Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2020, Vol. 46 ›› Issue (11): 1711-1721.doi: 10.3724/SP.J.1006.2020.04012

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Locus encryption for early flowering and QTL polymerization to create excellent early flowering resources of spring Brassica napus L.

LIU Hai-Dong(), PAN Yun-Long(), DU De-Zhi*()   

  1. Academy of Agricultural and Forestry Sciences, Qinghai University / Qinghai Spring Rape Engineering Research Center / Spring Rape Scientific Observation Experimental Station of Ministry of Agriculture and Rural Areas / Qinghai Research Branch of the National Rapeseed Genetic Improvement Center / Key Laboratory of Qinghai Province for Spring Rapeseed Genetic Improvement, Xining 810016, Qinghai, China
  • Received:2020-01-15 Accepted:2020-06-02 Online:2020-11-12 Published:2020-06-15
  • Contact: De-Zhi DU E-mail:dahaima@163.com;pylscorpio@126.com;qhurape@126.com
  • Supported by:
    This study was supported by the National Key Research and Development Plan(2018YFD0100501);the National Natural Science Foundation of China(31760395);the China Agriculture Research System(CARS-12);the Key Research and Development and Transformation Project of Qinghai Province(2018-NK-C07);the Laboratory of Spring Rape Genetic Improvement of Qinghai Province(2017-ZJ-Y09);and the Qinghai Academy of Agriculture and Forestry Sciences Research Project(2018-NKY-011)

Abstract:

cqDTFA7a and cqDTFC8, two major effects of early flowering QTL, were identified in the NNDH population of spring Brassica napus, and closely linked markers SSR G1803, InDel IA7-4, and SSR S035 with cqDTFC8 developed in previous studies. In this study, a BC2F2 population for early flowering QTL locus cqDTFC8 was constructed, and a closely linked SNP marker was further developed. The early flowering genotypes of one natural resources contained 93 spring B. napus varieties were identified used four closely linked markers with two loci, and selected 3164 and 2216 resources with cqDTFA7a site, 3484 and 2857 resources with cqDTFC8 site. Two site resources were aggregated by site polymerization through reciprocal hybridization. The polymerized DH system was rapidly obtained by microspore culture and maker assisted selection. A hybrid combination was created between polymeric line with good traits and early flowers and the Polima CMS, and the utilization value of the polymeric line was further analyzed by the production test at multiple environments for two consecutive years. cqDTFC8 encryption results showed that this site was located in the SNP11 and SNP12 interval, and separated from SNP11 altogether. The identification results of early flowering genotypes of natural resources showed that there were 50 individuals containing cqDTFA7a locus, with an average initial flowering period of 58.1 days; 16 single plants containing cqDTFC8 locus, with an average flowering period of 58.3 days; and 16 single plants containing two loci, with an average flowering period of 55.2 days, indicating the more early flowering sites containing, the earlier flowering. The results of polymerization showed that the flowering time of the polymerized lines of cqDTFC8 and cqDTFA7a was 2-3 days earlier than that of the single locus parents, among which the polymerized DH18 from 3164 of cqDTFA7a and 3484 of cqDTFC8 was 3 days earlier than that of the parents, and the yield-related traits were better than those of other lines. The combination of DH18 and the Polima CMS 025A was further utilized, and the combination was named TZG18. Yield results of two years and nine environments showed that yield of TZG18 was above 17.5% higher than the Haoyou 11, a local B. rapa variety on the Qinghai-Tibet plateau. Those results indicated that the early flowering site polymeric lines had an obvious advantage over the single locus lines in flowering time, and had an effect on the increasement of rapeseed yield. This study is a preliminary exploration of MAS breeding for early flowering traits of Brassica napus, providing materials support for replacing B.rapa varieties using early maturity Brassica napus varieties in spring rapeseed region, and approaches for gene polymerization breeding technology.

