Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2020, Vol. 46 ›› Issue (7): 1128-1133.doi: 10.3724/SP.J.1006.2020.93056

• RESEARCH NOTES • Previous Articles    

Evaluation of matrix reference material of Fumonisins FB1 in corn flour

NIU Xin-Ning,WANG Bu-Jun()   

  1. Institute of Crop Sciences, Chinese Academy of Agricultural Sciences / Cereal Quality Supervision and Testing Center, Ministry of Agriculture, Beijing 100081, China
  • Received:2019-10-15 Accepted:2020-03-24 Online:2020-07-12 Published:2020-04-21
  • Contact: Bu-Jun WANG E-mail:wangbujun@caas.cn
  • Supported by:
    National Natural Science Foundation of China(31701704);National Grain and Oil Crop Product Quality and Safety Risk Assessment Special(GJFP2019001);Science and Technology Innovation Project of Chinese Academy of Agricultural Sciences;National Key Research and Development Program(2016YFF0201803)

Abstract:

To fill the gap of matrix reference material of fumonisins in our country, we developed a reference material of Fumonisins FB1 in corn flour. The homogeneity and stability of corn samples were tested by UPLC-MS/MS after screening, labeling, freeze-drying, grinding, mixing and sealing it. The content of Fumonisins FB1 in corn flour was determined by several laboratories, and the uncertainty of samples was analyzed. The homogeneity of the sample was calculated, with 1.42 of F which was less than the critical F0.05, and there was no significant change in the content of Fumonisins FB1 within the limited time for six months. The results showed that the uniformity and stability fulfill the requirements of reference material. The determined value of the sample was 1475.56 μg kg-1, and the uncertainty was 169.98 μg kg-1. The reference material can be used to calibrate the instrument, control laboratory quality and evaluate the testing quality of operators during the testing process of Fumonisins.

Key words: corn flour, Fumonisins FB1, UPLC-MS/MS, reference material

Table 1

Test results of homogeneity of Fumzonisins FB1 in corn flour (μg kg-1)"

编号
No.
测定值Estimated value 平均值
Mean
样品1 Sample 1 样品2 Sample 2 样品3 Sample 3
1 1526.94 1515.99 1548.48 1530.47
2 1475.93 1561.67 1466.99 1501.53
3 1541.65 1578.75 1586.70 1569.03
4 1642.69 1523.99 1477.12 1547.93
5 1547.76 1553.40 1320.62 1473.93
6 1550.76 1523.61 1429.61 1501.33
7 1409.22 1429.40 1519.65 1452.76
8 1564.07 1584.00 1582.17 1576.74
9 1515.83 1487.58 1465.17 1489.52
10 1550.90 1519.14 1513.76 1527.93
11 1498.30 1473.52 1516.96 1496.26
12 1425.48 1570.33 1425.64 1473.82
13 1455.89 1375.58 1479.23 1436.90
14 1461.25 1342.56 1568.66 1457.49
15 1446.23 1483.95 1393.13 1441.11
组间标准偏差的平方 S12 5915.88
组内标准偏差的平方 S22 4164.09
统计量F Statistic F 1.42
F0.05(14,30) 2.04
判断 Judgment 均匀 Inhomogeneous

Table 2

Short-term stability test results of Fumonisins FB1 in corn flour (μg kg-1)"

时间
Day (d)
测定值 Estimated value 平均值
Mean
样品1 Sample 1 样品2 Sample 2 样品3 Sample 3
0 1443.21 1527.20 1401.19 1457.20
1 1437.83 1505.11 1410.89 1451.28
4 1483.95 1512.63 1563.87 1520.15
7 1457.61 1471.37 1438.96 1455.98
14 1412.94 1400.17 1369.62 1394.24
斜率 b1 -4.79
斜率不确定度 s(b1) 3.64
临界值 t0.95, n-2×s(b1) 11.58
结论Conclusion 稳定Stabilization

Fig. 1

Analysis chart of short-term stability trend of Fumonisins FB1 in corn flour"

Table 3

Long-term stability test results of Fumonisins FB1 in corn flour (μg kg-1)"

温度
Temperature
时间(月)
Time (month)
测定值Estimated value 平均值
Mean
斜率
b1
临界值
t0.95, n-2×s(b1)
结论
Conclusion
样品1
Sample 1
样品2
Sample 2
样品3
Sample 3
4℃ 0 1443.21 1527.20 1401.19 1457.20 -20.86 31.60 稳定
Stabilization
1 1481.61 1527.86 1525.53 1511.67
2 1368.36 1430.24 1428.94 1409.18
4 1442.54 1422.36 1477.85 1447.58
6 1389.45 1334.99 1283.45 1335.96
-18℃ 1 1468.15 1382.05 1450.64 1433.62 -10.27 31.40 稳定Stabilization
2 1498.44 1526.57 1531.25 1518.75
4 1407.69 1372.59 1405.98 1395.42
6 1457.35 1381.64 1398.07 1412.35

Fig. 2

Analysis chart of long-term stability trend of Fumonisins FB1 in corn flour"

Table 4

Results of joint determination of fixed value by various laboratories (μg kg-1)"

