Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2020, Vol. 46 ›› Issue (12): 1970-1978.doi: 10.3724/SP.J.1006.2020.04010

• TILLAGE & CULTIVATION?PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Phytoremediation potential of five industrial hemp varieties on five heavy metal polluted soils

Yan-Ping XU1,2(), Ming YANG2, Hong-Yan GUO2, Qing-Hui YANG1,*()   

  1. 1College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
    2Industrial Crop Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, Yunnan, China
  • Received:2020-01-13 Accepted:2020-08-19 Online:2020-09-04 Published:2020-09-25
  • Contact: Qing-Hui YANG E-mail:cyn080328@126.com;yangqinghui@163.com
  • Supported by:
    National Natural Science Foundation of China(31660351);China Agriculture Research System for Bast and Leaf Fiber Crops(CARS-19-E05)

Abstract:

Uptake and translocation of lead (Pb), zinc (Zn), copper (Cu), cadmium (Cd), and arsenic (As) in industrial hemp genotypes were investigated at seedling and physiological maturity, in order to provide an insight for phytoremediation of mining soils in Yunnan. The experiment was conducted using five main varieties of industrial hemp viz., Yunma (ym)1, ym2, ym3, ym4, and ym5 under mining areas of Yunnan. Results showed that uptake and translocation of Pb, Zn, Cu, Cd, and As in all hemp genotypes were high at the seedling stage. Accumulation of Pb, Zn, Cu, Cd, and As contents in hemp roots were higher at physiological maturity as compared to seedling stage. However, comparing to seedling stage, Pb, As, and Cd contents in stems and leaves were higher at physiological maturity stage. Translocation factor coefficients of hemp stem and leaf to all heavy metals were more than 1.0 at seedling stage. At physiological maturity stage, translocation of Pb, As and Cd in stems and leaves of all hemp varieties were higher compared with Cu and Zn. The accumulated contents of Pb, As, Cu, Cd, and Zn in plants were 31.65-644.29, 365.14-624.25, 180.65-194.06, 15.13-24.40, and 540.07-684.27 g hm -2, respectively. However, highest contents of Pb, As, Cd, and Zn were observed in hemp variety Yunma 1 and Yunma 5, which suggested that these two varieties had significantly higher metal accumulation and translocation compared to other varieties. In conclusion, the bioconcentration ratios, translocation factor and phytoremediation ability of hemp variety Yunma 1 and Yunma 5 were higher than those of Yunma 2, Yunma 3, and Yunma 4. These results showed that both Yunma 1 and Yunma 5 were potential candidates for remediation of heavy metal polluted areas in Yunnan.

Key words: industrial hemp, heavy metals, remediation potential

Fig. 1

Heavy metal contents in roots of different industrial hemp varieties at different stages A: content of Pb in roots; B: content of As in roots; C: content of Cu in roots; D: content of Cd in roots; E: content of Zn in roots. ym1: Yunma 1; ym2: Yunma 2; ym3: Yunma 3; ym4: Yunma 4; ym5: Yunma 5. Bars superscrpted by different lowercase letters indicate significant differences among treatments at the 0.05 probability level."

Fig. 2

Heavy metal contents in stem and leaf of different industrial hemp varieties at different stage A: content of Pb in stems and leaves; B: content of As in stems and leaves; C: content of Cu in stems and leaves; D: content of Cd in stems and leaves; E: content of Zn in stems and leaves. ym1: Yunma 1; ym2: Yunma 2; ym3: Yunma 3; ym4: Yunma 4; ym5: Yunma 5. Bars superscripted by different lowercase letters indicate significant differences among treatments at the 0.05 probability level."

Table 1

Bioconcentration factors (BCF) of heavy metals in different hemp organs at seedling stage"

品种
Variety
Pb As Cu Cd Zn

Root
茎叶
Stem and leaf

Root
茎叶
Stem and leaf

Root
茎叶
Stem and leaf

Root
茎叶
Stem and leaf

Root
茎叶
Stem and leaf
ym1 0.09 a 0.27 a 0.05 b 0.39 a 0.28 c 0.73 a 0.05 c 1.20 a 0.34 b 0.74 a
ym2 0.08 a 0.22 c 0.08 ab 0.41 a 0.32 a 0.81 a 0.09 c 0.93 a 0.40 a 0.61 a
ym3 0.08 a 0.24 b 0.08 ab 0.42 a 0.30 bc 0.83 a 0.03 c 0.96 a 0.38 a 0.69 a
ym4 0.09 a 0.19 d 0.10 a 0.28 b 0.33 a 0.86 a 0.18 b 0.78 a 0.37 a 0.62 a
ym5 0.09 a 0.26 ab 0.09 a 0.42 a 0.31 ab 0.82 a 0.30 a 1.15 a 0.40 a 0.77 a