Key words: spring Brassica napus, early flowering locus, gene pyramiding, early flowering resources

Table 1

SNP and Indel primers sequence information"

引物
Primer
位置
Position (bp)
突变、插入/缺失
Mutate, insert/miss
上游引物序列
Forward primer (5°-3°)
下游引物序列
Reverse primer (5°-3°)
SNP6 1636463 G/A CCAGACCCAACATTACCC TCCGGTGTTCTGCTTATT
SNP11 2777872 G/A GAAAGCTGCTGGGTTTCT TATTATGCCATGTCATCTAC
SNP12 2833887 A/G CTCGGACGAACAGAACCC TCAGCTCATGGAGGAACA
SNP14 3147552 T/C TTGAAGTCGTGCGTCGGT AGCAGAGTAGAGGAAGCTGGTA
SNP20 3674261 T/C GAGACAAATCTCAGCAGT CAAGATGACGAATCCAAT
SNP21 3706251 T/C GTTTATGTCTGACCTTGTT GTGGAACTTGATGGATTT
InDel 53 5405790 CA/C ATAGACGTAGAGGCTGAGCA AATCTCGTCACCATCAAGAG
InDel 55 5409462 GAATAACATAAAACTT/G GGTGTTCATCTCTGAAGACAA TTGTGATTTGTGAATTGATGA
InDel 60 5527563 GTCGC/G CATGCTTCATCTCTTCAACA GTCAACCAGCGAGTAGAAAC

Fig. 1

Comparison of main loci of molecular marker genetic linkage map before and after encryption and the new marks collinear alignment A: partial genetic linkage map of chromosome C8 constructed in the NNDH population; B: partial genetic linkage map after encrypting cqDTFC8 locus in BC2F2 population; C: the physical map of the encrypted markers."

Table 2

Genotype identification results of 93 Brassica napus resources with four markers of two early flowering sites"

基因型Genotype 资源数
Number of resources
初花期First flowering period (d)
cqDTFA7a cqDTFC8 变幅
Range
平均值±标准差
Mean±SD
P
P-value
G1803 IA7-4 S035 SNP11
AA 56 53.2-62.1 58.7±4.3 0.04a
BB 37 63.2-77.3 65.7±5.2
AA 50 54.2-62.3 58.1±3.9 0.04b
BB 43 63.5-78.2 65.9±4.8
AA 21 55.7-61.7 58.6±3.6 0.04c
BB 72 62.3-77.7 64.9±4.1
AA 16 52.4-59.3 58.3±3.7 0.04d
BB 77 62.1-79.3 64.4±5.1
AA AA AA AA 16 53.2-57.6 55.2±3.2 0.008e
BB BB BB BB 30 65.4-79.3 65.0±4.6

Fig. 2

Identification result of the polymerized DH lines genotype used four closely linked markers a: identification results of G1803 linkage mark with cqDTFA7a; b: identification results of IA7-4 linkage mark with cqDTFA7a; c: identification results of S035 linkage mark with cqDTFC8; d: identification results of SNP11 linkage mark with cqDTFC8. M is marker, 4512 is the parent of early flowering, and 5246 is the parent of late flowering. Both genotypes are considered as standard, and the same as No.4512 band type is considered to contain early flowering locus, while the same as 5246 band type is not considered to contain early flowering locus. The arrow points to seven polymerized DH lines that are consistent with the 4512 band type under four markers."

Table 3

Yield traits and flowering time of single locus parent and site polymeric lines performance"