实验室编号
Laboratory number
测定值Estimated value
1 2 3 4 5 6
A 930 940 940 950 960 1100
B 1400 1300 1500 1500 1300 1300
C 1800 1500 1300 1600 1400 1400
D 1800 2200 1900 2200 2100 2300
E 1400 1400 1200 1300 1400 1400
F 1500 1500 1500 1600 1600 1700
平均值Mean 1475.56
[1] 杨朋飞, 王南希, 屈凌波, 伍松陵, 孙长坡. 伏马毒素消减方法研究进展. 粮油食品科技, 2015, (5):82-85.
Yang P F, Wang N X, Qu L B, Wu S L, Sun C P. Research progress in fumonisins’ degradation. Sci Technol Cereals Oils Foods, 2015, (5):82-85 (in Chinese with English abstract).
[2] Ramesh C G. Reproductive and Developmental Toxicology. NewYork: Academic Press, 2017. pp 925-943.
[3] Poersch A B, Trombetta F, Souto N S, Oliveira Lima C, Braga A C M, Dobrachinski F, Ribeiro L R, Soares F A, Fighera M R, Royes L F F, Oliveira M S, Furian A F. Fumonisin B1 facilitates seizures induced by pentylenetetrazol in mice. Neurotoxicol Teratol, 2015,51:61-67.
pmid: 26342287
[4] Pepeljnjak S, Petrinec Z, Kovaci S, Segvic M. Screening toxicity study in young carp (Cyprinus carpio L.) on feed amended with Fumonisin B1. Arch Ind Hygiene Toxicol, 2009,60:419-426.
[5] Osuchowski M F, Edwards G L, Sharma R P. Fumonisin B1 induced neurodegeneration in mice after intracerebroventricular infusion is concurrent with disruption of sphingolipid metabolism and activation of proinflammatory signaling. Neurotoxicology, 2005,26:211-221.
doi: 10.1016/j.neuro.2004.10.001 pmid: 15713342
[6] Antonissen G, Van Immerseel, Pasmans F, Ducatalle R, Janssens G P, De Baere S, Mountzouris K C, Su S, Wong E A, De Meulenaer B, Verlinden M, Devreese M, Haesebrouck F, Novak B, Dohnal I, Martel A, Groubels S. Mycotoxins deoxynivalenol and fumonisins alter the extrinsic component of intestinal barrier in broiler chickens. J Agr Food Chem, 2015,63:10846-10855.
[7] Grenier B, Loureiro-Bracarense A P, Lucioli J, Pacheco G D, Cossalter A M, Moll W D, Schatzmayr G, Oswald I P. Individual and combined effects of subclinical doses of deoxynivalenol and fumonisins in piglets. Mol Nutr Food Res, 2011,55:761-771.
doi: 10.1002/mnfr.201000402 pmid: 21259430
[8] Li Y, Fan Y, Xia B, Xian Q, Wang Q, Sun W, Zhang H, He C. The immunosuppressive characteristics of FB1 by inhibition of maturation and function of BMDCs. Int Immunopharmacol, 2017,47:206-211.
doi: 10.1016/j.intimp.2017.03.031 pmid: 28432936
[9] Mahmoodi M, Alizadeh A M, Sohanaki H, Rezaei N, Amini-Najafi F, Khosravi A R, Hosseini S K, Safari Z, Hydarnasab D, Khori V. Impact of fumonisin B1 on the production of inflammatory cytokines by gastric and colon cell lines. Iran J Allergy Asthma Immunol, 2012,11:165-173.
doi: 011.02/ijaai.165173 pmid: 22761190
[10] Keck B B, Bodine A B. The effects of fumoniisin B1 on viability and mitogenic response of avian immune cells. Poultry Sci, 2006,85:1020-1024.
[11] Singh M P, Kang S C. Endoplasmic reticulum stress-mediated autophagy activation attenuates fumonisin B1 induced hepato-toxicity in vitro and in vivo. Food Chem Toxicol, 2017,110:371-382.
doi: 10.1016/j.fct.2017.10.054 pmid: 29097114
[12] Loiseau N, Polizzi A, Dupuy A, Therville N, Rakotonirainy M, Loy J, Viadere J L, Cossalter A M, Bailly J D, Puel O, Kolf-Clauw M, Bertrand-Michel J, Levade T, Guillou H, Oswald I P. New insights into the organ-specific adverse effects of fumonisin B1: comparison between lung and liver. Arch Toxicol, 2005,89:1619-1629.
doi: 10.1007/s00204-014-1323-6 pmid: 25155190
[13] Riley R T, Voss K A. Differential sensitivity of rat kidney and liver to fumonisin toxicity: organ-specific differences in toxin accumulation and sphingoid base metabolism. Toxicol Sci, 2006,92:335-345.
doi: 10.1093/toxsci/kfj198 pmid: 16613836
[14] Bouhet S, Oswald I P. The intestine as a possible target for fumonisin toxicity. Mol Nutr Food Res, 2007,51:925-931.
doi: 10.1002/mnfr.200600266 pmid: 17642075
