Acta Agron Sin ›› 2015, Vol. 41 ›› Issue (09): 1343-1352.doi: 10.3724/SP.J.1006.2015.01343
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
CHEN Chen1, SUN Xiao-Li2, LIU Ai-Lin1, DUAN-MU Hui-Zi1, YU Yang1, XIAO Jia-Lei1, ZHU Yan-Ming1, *
[1] Kawanabe S, Zhu T C. Degeneration and conservation of Aneurolepisium chinense grassland in northern China. J Jpn Grassl Sci , 1991, 37: 91-99 [2] 李彬, 王志春, 孙志高, 陈渊, 杨福. 中国盐碱地资源与可持续利用研究. 干旱地区农业研究, 2005, 23(2): 154-158 Li B, Wang Z C, Sun Z G, Chen Y, Yang F. Resources and sustainable resource exploitation of salinized land in China. Agric Res Arid Areas , 2005, 23(2): 154-158 (in Chinese with English abstract) [3] Nakashima K, Ito Y, Yamaguchi-Shinozaki K. Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and grasses. Plant Physiol , 2009, 149: 88-95 [4] 李向华, 王克晶, 李福山, 严茂粉. 野生大豆( Glycine soja )研究现状与建议. 大豆科学, 2005, 24: 305-309 Li X H, Wang K J, Li F S, Yan M F. Research progress of wild soybean ( Glycine soja ) and suggestions for improving its effective utilization and protection. Soybean Sci , 2005, 24: 305-309 (in Chinese with English abstract) [5] Loewusa F A, Murthy P P N. Myo -inositol metabolism in plants. Plant Sci , 2000, 150: 1-19 [6] Nelson D E, Rammesmayer G, Bohnert H J. Regulation of cell-specific inositol metabolism and transport in plant salinity tolerance. Plant Cell , 1998, 10: 753-764 [7] Das-Chatterjee A, Goswami L, Maitra S, Dastidar K G, Ray S, Majumde A L. Introgression of a novel salt-tolerant L- myo - inositol 1-phosphate synthase from Porteresia coarctata (Roxb.) Tateoka ( PcINO1 ) confers salt tolerance to evolutionary diverse organisms. FEBS Lett , 2006, 580: 3980-3988 [8] Patra B, Ray S, Richter A, Majumder A L. Enhanced salt tolerance of transgenic tobacco plants by co-expression of PcINO1 and McIMT1 is accompanied by increased level of myo -inositol and methylated inositol. Protoplasma , 2010, 245: 143-152 [9] Kaur H, Verma P, Petla B P, Rao V, Saxena S C, Majee M. Ectopic expression of the ABA-inducible dehydration-responsive chickpea L- myo -inositol 1-phosphate synthase 2 ( CaMIPS2 ) in Arabidopsis enhances tolerance to salinity and dehydration stress. Planta , 2013, 237: 321-335 [10] Joshi R, Ramanarao M V, Baisakh N. Arabidopsis plants constitutively overexpressing a myo -inositol 1-phosphate synthase gene ( SaINO1 ) from the halophyte smooth cordgrass exhibits enhanced level of tolerance to salt stress. Plant Physiol Biochem , 2013, 65: 61-66 [11] Hegeman C E, Good L L, Grabau E A. Expression of D- myo -inositol-3-phosphate synthase in soybean. Implications for phytic acid biosynthesis. Plant Physiol , 2001, 125: 1941-1948 [12] Kido E A, Ferreira Neto J R, Silva R L, Belarmino L C, Bezerra Neto J P, Soares-Cavalcanti N M, Pandolfi V, Silva M D, Nepomuceno A L, Benko-Iseppon A M. Expression dynamics and genome distribution of osmoprotectants in soybean: identifying important components to face abiotic stress. BMC Bioinform , 2013, 14(suppl) 1: S7 [13] Willems E, Leyns L, Vandesompele J. Standardization of real-time PCR gene expression data from independent biological replicates. Anal Biochem , 2008, 379: 127-129 [14] Nour-Eldin H H, Hansen B G, Norholm M H, Jensen J K, Halkier B