材料名称
Material name
位点
Locus
来源
Source
农艺性状Agronomic trait 开花时间
Flowering time (d)
角果长
Fruit length (cm)
每角粒数
Seed
number
千粒重
Thousand seeds weight (g)
全株角果数
Carob
number
单株产量
Yield per plant (g)
3164 cqDTFA7a 7.8±1.9 bc 29.6±1.0 a 3.8±0.2 cd 293±28.0 bc 16.7±2.4 b 58.3±2.2 abc
2216 cqDTFA7a 7.6±1.2 c 25.0±2.5 bcd 4.2±0.1 bcd 274±40.5 cd 16.5±3.4 b 59.2±2.1 ab
3484 cqDTFC8 8.0±1.0 ab 27.2±3.0 b 4.2±0.3 abc 341±10.1 ab 17.5±3.7 ab 57.6±2.3 abc
2857 cqDTFC8 6.9±1.1 e 26.3±3.0 bc 3.6±0.2 f 271±14.5 cde 14.7±2.6 b 60.0±3.0 a
DH18 cqDTFC8 &
cqDTFA7a
3484×3164 8.1±1.1 a 32.0±2.0 a 4.5±0.1 a 354±26.6 a 21.4±2.1 a 54.5±1.2 c
DH2 cqDTFA7a &
cqDTFC8
2216×3484 7.0±1.9 e 23.1±5.0 d 4.1±0.1 cd 264±29.5 cde 18.5±2.2 ab 55.6±2.0 bc
DH20 cqDTFA7a &
cqDTFC8
3164×3484 7.2±1.1 d 23.6±7.0 cd 3.6±0.2 ef 339±37.0 ab 17.1±2.0 ab 55.8±1.2 bc
DH12 cqDTFA7a &
cqDTFC8
2216×2857 7.1±1.6 de 23.4±3.0 cd 4.3±0.1 abc 257±38.5 sdef 16.3±3.2 b 56.2±2.1 abc
DH5 cqDTFA7a &
cqDTFC8
3164×2857 6.8±0.9 e 27.6±3.5 b 3.9±0.4 de 216±21.3 f 16.4±2.2 b 56.4±1.2 abc
DH4 cqDTFC8 &
cqDTFA7a
3484×2216 6.5±0.4 e 25.2±5.1 bcd 4.1±0.1 bcd 239±17.2 def 15.8±3.1 b 56.8±1.4 abc
DH23 cqDTFC8 &
cqDTFA7a
2857×3164 6.8±0.1 e 27.8±3.2 b 4.4±0.2 ab 225±22.5 ef 16.7±4.1 b 57.3±1.3 abc

Table 4

Annual production statistics of TZG18"