[15] Ewuola E O, Egbunike G N. Gonadal and extra-gonadal sperm reserves and sperm production of pubertal rabbits fed dietary fumonisin B1. Animal Reprod Sci, 2010,119:282-286.
[16] Somosk I B, Kov C M, Cseh S. Effects of T-2 and fumonisin B1 combined treatment onin vitro mouse embryo development and blastocyst quality. Toxicol Ind Health, 2018,34:353-360.
[17] Bondy G, Mehta R, Caldwell D, Coady L, Armstrong C, Savard M, Miller J D, Chomyshyn E, Bronson R, Zitomer N, Riley R T. Effects of long term exposure to the mycotoxin fumonisin B1 in p53 heterozygous and p53 homozygous transgenic mice. Food Chem Toxicol, 2012,50:3604-3613.
doi: 10.1016/j.fct.2012.07.024 pmid: 22841953
[18] KÖppen R, Bremser W, Stephan I, Klein-hartwig K, Rasenko T, Koch M. T-2 and HT-2 toxins in oat flakes: development of a certified reference material. Anal Bioanal Chem, 2015,407:2997-3007.
pmid: 25399074
[19] 刘素丽, 王宏伟, 赵梅, 曹进, 黄丙楠, 钮正睿. 食品中基体标准物质研究进展. 食品安全质量检测学报, 2019,10(1):8-13.
Liu S L, Wang H W, Zhao M, Cao J, Huang B N, Niu Z R. Research progress of matrix reference materials for food. J Food Saf Qual, 2019,10(1):8-13 (in Chinese with English abstract).
[20] 中华人民共和国国家质量监督检验检疫总局. 一级标准物质技术规范: JJF 1006-1994. 北京: 中国计量出版社, 1994.
General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. Technical Norm of Primary Reference Material: JJF 1006-1994. Beijing: Chinese Metrology Press, 1994 (in Chinese).
[21] 中华人民共和国国家质量监督检验检疫总局. 标准物质定值的通用原则及统计学原理: JJF 1343-2012. 北京: 中国标准出版社, 2012.
General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. General and Statistical Principles for Characterization of Reference Materials: JJF 1343-2012. Beijing: Standards Press of China, 2012 (in Chinese).
[22] ISO. ISO Guide 35: 2006 Reference Materials-general and Statiscal Principles for Certification. International Organization for Standardization (ISO): Geneva, 2006.
[23] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 标准样品工作导则: (3)标准样品定值的一般原则和统计方法: GB/T 15000. 3-2008. 北京: 中国计量出版社, 2008.
General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. Standardization Administration of the People's Republic of China. Standard Sample Work Guidelines: (3) Reference Materials-General and Statistical Principles for Certification: GB/T 15000. 3-2008. Beijing: Chinese Metrology Press, 2008 (in Chinese).
[24] 中国实验室国家认可委员会. 化学分析中不确定度的评估指南. 北京: 中国计量出版社, 2006. pp 31-36.
China National Accreditation Board for Laboratories. Guidance on Evaluating the Uncertainty in Chemical Analysis. Beijing: Chinese Metrology Press, 2006. pp 31-36(in Chinese).
[25] 中国国家标准化管理委员会. 检测实验室中常用不确定度评定方法与表示: GB/T 27411-2012. 北京: 中国计量出版社, 2013.
Standardization Administration of the People’s Republic of China. Routine Methods for Evaluation and Expression of Measurement Uncertainty in Testing Laboratory: GB/T 27411-2012. Beijing: Chinese Metrology Press, 2013 (in Chinese).
[1] SHAN Lu-Ying, LI Jun, LI Liang, ZHANG Li, WANG Hao-Qian, GAO Jia-Qi, WU Gang, WU Yu-Hua, ZHANG Xiu-Jie. Development of genetically modified maize (Zea mays L.) NK603 matrix reference materials [J]. Acta Agronomica Sinica, 2022, 48(5): 1059-1070.
[2] WANG Wei-Xia, LAI Feng-Xiang, HU Hai-Yan, HE Jia-Chun, WEI Qi, WAN Pin-Jun, FU Qiang. Effect of 11-year storage of GMO reference material at ultra-low temperature on nucleic acid detection of standard matrix sample of transgenic crop [J]. Acta Agronomica Sinica, 2022, 48(1): 238-248.
[3] LI Jun,LI Liang,LI Xia-Ying,SONG Gui-Wen,SHEN Ping,ZHANG Li,ZHAI Shan-Shan,LIU Fang-Fang,WU Gang,ZHANG Xiu-Jie,WU Yu-Hua. Development of genetically modified maize MIR604 matrix reference materials [J]. Acta Agronomica Sinica, 2020, 46(4): 473-483.
[4] UN Juan,LI Wei-Xi,ZHANG Yan,SUN Li-Juan,DONG Xiao-Li,HU Xue-Xu,WANG Bu-Jun. Simultaneous Determination of Twelve Mycotoxins in Cereals by Ultra-high Performance Liquid Chromatography-Tandem Mass Spectrometry [J]. Acta Agron Sin, 2014, 40(04): 691-701.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!