Acta Agronomica Sinica ›› 2020, Vol. 46 ›› Issue (9): 1312-1321.doi: 10.3724/SP.J.1006.2020.04019
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
WANG Zhen(), YAO Meng-Nan(), ZHANG Xiao-Li, QU Cun-Min, LU Kun, LI Jia-Na, LIANG Ying*()
[1] |
Cai G, Yang Q, Chen H, Yang Q, Zhang C, Fan C, Zhou Y. Genetic dissection of plant architecture and yield-related traits in Brassica napus. Sci Rep, 2016,6:21625. doi: 10.1038/srep 21625.
doi: 10.1038/srep21625 pmid: 26880301 |
[2] | 王汉中. 我国油菜产业发展的历史回顾与展望. 中国油料作物学报, 2010,32:300-302. |
Wang H Z. Review and future development of rapeseed industry in China. Chin J Oil Crop Sci, 2010,32:300-302 (in Chinese with English abstract). | |
[3] | 刘成, 冯中朝, 肖唐华, 马晓敏, 周广生, 黄凤洪, 李加纳, 王汉中. 我国油菜产业发展现状、潜力及对策. 中国油料作物学报, 2019,41:485-489. |
Liu C, Feng Z C, Xiao T H, Ma X M, Zhou G S, Huang F H, Li J N, Wang H Z. Development, potential and adaptation of Chinese rapeseed industry. Chin J Oil Crop Sci, 2019,41:485-489 (in Chinese with English abstract). | |
[4] | 李争. 中国油菜生产技术供需的经济学分析. 华中农业大学博士学位论文, 湖北武汉, 2011. |
Li Z. Economic Analysis of Supply and Demand in Rape Production Technology in China. PhD Dissertation of Huazhong Agricultural University, Wuhan, Hubei, China, 2011 (in Chinese with English abstract). | |
[5] |
Kelkar N, Gupta S, Dickens M, Davis R J. Interaction of a mitogen-activated protein kinase signaling module with the neuronal protein JIP3. Mol Cell Biol, 2000,20:1030-1043.
doi: 10.1128/mcb.20.3.1030-1043.2000 pmid: 10629060 |
[6] |
Hamel L P, Nicole M C, Duplessis S, Ellis B E. Mitogen-activated protein kinase signaling in plant-interacting fungi: distinct messages from conserved messengers. Plant Cell, 2012,24:1327-1351.
doi: 10.1105/tpc.112.096156 pmid: 22517321 |
[7] |
Fiil B K, Petersen K, Petersen M, Mundy J. Gene regulation by MAP kinase cascades. Curr Opin Plant Biol, 2009,12:615-621.
doi: 10.1016/j.pbi.2009.07.017 pmid: 19716758 |
[8] |
Colcombet J, Hirt H. Arabidopsis MAPKs: a complex signalling network involved in multiple biological processes. Biochem J, 2008,413:217-226.
doi: 10.1042/BJ20080625 pmid: 18570633 |
[9] |
Ortiz-Masia D, Perez-Amador M A, Carbonell J, Marcote M J. Diverse stress signals activate the C1 subgroup MAP kinases of Arabidopsis. FEBS Lett, 2007,581:1834-1840.
pmid: 17433310 |
[10] |
Ichimura K, Shinozaki K, Tena G, Sheen J, Henry Y, Champion A, Kreis M, Zhang S, Hirt H, Wilson C, Bors E H, Ellis B E, Morris P C, Innes R W, Ecker J R, Scheel D, Klessig D F, Machida Y, Mundy J, Ohashi Y, Walker J C. Mitogen-activated protein kinase cascades in plants: a new nomenclature. Trends Plant Sci, 2002,7:301-308.
doi: 10.1016/s1360-1385(02)02302-6 pmid: 12119167 |
[11] |
Mizoguchi T, Irie K, Hirayama T, Hayashida N, Yamaguchi- Shinozaki K, Matsumoto K, Shinozaki K. A gene encoding a mitogen-activated protein kinase kinase kinase is induced simultaneously with genes for a mitogen-activated protein kinase and an S6 ribosomal protein kinase by touch, cold, and water stress in Arabidopsis thaliana. Proc Natl Acad Sci USA, 1996,93:765-769.