品种
Variety
产量Yield (kg hm-2) 平均
Average
比对照增产
Yield
increase over control (%)
门源沙沟梁
Menyuan shagouliang
门源后院
Menyuan
backyard
湟源
Huangyuan
同德
Tongde
贵南牧场
Guinan Ranch
海北
Haibei
2018
TZG18 620.0±80.0 a 980.0±166.7 a 2233.3±100.0 a 1733.3±133.3 a 1391.7±73.3 a 21.0
浩油11号
Haoyou 11
(CK)
686.7±93.3 a 1113.3±160.0 a 1986.7±140.0 b 813.3±60.0 b 1150.0±53.3 b 0
2019
TZG18 1746.7±160.0 a 2960.0±206.7 a 2500.0±106.7 a 2453.3±140.0 a 2780.0±233.3 a 2488.0±113.3 a 17.5
浩油11号
Haoyou 11
(CK)
1146.7±0.14 b 2393.3±186.7 b 2213.3±80.0 b 2566.7±153.3 a 2266.7±160.0 b 2117.3±93.3 b 0
[1] 官春云, 靳芙蓉, 董国云, 官梅, 谭太龙. 冬油菜早熟品种生长发育特性研究. 中国工程科学, 2012,14(11):4-12.
Guan C Y, Jin F R, Dong G Y, Guan M, Tan T L. Exploring the growth and development properties of early variety of winter rapeseed. J Chin Eng Sci, 2012,14(11):4-12 (in Chinese with English abstract).
[2] 徐亮, 星晓蓉, 赵志, 姚艳梅. 特早熟春油菜品种青7号的选育. 中国种业, 2011,31(8):66-67.
Xu L, Xing X R, Zhao Z, Yao Y M. Breeding of special precocious spring rape variety Qingza No.7. Chin Seed Ind, 2011,31(8):66-67 (in Chinese with English abstract).
[3] 邓世峰, 王先如, 张安存, 陈次娥, 吴明. 分子标记辅助选择在我国水稻抗病育种中的研究进展. 江西农业, 2019,31(22):40-46.
Deng S F, Wang X R, Zhang A C, Chen C E, Wu M. Advances in molecular marker assisted selection in rice breeding for disease resistance in China. Jiangxi Agric, 2019,31(22):40-46 (in Chinese with English abstract).
[4] 鲁守平, 张华, 孟昭东, 穆春华. 利用分子标记技术对玉米自交系子粒油分的改良研究. 作物杂志, 2019, (3):24-28.
Lu S P, Zhang H, Meng Z D, Mu C H. Improvement of grain oil content in maize inbred lines by molecular marker technology. Crops, 2019, (3):24-28 (in Chinese with English abstract).
[5] 杨海峰, 惠林冲, 陈微, 李威亚, 何林玉, 郇国磊, 王江英, 徐卫平, 李景芳, 缪美华, 陈振泰, 潘美红. 应用分子标记辅助选育洋葱不育系及其杂交应用. 江西农业学报, 2019,31(7):1-9.
Yang H F, Hui L C, Chen W, Li W Y, He L Y, Huan G L, Wang J Y, Xu W P, Li J F, Miao M H, Chen Z T, Pan M H. Application of molecular marker-assisted selection of onion (Allium cepa) sterile lines and hybrid application. Acta Agric Jiangxi, 2019,31(7):1-9 (in Chinese with English abstract).
[6] 付蓉. 分子标记辅助选择在油菜抗根肿病和高油酸育种中的应用 . 华中农业大学硕士学位论文, 湖北武汉, 2019.
Fu R. Application of Molecular Marker-Assisted Selection in Clubroot Resistance and High Oleic Acid Breeding in Brassica napus. MS Thesis of Huazhong Agricultural University, Wuhan, Hubei, China, 2019 (in Chinese with English abstract).
[7] Abhilash K V, Balachiranjeevi C H, Bhaskar N S, Rambabu R, Rekha G, Harika G, Hajira S K, Pranathi K, Anila M, Kousik M, Vijay K S, Yugander A, Aruna J, Dilip K T, Vijaya S R K, Hari P A S, Madhav M S, Laha G S, Balachandran S M, Prasad M S, Viraktamath B C, Ravindra B V, Sundaram R M. Development of gene-pyramid lines of the elite restorer line, RPHR-1005 possessing durable bacterial blight and blast resistance. Front Plant Sci, 2016,7:1195-1210.
doi: 10.3389/fpls.2016.01195 pmid: 27555861
[8] 李旭. 分子标记辅助选择改良油菜核不育系. 华中农业大学硕士学位论文, 湖北武汉, 2019.
Li X. Improvement of Male Sterile Line in Brassica napus L. by Marker-Assisted Selection. MS Thesis of Huazhong Agricultural University, Wuhan, Hubei, China, 2019 (in Chinese with English abstract).
[9] 鲁秀梅, 张宁, 陈劲枫, 钱春桃. 作物基因聚合育种的研究进展. 分子植物育种, 2017,15:1445-1454.
Lu X M, Zhang N, Chen J F, Qian C T. The research progress in crops pyramiding breeding. Mol Plant Breed, 2017,15:1445-1454 (in Chinese with English abstract).
[10] Zhong X B, Zhou Q Z, Cui N, Cai D G, Tang G X. BvcZR3 and BvHs1pro-1 genes pyramiding enhanced beet cyst nematode (Heterodera schachtii Schm.) resistance in oilseed rape (Brassica napus L.). Mol Sci, 2019,20:1740-1756.
