Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2020, Vol. 46 ›› Issue (7): 1120-1127.doi: 10.3724/SP.J.1006.2020.94173

• RESEARCH NOTES • Previous Articles     Next Articles

Cloning and functional analysis of the sweet potato sucrose transporter IbSUT3

WANG Dan-Dan1,**,LIU Hong-Juan1,**,WANG Hong-Xia2,ZHANG Peng2,*(),SHI Chun-Yu1,*()   

  1. 1 College of Agronomy, Shandong Agricultural University, Tai’an 271018, Shandong, China
    2 National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
  • Received:2019-11-11 Accepted:2020-03-24 Online:2020-07-12 Published:2020-04-03
  • Contact: Peng ZHANG,Chun-Yu SHI E-mail:zhangpeng@cemps.ac.cn;scyu@sdau.edu.cn
  • About author:** Contributed equally to this work
  • Supported by:
    National Natural Science Foundation of China Youth Fund(31701357);Shandong Agriculture Innovation Team(SDAIT-16-01)

Abstract:

Sucrose, as the main transporter of photosynthate, is transported by sucrose transporters. In this study, we cloned IbSUT3 gene from sweet potato (Ipomoea batatas Lam. GenBank accession number MN233361), by RACE technique. The full-length sequence of the gene is 1607 bp and the complete open reading frame is 1518 bp, encoding 505 amino acids. The predicted protein has the molecular weight of 53.82 kD and isoelectric point of 9.19, containing 12 transmembrane domains. Multiple sequence alignment analysis indicated the protein, belonging to Group I, was significantly different from Group IV in evolution and shared high similarities with SUTs from other plant species. IbSUT3 had the function of transporting sucrose verified by SUSY7/ura3 system. Subcellular localization showed that IbSUT3 protein was located in the tobacco protoplasts plasma membrane. The qRT-PCR results showed that IbSUT3 highly expressed in leaves and induced by drought, high salt, low temperature and exogenous abscisic acid, suggesting that IbSUT3 is involved in response to various abiotic stresses, including abscisic acid.

Key words: sucrose transporters, IbSUT3 gene, subcellular localization, function analysis, adversity stresses

Table 1

Information of primers"

引物Primer 序列 Sequence (5'-3') 目的 Purpose
E3-F AGATAGTAATGGTGGCCTCCATTGC EST序列扩增
E3-R GCGAAGCCAATGAGGAAGACAGC EST sequence amplification
Sp-F1 AGATAGTAATGGTGGCGTCCATTGC 3'端和5'端RACE扩增
Sp-F2 GCGTCCTTTATGTGGCTTTGTGG 3' and 5'-RACE amplification
Sp-R1 TGAGATTGGCGCAGTAAACG
Sp-R2 GCGGCGAAGCCAATGAGGAA
IbSUT3-F CCATTCAGGCTGCGCAACT IbSUT3全长扩增
IbSUT3-R TTAAGAAATTAATTCCAAGGTCCAT IbSUT3 full-length amplification
SUT3Q-F CGGAAAATCCTCCTTGCAAGTG 荧光定量PCR
SUT3Q-R GACGCCACCATTACTATCTTCC Real-time PCR
Actin-F CTGGTGTTATGGTTGGGATGG
Actin-R GGGGTGCCTCGGTAAGAAG
SUT3m-F CATCGATATGGAGAGAGACTCCGTTAACG 酵母功能验证
SUT3m-R CCCCGGGTCAGTGGAAACCACCACCAGAT Yeast function verification
SUT3g-F ACGCGTCGACATGGAGAGAGACTCCGTTAACGGAA 亚细胞定位
SUT3g-R GGACTAGTACGTGGAAACCACCACCAGATAGCTCA Subcellular localization

Fig. 1

PCR amplified products of IbSUT3 A: the EST sequences amplification of IbSUT3; B: the 3'-RACE and 5'-RACE amplification of IbSUT3; C: the full length amplification of IbSUT3."

Fig. 2

Putative transmembrane predication of IbSUT3"

Fig. 3

Multiple alignment of the amino acid sequences of IbSUT3 with other species"

Fig. 4

Phylogenetic analysis between IbSUT3 and SUTs proteins from other plants species Nt: Nicotiana tabacum; St: Solanum tuberosum; Ib: Ipomoea batatas; Md: Malus domestica; Le: Solanum lycopersicum."

Fig. 5

IbSUT3 function analysis A: growth of transformed yeast strain on media of 2% sucrose; B: growth of transformed yeast strain on media of 2% glucose."