doi: 10.1073/pnas.93.2.765 pmid: 8570631 |
[12] |
Umezawa T, Sugiyama N, Takahashi F, Anderson J C, Ishihama Y, Peck S C, Shinozaki K. Genetics and phosphoproteomics reveal a protein phosphorylation network in the abscisic acid signaling pathway in Arabidopsis thaliana. Sci Signal, 2013, 6: rs8.
doi: 10.1126/scisignal.2004651 pmid: 24194583 |
[13] |
Danquah A, Zelicourt A, Boudsocq M, Neubauer J, Frey N F, Leonhardt N, Pateyron S, Gwinner F, Tamby J P, Ortiz-Masia D, Marcote M J, Hirt H, Colcombet J. Identification and characterization of an ABA-activated MAP kinase cascade in Arabidopsis thaliana. Plant J, 2015,82:232-244.
pmid: 25720833 |
[14] |
Danquah A, Zelicourt A, Colcombet J, Hirt H. The role of ABA and MAPK signaling pathways in plant abiotic stress responses. Biotechnol Adv, 2014,32:40-52.
doi: 10.1016/j.biotechadv.2013.09.006 pmid: 24091291 |
[15] |
Chardin C, Krapp A, Schenk S T, Hirt H, Colcombet J. Review: mitogen-activated protein kinases in nutritional signaling in Arabidopsis. Plant Sci, 2017,260:101-108.
doi: 10.1016/j.plantsci.2017.04.006 pmid: 28554467 |
[16] |
Enders T A, Frick E M, Strader L C. An Arabidopsis kinase cascade influences auxin-responsive cell expansion. Plant J, 2017,92:68-81.
doi: 10.1111/tpj.13635 pmid: 28710770 |
[17] |
Ghawana S, Kumar S, Ahuja P S. Early low-temperature responsive mitogen activated protein kinases RaMPK1 and RaMPK2 from Rheum australe D. Don respond differentially to diverse stresses. Mol Biol Rep, 2010,37:933-938.
pmid: 19688272 |
[18] | Blanco F A, Zanetti M E, Casalongue CA, Daleo G R. Molecular characterization of a potato MAP kinase transcriptionally regulated by multiple environmental stresses. lant Physiol Biochem, 2006,44:315-322. |
[19] |
Liang W, Yang B, Yu B J, Zhou Z, Li C, Jia M, Sun Y, Zhang Y, Wu F, Zhang H, Wang B, Deyholos M, Jiang Y Q. Identification and analysis of MKK and MPK gene families in canola (Brassica napus L.). BMC Genomics, 2013,14:392.
pmid: 23758924 |
[20] | 陆俊杏, 卢坤, 朱斌, 彭茜, 陆奇丰, 曲存民, 殷家明, 李加纳, 梁颖, 柴友荣. 芸薹属物种(B. napus, B. oleracea, B. rapa) MAPK1家族的克隆、进化和表达特征. 中国农业科学, 2013,46:3478-3487. |
Lu J X, Lu K, Zhu B, Peng Q, Lu Q F, Qu C M, Yin J M, Li J N, Liang Y, Chai Y R. Cloning, evolution and expression features of MAPK1 gene family from Brassica species (B. napus, B.oleracea, B. rapa). Sci Agric Sin, 2013,46:3478-3487 (in Chinese with English abstract). | |
[21] | 陆俊杏, 陆奇丰, 张凯, 柴友荣, 李加纳, 钱伟, 吕俊, 卢坤, 梁颖. 甘蓝型油菜MAPK1在损伤和病原菌胁迫下的表达模式分析. 中国农业科学, 2013,46:4388-4396. |
Lu J X, Lu Q F, Zhang K, Chai Y R, Li J N, Qian W, Lyu J, Lu K, Liang Y. Expression features of BnMAPK1 in wound and pathogentic fungi stress. Sci Agric Sin, 2013,46:4388-4396 (in Chinese with English abstract). | |
[22] | 王淑文, 陆俊杏, 万华方, 翁昌梅, 王珍, 李加纳, 卢坤, 梁颖. BnMAPK1超量表达提高甘蓝型油菜菌核病抗性. 作物学报, 2014,40:745-750. |
Wang S W, Lu J X, Wan H F, Weng C M, Wang Z, Li J N, Lu K, Liang Y. Overexpression of BnMAPK1 enhances resistance to Sclerotinia sclerotiorum in Brassica napus. Acta Agron Sin, 2014,40:745-750 (in Chinese with English abstract). | |
[23] | Weng C M, Lu J X, Wan H F, Wang S W, Wang Z, Lu K, Liang Y. Over-expression of BnMAPK1 in Brassica napus enhances tolerance to drought stress. J Integr Agric, 2013,13:2407-2415. |
[24] | 靳义荣, 宋毓峰, 白岩, 张良, 董连红, 刘朝科, 冯祥国, 胡晓明, 王倩, 刘好宝. 林烟草钾离子通道基因NKT6的克隆与表达定位分析. 作物学报, 2013,39:1602-1611. |
Jin Y R, Song Y F, Bai Y, Zhang L, Dong L H, Liu C K, Feng X G, Hu X M, Wang Q, Liu H B. Molecular cloning and expression analysis of potassium channel gene NKT6 in Nicotiana sylvestris. Acta Agron Sin, 2013,39:1602-1611 (in Chinese with English abstract). | |
[25] |
Dóczi R, Brader G, Pettkó-Szandtner A, Rajh I, Djamei A, Pitzschke A, Teige M, Hirt H. The Arabidopsis mitogen-activated protein kinase kinase MKK3 is upstream of group C mitogen- activated protein kinases and participates in pathogen signaling. Plant Cell, 2007,19:3266-3279.