[11] 侯富恩, 郝科星, 张涛, 苏东涛, 王铭. 番茄抗TYLCV分子标记辅助聚合育种. 中国瓜菜, 2019,32(1):18-21.
Hou F E, Hao K X, Zhang T, Su D T, Wang M. Pyramiding breeding of resistance genes to TYLCV by molecular marker-assisted selection in tomato. Chin Cucu Veget, 2019,32(1):18-21 (in Chinese with English abstract).
[12] 张尧锋, 余华胜, 曾孝元, 林宝刚, 华水金, 张冬青, 傅鹰. 早熟甘蓝型油菜研究进展及其应用. 植物遗传资源学报, 2019,20:258-266.
Zhang Y F, Yu H S, Zeng X Y, Lin B G, Hua S J, Zhang D Q, Fu Y. Progress and application of early maturity in rapeseed (Brassica napus L.). J Plant Genet Resour, 2019,20:258-266 (in Chinese with English abstract).
[13] 杜德志, 肖麓, 赵志, 柳海东, 姚艳梅, 星晓蓉, 徐亮, 李开祥, 王瑞生, 李钧, 付忠, 赵志刚, 唐国永. 我国春油菜遗传育种研究进展. 中国油料作物学报, 2018,40:633-639.
Du D Z, Xiao L, Zhao Z, Liu H D, Yao Y M, Xing X R, Xu L, Li K X, Wang R S, Li J, Fu Z, Zhao Z G, Tang G Y. Advances in genetic breeding of spring rapeseed in China. Chin J Oil Crop Sci, 2018,40:633-639 (in Chinese with English abstract).
[14] 柳海东. 春性甘蓝型油菜遗传连锁图谱构建及开花时间的QTL定位分析. 青海大学博士学位论文,青海西宁, 2015.
Liu H D. Construction of Genetic Linkage Map and Identification of Quantitative Trait Loci (QTL) for Days to Flowering in Spring Rapeseed (Brassica napus L.). PhD Dissertation of Qinghai University, Xining, Qinghai,China, 2015 (in Chinese with English abstract).
[15] Liu H D, Du D Z, Guo S, Xiao L, Zhao Z, Zhao Z G, Xing X R, Tang G Y, Xu L, Fu Z, Yao Y M, Duncan R W. QTL analysis and the development of closely linked markers for days to flowering in spring oilseed rape (Brassica napus L.). Mol Breed, 2016,36:1-14.
[16] 潘云龙, 柳海东. 甘蓝型春油菜早花位点cqDTFA7a加密及其近等基因系构建. 分子植物育种, 2019,17:7047-7057.
Pan Y L, Liu H D. Encryption for an early flowering time locus cqDTFA7a and construction of NILs in spring Brassica napus L. Mol Plant Breed, 2019,17:7047-7057 (in Chinese with English abstract).
[17] Doyle J. Isolation of plant DNA from fresh tissue. Focus, 1990,12:13-15.
[18] Li H, Durbin R. Fast and accurate short read alignment with burrows-wheeler transform. Bioinformatics, 2009,25:1754-1760.
pmid: 19451168
[19] Mckenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, DePristo M A. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res, 2010,20:1297-1303.
pmid: 20644199
[20] Hill J T, Demarest B L, Bisgrove B W, Gorsi B, Su Y C, Yost H J. Mmappr: mutation mapping analysis pipeline for pooled RNA-seq. Genome Res, 2013,23:687-697.
pmid: 23299975
[21] Rym F, Hiroki T, Muluneh T, Akira A, Satoshi N, Hiroki Y. Mutmap+: genetic mapping and mutant identification without crossing in rice. PLoS One, 2013,8:e68529.
pmid: 23874658
[22] Jansen R C, Ooijen J W V, Stam P. Genotype-by-environment interaction in genetic mapping of multiple quantitative trait loci. Theor Appl Genet, 1995,91:33-37.
pmid: 24169664
[23] Kosambi D. The estimation of map distances from recombination values. Ann Eugen, 1994,12:172-175.
[24] Voorrips R E. MapChartTM version 2.0: MapChart: software for the graphical presentation of linkage maps and QTL. Plant Res Int, 2001,Wageningen, Netherlands
[25] Doerge R W, Churchill G A. Permutation tests for multiple loci affecting a quantitative character. Genetics, 1996,142:285-294.
pmid: 8770605
[26] 柳海东, 李开祥, 徐亮, 杜德志. 半冬性甘蓝型油菜资源在春性环境下的利用价值. 西北农业学报, 2019,28:1609-1620.
Liu H D, Li K X, Xu L, Du D Z. Study on utilization value of semi-winter rapeseed of Brassica napus in spring environment. Acta Agric Boreali-Occident Sin, 2019,28:1609-1620 (in Chinese with English abstract).
[27] 柳海东, 赵绪涛, 杜德志. 利用QTL-seq技术定位甘蓝型春油菜早花位点cqDTFC8及其近等基因系构建. 植物生理学报, 2020,56:219-234.