Fig. 6

Analysis of IbSUT3 subcellular localization"

Fig. 7

Expression of IbSUT3 in different tissues L: leaf; B: petiol; J: stem; WR: white root; DR: developmental root; MR: mature root. Bars indexed with different lowercase letters are significantly different at the 0.05 probability level."

Fig. 8

Expression profiles of IbSUT3 under stresses Bars indexed with different lowercase letters are significantly different at the 0.05 probability level."

[1] Lalonde S, Wipf D, Frommer W B. Transport mechanisms for organic forms of carbon and nitrogen between source and sink. Annu Rev Plant Biol, 2004,55:341-372.
doi: 10.1146/annurev.arplant.55.031903.141758 pmid: 15377224
[2] Durand M, Mainson D, Porcheron B, Maurousset L, Lemoine R, Pourtau N. Carbon source-sink relationship in Arabidopsis thaliana: the role of sucrose transporters. Planta, 2018,247:587-611.
pmid: 29138971
[3] Peng C C, Zhao X L. Function and regulation of plant sucrose transporter. Plant Physiol Commun, 2010,46:317-324.
[4] Liesche J, Krügel U, He H, Chincinska I, Hackel A, Kühn C. Sucrose transporter regulation at the transcriptional, post-transcriptional and post-translational level. J Plant Physiol, 2011,168:1426-1433.
doi: 10.1016/j.jplph.2011.02.005 pmid: 21444123
[5] Yan N. Structural advances for the major facilitator superfamily (MFS) transporters. Trends Biochem Sci, 2013,38:151-159.
doi: 10.1016/j.tibs.2013.01.003 pmid: 23403214
[6] 高蕾, 肖文芳, 李文燕, 彭昌操. 拟南芥蔗糖转运蛋白(SUTs)的功能研究进展. 分子植物育种, 2011,9:251-255.
Gao L, Xiao W F, Li W Y, Peng C C. Research progress on the function of Arabidopsis sucrose transporter (SUTs). Mol Plant Breed, 2011,9:251-255 (in Chinese with English abstract).
[7] 孙学武, 谭炎宁, 孙志忠, 袁定阳, 段美娟. 水稻蔗糖转运蛋白研究进展. 生命科学研究, 2014,18:157-161.
Sun X W, Tan Y N, Sun Z Z, Yuan D Y, Duan M J. Research progress on rice sucrose transporter. Life Sci Res, 2014,18:157-161 (in Chinese with English abstract).
[8] Chincinska I A. Liesche J, Krügel U, Michalska J, Geigenberger P, Grimm B, Kühn C. Sucrose transporter StSUT4 from potato affects flowering, tuberization, and shade avoidance response. Plant Physiol, 2008,146:515-528.
pmid: 18083796
[9] 贺红霞, 陈亮, 康爽. 玉米ZmSUT4-J基因的克隆与植物表达载体构建. 东北农业科学, 2015,40(3):18-22.
He H X, Chen L, Kang S. Cloning of maize ZmSUT4-J gene and construction of plant expression vector. Northeast Agric Sci, 2015,40(3):18-22 (in Chinese with English abstract).
[10] Payyavula R S, Tay K H, Tsai C J. The sucrose transporter family in Populus: the importance of a tonoplast PtaSUT4 to biomass and carbon partitioning. Plant J, 2015,65:757-770.
pmid: 21261761
[11] Chincinska I, Gier K, Krügel U, Liesche J, He H, Grimm B, Harren F J, Cristescu S M, Kühn C. Photoperiodic regulation of the sucrose transporter StSUT4 affects the expression of circadian-regulated genes and ethylene production. Front Plant Sci, 2013,4:26.
pmid: 23429841
[12] Bürkle L, Hibberd J M, Quick W P, Kuhn C, Hirner B, Frommer W B. The H+-sucrose cotransporter NtSUT1 is essential for sugar export from tobacco leaves. Plant Physiol, 1998,118:59-68.
doi: 10.1104/pp.118.1.59 pmid: 9733526
[13] Gong X, Liu M, Ruan Y, Ding R, Ji Y, Zhang N, Zhang S, Farmer J, Wang C. Arabidopsis AtSUC2 and AtSUC4, encoding sucrose transporters, are required for abiotic stress tolerance in an ABA-dependent pathway. Physiol Plant, 2014,153:119-136.