doi: 10.1105/tpc.106.050039 pmid: 17933903 |
[26] |
Pitzschke A. Modes of MAPK substrate recognition and control. Trends Plant Sci, 2015,20:49-55.
pmid: 25301445 |
[27] |
Zhang M, Su J, Zhang Y, Xu J, Zhang S. Conveying endogenous and exogenous signals: MAPK cascades in plant growth and defense. Curr Opin Plant Biol, 2018,45:1-10.
doi: 10.1016/j.pbi.2018.04.012 pmid: 29753266 |
[28] | 潘教文, 李德全. 植物MAPK信号转导组分的细胞定位与选择性剪接. 中国生物化学与分子生物学报, 2010,26:393-400. |
Pan J W, Li D Q. Cellular localization of components of mitogen-activated protein kinase (MAPK) cascades and alternative splicing. Chin J Biochem Mol Biol, 2010,26:393-400 (in Chinese with English abstract). | |
[29] |
Brunet A, Roux D, Lenormand P, Dowd S, Keyse S, Pouyssegur J. Nuclear translocation of p42/p44 mitogen-activated protein kinase is required for growth factor-induced gene expression and cell cycle entry. EMBO J, 1999,18:664-674.
pmid: 9927426 |
[30] |
Furuno T, Hirashima N, Onizawa S, Sagiya N, Nakanishi M. Nuclear shuttling of mitogen-activated protein (MAP) kinase (extracellular signal-regulated kinase (ERK) 2) was dynamically controlled by MAP/ERK kinase after antigen stimulation in RBL-2H3 cells. J Immunol, 2001,166:4416-4421.
doi: 10.4049/jimmunol.166.7.4416 pmid: 11254696 |
[31] |
Yoo S D, Cho Y H, Tena G, Xiong Y, Sheen J. Dual control of nuclear EIN3 by bifurcate MAPK cascades in C2H4 signaling. Nature, 2008,451:789-795.
pmid: 18273012 |
[32] |
Ahlfors R, Maccioszek V, Rudd J, Brosche M, Schlichting R, Scheel D, Kangasjarvi J. Stress hormone independent activation and nuclear translocation of mitogen activated protein kinases in Arabidopsis thaliana during ozone exposure. Plant J, 2004,40:512-522.
doi: 10.1111/j.1365-313X.2004.02229.x pmid: 15500467 |
[33] |
Neill S, Desikan R, Hancock J. Hydrogen peroxide signalling. Curr Opin Plant Biol, 2002,5:388-395.
doi: 10.1016/s1369-5266(02)00282-0 pmid: 12183176 |
[34] |
Popescu S, Popescu G, Bachan S, Zhang Z, Gerstein M, Snyder M, Dinesh-Kumar S P. MAPK target networks in Arabidopsis thaliana revealed using functional protein microarrays. Genes Dev, 2009,23:80-92.
pmid: 19095804 |
[35] |
Andreasson E, Ellis B. Convergence and specificity in the Arabidopsis MAPK nexus. Trends Plant Sci, 2010,15:106-113.
