvement of the Oryza sativa Nipponbare reference genome using next generation sequence and optical map data. Rice (New York), 2013, 6: 4.
[21] Alexander D H, Novembre J, Lange K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res, 2009, 19: 1655-1664.
doi: 10.1101/gr.094052.109 pmid: 19648217
[22] Bradbury P J, Zhang Z, Kroon D E, Casstevens T M, Ramdoss Y, Buckler E S. TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics, 2007, 23: 2633-2635.
pmid: 17586829
[23] Preacher K J, Hayes A F. SPSS and SAS procedures for estimating indirect effects in simple mediation models. Behavior Res Meth Instrum Comp, 2004, 36: 717-731.
[24] Si L, Chen J, Huang X, Gong H, Luo J, Hou Q, Zhou T, Lu T, Zhu J, Shang-Guan Y, Chen E, Gong C, Zhao Q, Jing Y, Zhao Y, Li Y, Cui L, Fan D, Lu Y, Weng Q, Wang Y, Zhan Q, Liu K, Wei X, An K, An G, Han B. OsSPL13 controls grain size in cultivated rice. Nat Genet, 2016, 48: 447-456.
doi: 10.1038/ng.3518
[25] Cingolani P, Platts A, Wang L, Coon M, Nguyen T, Wang L, Land S J, Lu X, Ruden D M. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin), 2012, 6: 80-92.
doi: 10.4161/fly.19695 pmid: 22728672
[26] Li N, Li Y. Ubiquitin-mediated control of seed size in plants. Front Plant Sci, 2014, 5: 332.
[27] 阮成江, 何祯祥, 钦佩. 我国农作物QTL定位研究的现状和进展. 植物学通报, 2003, 20: 10-22.
Ruan C J, He Z X, Qin P. Research advancements on crop QTL mapping in China. Chin Bull Bot, 2003, 20: 10-22. (in Chinese with English abstract)
[1] ZHU Chun-Quan, WEI Qian-Qian, XIANG Xing-Jia, HU Wen-Jun, XU Qing-Shan, CAO Xiao-Chuang, ZHU Lian-Feng, KONG Ya-Li, LIU Jia, JIN Qian-Yu, ZHANG Jun-Hua. Regulation effects of seedling raising by melatonin and methyl jasmonate substrate on low temperature stress tolerance in rice  [J]. Acta Agronomica Sinica, 2022, 48(8): 2016-2027.
[2] LIU Kun, HUANG Jian, ZHOU Shen-Qi, ZHANG Wei-Yang, ZHANG Hao, GU Jun-Fei, LIU Li-Jun, YANG Jian-Chang. Effects of panicle nitrogen fertilizer rates on grain yield in super rice varieties with different panicle sizes and their mechanism [J]. Acta Agronomica Sinica, 2022, 48(8): 2028-2040.
[3] LI Xin, WANG Jian, LI Ya-Bing, HAN Ying-Chun, WANG Zhan-Biao, FENG Lu, WANG Guo-Ping, XIONG Shi-Wu, LI Cun-Dong, LI Xiao-Fei. Effects of different intercropping systems on cotton yield, biomass accumulation, and allocation [J]. Acta Agronomica Sinica, 2022, 48(8): 2041-2052.
[4] WEI Gang, CHEN Dan-Yang, REN De-Yong, YANG Hong-Xia, WU Jing-Wen, FENG Ping, WANG Nan. Identification and gene mapping of slender stem mutant sr10 in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(8): 2125-2133.
[5] ZHOU Chi-Yan, LI Guo-Hui, XU Ke, ZHANG Chen-Hui, YANG Zi-Jun, ZHANG Fen-Fang, HUO Zhong-Yang, DAI Qi-Gen, ZHANG Hong-Cheng. Characteristics of vascular bundle of peduncle and flag leaf and assimilates translocation in leaves and stems of different types of rice varieties [J]. Acta Agronomica Sinica, 2022, 48(8): 2053-2065.
[6] CHEN Chi, CHEN Dai-Bo, SUN Zhi-Hao, PENG Ze-Qun, Adil Abbas, HE Deng-Mei, ZHANG Ying-Xin, CHENG Hai-Tao, YU Ping, MA Zhao-Hui, SONG Jian, CAO Li-Yong, CHENG Shi-Hua, SUN Lian-Ping, ZHAN Xiao-Deng, LYU Wen-Yan. Characterization and genetic mapping of a classic-abortive-type recessive genic-male-sterile mutant ap90 in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(7): 1569-1582.
[7] HUANG Fu-Deng, HUANG Yan, JIN Ze-Yan, HE Huan-Huan, LI Chun-Shou, CHENG Fang-Min, PAN Gang. Physiological characters and gene mapping of a precocious leaf senescence mutant ospls7 in rice (Orzo sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(7): 1832-1842.
[8] TAO Yu, YAO Yu, WANG Kun-Ting, XING Zhi-Peng, ZHAI Hai-Tao, FENG Yuan, LIU Qiu-Yuan, HU Ya-Jie, GUO Bao-Wei, WEI Hai-Yan, ZHANG Hong-Cheng. Combined effects of panicle nitrogen fertilizer amount and shading during grain filling period on grain quality of conventional japonica rice [J]. Acta Agronomica Sinica, 2022, 48(7): 1730-1745.
[9] YUAN Shen, PENG Shao-Bing. Comparison of grain heavy metal concentration between main and ratoon seasons of ratoon rice [J]. Acta Agronomica Sinica, 2022, 48(7): 1822-1831.
[10] ZHANG Shao-Hua, DUAN Jian-Zhao, HE Li, JING Yu-Hang, Urs Christoph Schulthess, Azam Lashkari, GUO Tian-Cai, WANG Yong-Hua, FENG Wei. Wheat yield estimation from UAV platform based on multi-modal remote sensing data fusion [J]. Acta Agronomica Sinica, 2022, 48(7): 1746-1760.
[11] CHEN Ling-Ling, LI Zhan, LIU Ting-Xuan, GU Yong-Zhe, SONG Jian, WANG Jun, QIU Li-Juan. Genome wide association analysis of petiole angle based on 783 soybean resources (Glycine max L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1333-1345.
[12] TIAN Tian, CHEN Li-Juan, HE Hua-Qin. Identification of rice blast resistance candidate genes based on integrating Meta-QTL and RNA-seq analysis [J]. Acta Agronomica Sinica, 2022, 48(6): 1372-1388.
[13] ZHENG Chong-Ke, ZHOU Guan-Hua, NIU Shu-Lin, HE Ya-Nan, SUN wei, XIE Xian-Zhi. Phenotypic characterization and gene mapping of an early senescence leaf H5(esl-H5) mutant in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1389-1400.
[14] ZHOU Wen-Qi, QIANG Xiao-Xia, WANG Sen, JIANG Jing-Wen, WEI Wan-Rong. Mechanism of drought and salt tolerance of OsLPL2/PIR gene in rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1401-1415.
[15] ZHENG Xiao-Long, ZHOU Jing-Qing, BAI Yang, SHAO Ya-Fang, ZHANG Lin-Ping, HU Pei-Song, WEI Xiang-Jin. Difference and molecular mechanism of soluble sugar metabolism and quality of different rice panicle in japonica rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1425-1436.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[5] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[6] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[7] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[8] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[9] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .
[10] XING Guang-Nan, ZHOU Bin, ZHAO Tuan-Jie, YU De-Yue, XING Han, HEN Shou-Yi, GAI Jun-Yi. Mapping QTLs of Resistance to Megacota cribraria (Fabricius) in Soybean[J]. Acta Agronomica Sinica, 2008, 34(03): 361 -368 .