pmid: 24814155
[14] Yan L, Gu Y, Hua Q, Zhang Y Z. Two pairs of sucrose transporters in Ipomoea batatas (L.) Lam are predominantly expressed in sink leaves and source leaves respectively. Plant Sci, 2010,179:250-256.
[15] 李岩, 王海燕, 张义正. 甘薯蔗糖转运蛋白IbSUT1x在酵母细胞中的定位. 应用与环境生物学报, 2010,16:798-802.
Li Y, Wang H Y, Zhang Y Z. Localization of sweet potato sucrose transporter IbSUT1x in yeast cells. Chin J Appl Environ Biol, 2010,16:798-802 (in Chinese with English abstract).
[16] Riesmeier J W, Willmitzer L, Frommer W B. Isolation and characterization of a sucrose carrier cDNA from spinach by functional expression in yeast. EMBO J, 1992,11:4705-4713.
pmid: 1464305
[17] Drechsel G, Bergler J, Wippel K, Sauer N, Vogelmann K, Hoth S. C-terminal armadillo repeats are essential and sufficient for association of the plant U-box armadillo E3 ubiquitin ligase SAUL1 with the plasma membrane. Exp Bot, 2011,62:775-785.
doi: 10.1093/jxb/erq313
[18] Abel S, Theologis A. Transient transformation of Arabidopsis leaf protoplasts: a versatile experimental system to study gene expression. Plant J, 1994,5:421-427.
doi: 10.1111/j.1365-313x.1994.00421.x pmid: 8180625
[19] 伍宝朵, 周蓉, 陈海峰. 蔗糖载体调控作物“源、库”分配的研究进展. 中国农学通报, 2012,28(6):26-30.
Wu B D, Zhou R, Chen H F. The progress about sucrose transporters mediate crop sucrose from source to sink. Chin Agric Sci Bull, 2012,28(6):26-30 (in Chinese with English abstract).
[20] Weise A, Barker L, Kühn C, Buschmann H, Frommer W B, Ward J M. A new subfamily of sucrose transporters, SUT4, with low affinity/high capacity localized in enucleate sieve elements of plants. Plant Cell, 2000,12:1345-1355.
pmid: 10948254
[21] Deol K. Molecular Cloning and Functional Characterization of a New Sucrose Transporter in Hexaploid Wheat (Triticum aestivum L.). PhD Dissertation of the University of Manitoba, Manitoba, Canada, 2012.
[22] Riesmeier J W, Willmitzer L, Frommer W B. Antisense repression of the sucrose transporter affects assimilate partitioning in transgenic potato plants. EMBO J, 1994,13:1-7.
pmid: 8306952
[23] Kühn C, Fernie A R, Roessner-Tunali U. The sucrose transporter StSUT1 localizes to sieve elements in potato tuber phloem and influences tuber physiology and development. Plant Physiol, 2003,131:102-113.
pmid: 12529519
[24] Gottwald J R, Krysan P J, Young J C, Evert R F, Sussman M R. Genetic evidence for the in planta role of phloem-specific plasma membrane sucrose transporters. Proc Natl Acad Sci USA, 2001,97:13979-13984.
doi: 10.1073/pnas.250473797 pmid: 11087840
[25] Burkle L. The H+-sucrose cotransporter NtSUT1 is essential for sugar export from tobacco leaves. Plant Physiol, 1998,118:59-68.
doi: 10.1104/pp.118.1.59 pmid: 9733526
[26] Xu Q, Chen S, Yun J R. Regulation of sucrose transporters and phloem loading in response to environmental cues. Plant Physiol, 2018,17:930-945.
[27] Noiraud N. The sucrose transporter ofCelery identification and expression during salt stress. Plant Physiol, 2000,122:1447-1456.
doi: 10.1104/pp.122.4.1447 pmid: 10759540
[1] FENG Ya, ZHU Xi, LUO Hong-Yu, LI Shi-Gui, ZHANG Ning, SI Huai-Jun. Functional analysis of StMAPK4 in response to low temperature stress in potato [J]. Acta Agronomica Sinica, 2022, 48(4): 896-907.