Table 2

Translocation factor (TF) of heavy metals in different organs at hemp seedling stage"

品种
Variety
Pb茎叶/根
Pb TF in stem and leaf/root
As茎叶/根
As TF in stem and leaf/root
Cu茎叶/根
Cu TF in stem and leaf/root
Cd茎叶/根
Cd TF in stem and leaf/root
Zn茎叶/根
Zn TF in stem and leaf/root
ym1 2.93 a 8.68 a 2.65 a 24.88 ab 2.19 a
ym2 2.78 a 5.22 bc 2.53 a 13.81 bc 1.55 b
ym3 2.86 a 5.83 b 2.81 a 32.53 a 1.83 ab
ym4 2.18 b 2.94 c 2.64 a 5.48 c 1.66 ab
ym5 2.93 a 4.96 bc 2.69 a 3.84 c 1.92 ab

Table 3

Bioconcentration factors (BCF) of heavy metals in different organs at hemp process maturity stage"

品种
Variety
Pb As Cu Cd Zn

Root
茎叶
Stem and leaf

Root
茎叶
Stem and leaf

Root
茎叶
Stem and leaf

Root
茎叶
Stem and leaf

Root
茎叶
Stem and leaf
ym1 0.22 a 0.26 a 0.15 c 0.51 a 0.32 b 0.24 b 0.65 b 0.92 a 0.42 c 0.45 b
ym2 0.13 c 0.27 a 0.37 a 0.30 c 0.32 b 0.28 a 0.81 ab 0.90 a 0.48 bc 0.65 a
ym3 0.15 bc 0.19 ab 0.23 b 0.36 bc 0.39 ab 0.29 a 0.63 b 0.52 b 0.55 ab 0.42 b
ym4 0.19 ab 0.22 ab 0.36 a 0.41 b 0.48 a 0.26 ab 1.09 a 0.80 a 0.58 ab 0.44 b
ym5 0.17 bc 0.18 b 0.31 a 0.48 a 0.46 ab 0.24 b 0.49 b 0.74 a 0.51 a 0.45 b

Table 4

Translocation factor (TF) of heavy metals in different organs at hemp process maturity stage"

品种
Variety
Pb茎叶/根
Pb TF of stem and leaf/root
As茎叶/根
As TF of stem and leaf/root
Cu茎叶/根
Cu TF of stem and leaf/root
Cd茎叶/根
Cd TF of stem and leaf/root
Zn茎叶/根
Zn TF of stem and leaf/root
ym1 1.21 b 3.30 a 0.76 ab 1.52 ab 1.08 b
ym2 2.02 a 0.77 b 0.89 a 1.20 ab 1.36 a
ym3 1.23 b 1.74 b 0.74 ab 0.91 ab 0.77 d
ym4 1.23 b 1.05 b 0.56 b 0.77 b 0.76 d
ym5 1.03 b 1.48 b 0.54 b 1.77 a 0.88 c

Table 5

Absolution accumulation quantity of heavy metals in industrial hemp (g hm-2)"