A. Advancing uracil-excision based cloning towards an ideal technique for cloning PCR fragments. Nucl Acids Res , 2006, 34: e122 [15] Clough S J, Bent A F. Floral dip: a simplified method for Agrobacterium -mediated transformation of Arabidopsis thaliana . Plant J , 1998, 16:735-743 [16] Lu B B, Du Z, Ding R X, Zhang L, Yu X J, Liu C H, Chen W S. Cloning and characterization of a differentially expressed phenylalanine ammonialyse gene ( liPAL ) after genome duplication from tetraploid Isatis indigotica fort. J Integr Plant Biol , 2006, 48: 1439-1449 [17] Cui M, Liang D, Wu S, Ma F W, Lei Y S. Isolation and developmental expression analysis of L- myo -inositol-1-phosphate synthase in four Actinidia species. Plant Physiol Biochem , 2013, 73: 351-358 [18] Rao P S, Mishra B, Gupta S R, Rathore A. Reproductive stage tolerance to salinity and alkalinity stresses in rice genotypes. Plant Breed , 2008, 127: 256-261 [19] Shi D C, Sheng Y M. Effect of various salt-alkaline mixed stress conditions on sunflower seedlings and analysis of their stress factors. Environ Exp Bot , 2005, 54: 8-21 [20] Shi D C, Yin L J. Difference between salt (NaCl) and alkaline (Na 2 CO 3 ) stresses on Puccinellia tenuiflora (Griseb.) Scribn et Merr. plants. Acta Bot Sin , 1993, 3: 144-149 [21] Majee M, Maitra S, Dastidar K G, Pattnaik S, Chatterjee A, Hait N C, Das K P, Majumder A L. A novel salt-tolerant L- myo - inositol-1-phosphate synthase from Porteresia coarctata (Roxb.) Tateoka, a halophytic wild rice: molecular cloning, bacterial overexpression, characterization, and functional introgression into tobacco-conferring salt tolerance phenotype. J Biol Chem , 2004, 279: 28539-28552 [22] Ghosh Dastidar K, Maitra S, Goswami L, Roy D, Das K P, Majumder A L. An insight into the molecular basis of salt tolerance of L- myo -inositol 1-P synthase ( PcINO1 ) from Porteresia coarctata (Roxb.) Tateoka, a halophytic wild rice. Plant Physiol , 2006, 140: 1279-1296 [23] Ge Y, Li Y, Zhu Y M, Bai X, Lv D K, Guo D, Ji W, Cai H. Global transcriptome profiling of wild soybean ( Glycine soja ) roots under NaHCO 3 treatment. BMC Plant Biol , 2010, 10: 153 [24] Johnson M D, Sussex I M. 1L- myo -inositol 1-phosphate synthase from Arabidopsis thaliana . Plant Physiol , 1995, 107: 613-619 [25] Wongkaew A, Nakasathien S, Srinives P. Isolation and characterization of D- myo -inositol-3-phosphate synthase from mungbean ( Vigna radiata ). Plant Mol Biol Rep , 2009, 28: 122-127 [26] Majumdera A L, Johnsonb M D, Henry S A. 1L- myo -inositol- 1-phosphate synthase. Biochim Biophys Acta , 1997, 1348: 245-256 [27] Zhu D, Li R, Liu X, Sun M, Wu J, Zhang N, Zhu Y. The positive regulatory roles of the TIFY10 proteins in plant responses to alkaline stress. PLoS One , 2014, 9: e111984 [28] Yoshida K T, Wada T, Koyama H, Mizobuchi-Fukuoka R, Naito S. Temporal and spatial patterns of accumulation of the transcript of myo -inositol-1-phosphate synthase and phytin-containing particles during seed development in rice. Plant Physiol , 1999, 119: 65-72 [29] Boominathan P, Shukla R, Kumar A, Manna D, Negi D, Verma P K, Chattopadhyay D. Long term transcript accumulation during the development of dehydration adaptation in Cicer arietinum . Plant Physiol , 2004, 135: 1608-1620 [30] Raboy V. Myo -inositol-1,2,3,4,5,6-hexakisphosphate. Phytochemistry , 2003, 64: 1033-1043 [31] Saxena S C, Salvi P, Kaur H, Verma P, Petla B P, Rao V, Kamble N, Majee M. Differentially expressed myo -inositol monophosphatase gene ( CaIMP ) in chickpea ( Cicer arietinum L.) encodes a lithium-sensitive phosphatase enzyme with broad substrate specificity and improves seed germination and seedling growth under abiotic stresses. J Exp Bot , 2013, 64: 5623-5639 |
[1] | CHEN Ying,ZHANG Sheng-Rui,WANG Lan,WANG Lian-Zheng,LI Bin,SUN Jun-Ming. Characteristics of oil components and its relationship with domestication of oil components in wild and cultivated soybean accessions [J]. Acta Agronomica Sinica, 2019, 45(7): 1038-1049. |
[2] | ZHU Ping-Hui**,CHEN Ran-Ran**,YU Yang,SONG Xue-Wei,LI Hui-Qing,DU Jian-Ying,LI Qiang,DING Xiao-Dong,ZHU Yan-Ming*. Cloning of Gene GsWRKY15 Related to Alkaline Stress and Alkaline Tolerance of Transgenic Plants [J]. Acta Agron Sin, 2017, 43(09): 1319-1327. |
[3] | FAN Hu, WEN Zi-Xiang, WANG Chun-E, WANG Fang, XING Guang-Nan, ZHAO Tuan-Jie,GAI Jun-Yi. Association Analysis between Agronomic-Processing Traits and SSR Markers and Genetic Dissection of Specific Accessions in Chinese Wild Soybean Population [J]. Acta Agron Sin, 2013, 39(05): 775-788. |
[4] | WANG Zhen-Yu,CAI Hua,BAI Xi,JI Wei,LI Yong,WEI Zheng-Wei,ZHU Yan-Ming. Isolation of GsGST19 from Glycine soja and Analysis of Saline-Alkaline Tolerance for Transgenic Medicago sativa [J]. Acta Agron Sin, 2012, 38(06): 971-979. |
[5] | CAI Hua, ZHU Yan-Meng, LI Yong, BAI Ti, JI Wei, WANG Dong-Dong, SUN Xiao-Li. Isolation and Tolerance Analysis of GsNAC20 Gene Linked to Response to Stress in Glycine soja [J]. Acta Agron Sin, 2011, 37(08): 1351-1359. |
[6] | XIAO Xin-Hui, LI Xiang-Hua, LIU Xiang, ZHANG Ying, WANG Ke-Jing. Difference of Ion Accumulation in Wild Soybean (Glycine soja) under High Saline-alkali Stress [J]. Acta Agron Sin, 2011, 37(07): 1289-1300. |
[7] | WANG Xi, LI Yong, ZHU Yan-Ming, BAI Xi, CAI Hua, JI Wei. Cloning and Tolerance Analysis of GsANN Gene Related to Response on Stress in Glycine soja [J]. Acta Agron Sin, 2010, 36(10): 1666-1673. |
[8] | FAN Jin-Ping;BAI Xi;LI Yong;JI Wei;WANG Xi;CAI Hua;ZHU Yan-Ming. Cloning and Function Analysis of Gene SAMS from Glycine soja [J]. Acta Agron Sin, 2008, 34(09): 1581-1587. |
[9] | WEN Zi-Xiang;ZHAO Tuan-Jie;ZHENG Yong-Zhan;LIU Shun-Hu;WANG Chun-E;WANG Fang;GAI Jun-Yi. Association Analysis of Agronomic and Quality Traits with SSR Markers in Glycine max and Glycine soja in China: II. Exploration of Elite Alleles [J]. Acta Agron Sin, 2008, 34(08): 1339-1349. |
[10] | WEN Zi-Xiang;ZHAO Tuan-Jie;ZHENG Yong-Zhan;LIU Shun-Hu;WANG Chun-E;WANG Fang;GAI Jun-Yi. Association Analysis of Agronomic and Quality Traits with SSR Markers in Glycine max and Glycine soja in China: I. Population Structure and Associated Markers [J]. Acta Agron Sin, 2008, 34(07): 1169-1178. |
[11] | GAI Jun-Yi;XU Dong-He;GAO Zhong;Yoshiya Shimamoto Jun Abe;Hirofumi Fukushi;Shunji Kitajima. Studies on the Evolutionary Relationship among Eco-types of G.max and G.soja in China [J]. Acta Agron Sin, 2000, 26(05): 513-520. |
|