[2] WANG Zhen, YAO Meng-Nan, ZHANG Xiao-Li, QU Cun-Min, LU Kun, LI Jia-Na, LIANG Ying. Prokaryotic expression, subcellular localization and yeast two-hybrid library screening of BnMAPK1 in B. napus [J]. Acta Agronomica Sinica, 2020, 46(9): 1312-1321.
[3] HENG You-Qiang,YOU Xi-Long,WANG Yan. Pathogenesis-related protein gene SfPR1a from Salsola ferganica enhances the resistances to drought, salt and leaf spot disease in transgenic tobacco [J]. Acta Agronomica Sinica, 2020, 46(4): 503-512.
[4] LI Na-Na, LIU Ying, ZHANG Hao-Jie, WANG Lu, HAO Xin-Yuan, ZHANG Wei-Fu, WANG Yu-Chun, XIONG Fei, YANG Ya-Jun, WANG Xin-Chao. Promoter cloning and expression analysis of the hexokinase gene CsHXK2 in tea plant (Camellia sinensis) [J]. Acta Agronomica Sinica, 2020, 46(10): 1628-1638.
[5] Ling WANG,Feng LIU,Ming-Jian DAI,Ting-Ting SUN,Wei-Hua SU,Chun-Feng WANG,Xu ZHANG,Hua-Ying MAO,Ya-Chun SU,You-Xiong QUE. Cloning and Expression Characteristic Analysis of ScWRKY4 Gene in Sugarcane [J]. Acta Agronomica Sinica, 2018, 44(9): 1367-1379.
[6] Fang-Meng DUAN, Qiu-Lan LUO, Xue-Li LU, Na-Wei QI, Xian-Shun LIU, Wen-Wen SONG. Cloning of the Key Gene ZmCYP90B1 in Brassinosteroids Biosynthesis from Zea mays and Its Response to Adversity Stresses [J]. Acta Agronomica Sinica, 2018, 44(03): 343-356.
[7] Mao-Ni CHAO, Qing-Yu WEN, Zhi-Yong ZHANG, Gen-Hai HU, Jin-Bao ZHANG, Guo WANG, Qing-Lian WANG. Sequence Characteristics and Expression Analysis of Potassium Transporter Gene GhHAK5 in Upland Cotton (Gossypium hirsutum L.) [J]. Acta Agronomica Sinica, 2018, 44(02): 236-244.
[8] XU Ning,CHEN Bing-Xu,WANG Ming-Hai,BAO Shu-Ying,WANG Gui-Fang,GUO Zhong-Xiao. Identification of Alkali Tolerance of Mungbean Germplasm Resources during Germination [J]. Acta Agron Sin, 2017, 43(01): 112-121.
[9] ZHENG Ling,SHI Ling-Min,TIAN Hai-Ying,SHAN Lei,BIAN Fei,GUO Feng. Cloning and Functional Analysis of Peanut AhDGAT2a Promoter? [J]. Acta Agron Sin, 2016, 42(07): 1094-1099.
[10] Lü Gao-Qiang,WU Xiang-Yang,WANG Xin-Yu. Cloning and Characterization of a Novel Gene Encoding Proline-Rich Protein in Sesame [J]. Acta Agron Sin, 2015, 41(12): 1810-1818.
[11] MA Li-Gong,ZHANG Yun-Hua,MENG Qing-Lin,SHI Feng-Mei,LIU Jia,LI Yi-Chu,WANG Zhi-Ying. Cloning and Function Analysis of Pathogenesis Related Protein Gene HaPR1 from Sunflower (Helianthus annuus) [J]. Acta Agron Sin, 2015, 41(12): 1819-1827.
[12] WANG Er-Hui, HU Li-Qin, XUE Fei-Yang, LI Wei-Wei, XU Zhao-Shi, LI Lian-Cheng, ZHOU Yong-Bin, MA You-Zhi, DIAO Xian-Min, JIA Guan-Qing, CHEN Ming, MIN Dong-Hong. Overexpression of Millet Transcription Factor Gene SiNAC45 to Response of Low Potassium Stress and ABA Treatment in Transgenic Arabidopsis [J]. Acta Agron Sin, 2015, 41(09): 1445-1453.
[13] WANG Lan-Fen, WU Jing, JING Rui-Lian, CHENG Xu-Zhen, WANG Shu-Min. Identification of Mungbean Germplasm Resources Resistant to Drought at Adult Stage [J]. Acta Agron Sin, 2015, 41(08): 1287-1294.
[14] WANG Lan-Fen,WU Jing,JING Rui-Lian,CHENG Xu-Zhen,WANG Shu-Min?. Drought Resistance Identification of Mungbean Germplasm Resources at Seedlings Stage [J]. Acta Agron Sin, 2015, 41(01): 145-153.
[15] CAO Hong-Li,YUE Chuan,ZHOU Yan-Hua,WANG Lu,HAO Xin-Yuan,YANG Ya-Jun*,WANG Xin-Chao*. Molecular Cloning and Expression of a bZIP Transcription Factor Gene CsbZIP1 in Tea Plant (Camellia sinensis) [J]. Acta Agron Sin, 2014, 40(09): 1702-1709.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!