doi: 10.1016/j.tplants.2009.12.001 pmid: 20047850 |
[36] |
Taj G, Agarwal P, Grant M, Kumar A. MAPK machinery in plants. Plant Signal Behav, 2010,5:1370-1378.
doi: 10.4161/psb.5.11.13020 pmid: 20980831 |
[37] |
Zhang S, Klessig D F. MAPK cascades in plant defense signaling. Trends Plant Sci, 2001,6:520-527.
doi: 10.1016/s1360-1385(01)02103-3 pmid: 11701380 |
[38] |
Xu Y H, Liu R, Yan L, Liu Z Q, Jiang S C, Shen Y Y, Wang X F, Zhang D P. Light-harvesting chlorophyll a/b-binding proteins are required for stomatal response to abscisic acid in Arabidopsis. J Exp Bot, 2012,63:1095-1106.
doi: 10.1093/jxb/err315 pmid: 22143917 |
[39] |
Kline K G, Barrett-Wilt G A, Sussman M R. In planta changes in protein phosphorylation induced by the plant hormone abscisic acid. Proc Natl Acad Sci USA, 2010,107:15986-15991.
pmid: 20733066 |
[40] |
Liu J, Jia C, Dong F, Wang J, Zhang J, Xu Y, Xu B, Jin Z. Isolation of an abscisic acid senescence and ripening inducible gene from litchi and functional characterization under water stress. Planta, 2013,237:1025-1036.
doi: 10.1007/s00425-012-1820-x |
[41] |
Kiyosue T, Abe H, Yamaguchi-Shinozaki K, Shinozaki K. ERD6, a cDNA clone for an early dehydration-induced gene of Arabidopsis, encodes a putative sugar transporter. Biochim Biophys Acta, 1998,1370:187-191.
doi: 10.1016/s0005-2736(98)00007-8 pmid: 9545564 |
[42] |
Xiong L, Lee H, Ishitani M, Zhu J K. Regulation of osmotic stress-responsive gene expression by the LOS6/ABA1 locus in Arabidopsis. J Biol Chem, 2002,277:8588-8596.
doi: 10.1074/jbc.M109275200 pmid: 11779861 |
[43] |
Xiong L, Schumaker K S, Zhu J K. Cell signaling during cold, drought, and salt stress. Plant Cell, 2002,14:S165.
doi: 10.1105/tpc.000596 pmid: 12045276 |
[44] |
Jeong J S, Jung C, Seo J S, Kim J K, Chua N H. The deubiquitinating enzymes UBP12 and UBP13 positively regulate MYC2 levels in jasmonate responses. Plant Cell, 2017,29:1406-1424.
doi: 10.1105/tpc.17.00216 pmid: 28536144 |
[45] |
Goossens J, Swinnen G, Vanden B R, Pauwels L, Goossens A. Change of a conserved amino acid in the MYC2 and MYC3 transcription factors leads to release of JAZ repression and increased activity. New Phytol, 2015,206:1229-1237.
doi: 10.1111/nph.13398 pmid: 25817565 |
[46] |
Liu W, Li R J, Han T T, Cai W, Fu Z W, Lu Y T. Salt stress reduces root meristem size by nitric oxide-mediated modulation of auxin accumulation and signaling in Arabidopsis. Plant Physiol, 2015: 168:343-356.
doi: 10.1104/pp.15.00030 pmid: 25818700 |
[47] |
Shi H, Liu W, Wei Y, Ye T T. Integration of auxin/indole-3-acetic acid 17 and RGA-LIKE3 confers salt stress resistance through stabilization by nitric oxide in Arabidopsis. J Exp Bot, 2017,68:1239-1249.