Liu H D, Zhao X T, Du D Z. Mapping of the cqDTFC8 of early flowering site using QTL-seq technique and construction of its near-isogenic lines in Brassica napus L. Plant Physiol J, 2020,56:219-234 (in Chinese with English abstract).
[28] 张素君, 唐丽媛, 李兴河, 王海涛, 刘存敬, 张香云, 张建宏. SSR标记与陆地棉田间黄萎病抗性的关联分析. 华北农学报, 2018,33(6):152-159.
Zhang S J, Tang L Y, Li X H, Wang H T, Liu C J, Zhang X Y, Zhang J H. Association analysis of Verticillium wilt-resistance in upland cotton germplasm population based on ssr markers. Acta Agric Boreali-Sin, 2018,33(6):152-159 (in Chinese with English abstract).
[29] 黄冰艳, 齐飞艳, 孙子淇, 苗利娟, 房元瑾, 郑峥, 石磊, 张忠信, 刘华, 董文召, 汤丰收, 张新友. 以分子标记辅助连续回交快速提高花生品种油酸含量及对其后代农艺性状的评价. 作物学报, 2019,45:546-555.
Huang B Y, Qi F Y, Sun Z Q, Miao L J, Fang Y J, Zheng Z, Shi L, Zhang Z X, Liu H, Dong W Z, Tang F S, Zhang X Y. Improvement of oleic acid content in peanut (Arachis hypogaea L.) by marker assisted successive backcross and agronomic evaluation of derived lines. Acta Agron Sin, 2019,45:546-555 (in Chinese with English abstract).
[30] Derek W. Barchenger K R, Li J, Stephen F H, Paul W B. Allele-specific CAPS marker in a Ve1 homolog of Capsicum annuum for improved selection of Verticillium dahliae resistance. Mol Breed, 2017,37:134-137.
[31] Fan C, Cai G, Qin J, Li Q, Yang M, Wu J, Fu T, Liu K, Zhou Y. Mapping of quantitative trait loci and development of allele-specific markers for seed weight in Brassica napus. Theor Appl Genet, 2010,121:1289-1301.
pmid: 20574694
[32] Rossi M, Bermudez L, Carrari F. Crop yield: challenges from a metabolic perspective. Curr Opin Plant Biol, 2015,25:79-89.
pmid: 26002068
[33] Fang J, Zhang F T, Wang H R, Wang W, Zhao F, Lie Z J, Sun C H, Chen F M, Xu F, Chang S Q, Wu L, Bu Q Y, Wang P R, Xie J K, Chen F, Huang X H, Zhan Y J, Zhu X G, Han B, Deng X J, Chu C C. Ef-cd locus shortens rice maturity duration without yield penalty. Proc Natl Acad Sci USA, 2019,116:18717-18722.
pmid: 31451662
[34] Zhao J W, Udall J A, Quijada P A, Grau C R, Meng J L, Osborn T C. Quantitative trait loci for resistance to Sclerotinia sclerotiorum and its association with a homeologous nonreciprocal transposition in Brassica napus L. Theor Appl Genet, 2006,112:509-516.
doi: 10.1007/s00122-005-0154-5 pmid: 16333614
[35] Wei D, Mei J, Fu Y, Joseph O D, Li J, Qian W. Quantitative trait loci analyses for resistance to Sclerotinia sclerotiorum and flowering time in Brassica napus. Mol Breed, 2014,34:1797-1804.
[1] MA Jun-Tao,ZHANG Guo-Min,XIN Ai-Hua,ZHANG Li-Yan1,DENG Ling-Wei1,WANG Yong-Li,WANG Ying,REN Yang,GONG Xiu-Jie,GE Xuan-Liang,YANG Xiu-Feng. Comparison of Pathogenicity of Pyricularia oryzae under Different Genetic Backgrounds [J]. Acta Agron Sin, 2015, 41(12): 1791-1801.
[2] LIU Jin-Dong,CHEN Xin-Min,HE Zhong-Hu,WU Ling,BAI Bin,LI Zai-Feng,XIA Xian-Chun. Resistance of Slow Mildewing Genes to Stripe Rust and Leaf Rust in Common Wheat [J]. Acta Agron Sin, 2014, 40(09): 1557-1564.
[3] LIU Wu-Ge;WANG Feng;JIN Su-Juan;ZHU Xiao-Yuan;LI Jin-Hua;LIU Zhen-Rong;LIAO Yi-Long;ZHU Man-Shan;HUANG Hui-Jun; FU Fu-Hong;LIU Yi-Bai. Improvement of Rice Blast Resistance in TGMS Line by Pyramiding of Pi-1 and Pi-2 through Molecular Marker-Assisted Selection [J]. Acta Agron Sin, 2008, 34(07): 1128-1136.
[4] GAO An-Li;HE Hua-Gang;CHEN Quan-Zhan;ZHANG Shou-Zhong;CHEN Pei-Du. Pyramiding Wheat Powdery Mildew Resistance Genes Pm2, Pm4a and Pm21 by Molecular Marker-assisted Selection [J]. Acta Agron Sin, 2005, 31(11): 1400-1405.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!