doi: 10.1093/jxb/erw508 pmid: 28158805 |
[1] | CHEN Song-Yu, DING Yi-Juan, SUN Jun-Ming, HUANG Deng-Wen, YANG Nan, DAI Yu-Han, WAN Hua-Fang, QIAN Wei. Genome-wide identification of BnCNGC and the gene expression analysis in Brassica napus challenged with Sclerotinia sclerotiorum and PEG-simulated drought [J]. Acta Agronomica Sinica, 2022, 48(6): 1357-1371. |
[2] | YUAN Da-Shuang, DENG Wan-Yu, WANG Zhen, PENG Qian, ZHANG Xiao-Li, YAO Meng-Nan, MIAO Wen-Jie, ZHU Dong-Ming, LI Jia-Na, LIANG Ying. Cloning and functional analysis of BnMAPK2 gene in Brassica napus [J]. Acta Agronomica Sinica, 2022, 48(4): 840-850. |
[3] | FENG Ya, ZHU Xi, LUO Hong-Yu, LI Shi-Gui, ZHANG Ning, SI Huai-Jun. Functional analysis of StMAPK4 in response to low temperature stress in potato [J]. Acta Agronomica Sinica, 2022, 48(4): 896-907. |
[4] | HUANG Cheng, LIANG Xiao-Mei, DAI Cheng, WEN Jing, YI Bin, TU Jin-Xing, SHEN Jin-Xiong, FU Ting-Dong, MA Chao-Zhi. Genome wide analysis of BnAPs gene family in Brassica napus [J]. Acta Agronomica Sinica, 2022, 48(3): 597-607. |
[5] | WANG Rui, CHEN Xue, GUO Qing-Qing, ZHOU Rong, CHEN Lei, LI Jia-Na. Development of linkage InDel markers of the white petal gene based on whole-genome re-sequencing data in Brassica napus L. [J]. Acta Agronomica Sinica, 2022, 48(3): 759-769. |
[6] | XIE Qin-Qin, ZUO Tong-Hong, HU Deng-Ke, LIU Qian-Ying, ZHANG Yi-Zhong, ZHANG He-Cui, ZENG Wen-Yi, YUAN Chong-Mo, ZHU Li-Quan. Molecular cloning and expression analysis of BoPUB9 in self-incompatibility Brassica oleracea [J]. Acta Agronomica Sinica, 2022, 48(1): 108-120. |
[7] | YU Guo-Wu, QING Yun, HE Shan, HUANG Yu-Bi. Preparation and application of polyclonal antibody against SSIIb protein from maize [J]. Acta Agronomica Sinica, 2022, 48(1): 259-264. |
[8] | WANG Yan-Hua, LIU Jing-Sen, LI Jia-Na. Integrating GWAS and WGCNA to screen and identify candidate genes for biological yield in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(8): 1491-1510. |
[9] | LI Jie-Hua, DUAN Qun, SHI Ming-Tao, WU Lu-Mei, LIU Han, LIN Yong-Jun, WU Gao-Bing, FAN Chu-Chuan, ZHOU Yong-Ming. Development and identification of transgenic rapeseed with a novel gene for glyphosate resistance [J]. Acta Agronomica Sinica, 2021, 47(5): 789-798. |
[10] | TANG Xin, LI Yuan-Yuan, LU Jun-Xing, ZHANG Tao. Morphological characteristics and cytological study of anther abortion of temperature-sensitive nuclear male sterile line 160S in Brassica napus [J]. Acta Agronomica Sinica, 2021, 47(5): 983-990. |
[11] | ZHOU Xin-Tong, GUO Qing-Qing, CHEN Xue, LI Jia-Na, WANG Rui. Construction of a high-density genetic map using genotyping by sequencing (GBS) for quantitative trait loci (QTL) analysis of pink petal trait in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(4): 587-598. |
[12] | LI Shu-Yu, HUANG Yang, XIONG Jie, DING Ge, CHEN Lun-Lin, SONG Lai-Qiang. QTL mapping and candidate genes screening of earliness traits in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(4): 626-637. |
[13] | TANG Jing-Quan, WANG Nan, GAO Jie, LIU Ting-Ting, WEN Jing, YI Bin, TU Jin-Xing, FU Ting-Dong, SHEN Jin-Xiong. Bioinformatics analysis of SnRK gene family and its relation with seed oil content of Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(3): 416-426. |
[14] | MENG Jiang-Yu, LIANG Guang-Wei, HE Ya-Jun, QIAN Wei. QTL mapping of salt and drought tolerance related traits in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(3): 462-471. |
[15] | WEI Li-Juan, SHEN Shu-Lin, HUANG Xiao-Hu, MA Guo-Qiang, WANG Xi-Tong, YANG Yi-Ling, LI Huan-Dong, WANG Shu-Xian, ZHU Mei-Chen, TANG Zhang-Lin, LU Kun, LI Jia-Na, QU Cun-Min. Genome-wide association analysis reveals zinc-tolerant loci of rapeseed at germination stage [J]. Acta Agronomica Sinica, 2021, 47(2): 262-274. |
|