时期
Stage
品种
Variety
Pb As Cu Cd Zn
苗期
Seeding stage
ym1 43.59 a 27.83 a 31.61 b 2.13 a 96.20 a
ym2 29.10 c 23.51 b 26.56 c 1.32 b 63.61 e
ym3 32.18 b 22.79 b 26.93 c 1.38 b 71.32 d
ym4 21.98 d 16.55 c 13.63 d 1.35 b 22.71 c
ym5 42.84 a 29.88 a 34.41 a 2.05 a 92.87 b
工艺成熟期
Physiological maturity stage
ym1 644.29 a 624.25 a 194.06 a 24.40 a 669.15 a
ym2 431.65 d 365.14 c 179.67 a 16.64 b 560.11 b
ym3 477.83 c 393.77 c 197.21 a 15.13 b 577.06 b
ym4 440.33 d 371.86 c 180.65 a 16.35 b 540.07 b
ym5 535.77 b 550.76 b 180.94 a 22.60 a 684.27 a
[1] 刘月莉, 伍钧, 唐亚, 杨刚, 祝亮 . 四川甘洛铅锌矿区优势植物的重金属含量. 生态学报, 2009,29:2020-2026.
Liu Y L, Wu J, Tang Y, Yang G, Zhu L . An investigation of heavy-metal concentration in dominant plant species in a zinc lead mining area in Ganluo County of Sichuan province. Acta Ecol Sin, 2009,29:2020-2026 (in Chinese with English abstract).
[2] 程先锋, 宋婷婷, 陈玉, 魏永明, 沈金祥, 齐武福 . 滇西兰坪铅锌矿区土壤重金属含量的高光谱反演分析. 岩石矿物学杂志, 2017,36(1):60-69.
Cheng X F, Song T T, Chen Y, Wei Y M, Shen J X, Qi W F . Retrieval and analysis of heavy metal content in soil based on measured spectra in the Lanping Zn-Pb mining area, western Yunnan Province. Acta Petrol Mineral, 2017,36(1):60-69 (in Chinese with English abstract).
[3] 戴睿, 李燕燕, 杨少辉 . 土壤重金属治理方案浅析. 技术与市场, 2010,17(7):18.
Dai R, Li Y Y, Yang S H . Analysis of soil heavy metal control scheme. Technol Markets, 2010,17(7):18 (in Chinese).
[4] 冯凤玲, 成杰民, 王德霞 . 蚯蚓在植物修复重金属污染土壤中的应用前景. 土壤通报, 2006,37:809-814.
Feng F L, Cheng J M, Wang D X . Application of earthworm in remediation of heavy metal contaminated soil. Chin J Soil Sci, 2006,37:809-814 (in Chinese with English abstract).
[5] Bona E, Marsano F, Cavaletto M . Proteomic characterization of copper stress response in Cannabis sativa roots. Proteomics, 2007,7:1121-1130.
doi: 10.1002/pmic.200600712 pmid: 17352425
[6] 串丽敏, 赵同科, 郑怀国, 赵静娟, 张晓静 . 土壤重金属污染修复技术研究进展. 环境科学与技术, 2014,37(增刊2):213-222.
Chuan L M, Zhao T K, Zheng H G, Zhao J J, Zhang X J . Research advances in remediation of heavy metal contaminated soils. Environ Sci Technol, 2014,37(S2):213-222 (in Chinese with English abstract).
[7] Macek T, Mackova M, Kas J . Exploitation of plants for the removal of organics in environmental remediation. Biotechnol Adv, 2000,18:23-34.
doi: 10.1016/s0734-9750(99)00034-8 pmid: 14538117
[8] Huang J W, Chen J J, Breti W R, Cunningham S D . Phytoremediation of lead-contaminated soils: role of syntchetic chelate in lead phytoextraction. Environ Sci Technol, 1997,31:800-805.
doi: 10.1021/es9604828
[9] 刘威, 束文圣, 蓝崇钰 . 宝山堇菜(Viola baoshanensis): 一种新的镉超富集植物. 科学通报, 2003,48:2046-2049.
Liu W, Shu W S, Lan C Y . Viola baoshanensis: a new hyperaccumulator of cadmium. Chin Sci Bull, 2003,48:2046-2049 (in Chinese).
[10] Salt D E, Prince R C, Pickering I J, Raskin I . Mechanisms of cadmium mobility and accumulation in Indian Mustards. Plant Physiol, 1995,10:1427-1433.
[11] 王激清, 张宝悦, 苏德纯 . 修复镉污染土壤的油菜品种的筛选及吸收累积特征研究: 高积累镉油菜品种的筛选(I). 河北北方学院学报: 自然科学版, 2005,21(1):58-61.
Wang J Q, Zhang B Y, Su D C . The study on selection of rape spices in phytoremediated cadmium contaminated soil and their cadmium absorbing characters: Selection of oilseed species with higher cadmium accumulation (I). J Hebei North Univ (Nat Sci Edn), 2005,21(1):58-61 (in Chinese with English abstract).
[12] 辛艳卫, 梁成华, 杜立宇, 吴岩, 张亚男 . 不同玉米品种对镉的富集和转运特性. 农业环境科学学报, 2017,36:839-846.
Xin Y W, Liang C H, Du L Y, Wu Y, Zhang Y N . Accumulation and translocation of cadmium in different maize cultivars. J Agro-Environ Sci, 2017,36:839-846 (in Chinese with English abstract).
[13] Linger P, Mussig J, Fischer H, Kobert J . Industrial hemp (Cannabis sativa L.) growing on heavy metal contaminated soil: fibre quality and phytoremediation potential. Ind Crops Prod, 2002,16:33-42.
doi: 10.1016/S0926-6690(02)00005-5
[14] Marchiol L, Assolari S, Sacco P, Zerbi S . Phytoextraction of heavy metals by canola ( Brassica napus) and radish(Raphanus sativus) grown on multicontaminated soil. Environm Poll, 2004,132:21-27.
doi: 10.1016/j.envpol.2004.04.001
[15] Petr S, Sarka P, Radomíra V, Jing S, Tomas V . Accumulation of heavy metals using Sorghum sp. Chemosphere, 2014,104:15-24.
doi: 10.1016/j.chemosphere.2013.09.079
[16] Ghavri S V, Singh R P . Growth, biomass production and remediation of copper contamination by Jatropha curcas plant in industrial wasteland soil. Environ Biol, 2012,33:207-214.
[17] 黄树焘, 宋静, 骆永明, 余海波, 杨剑虹 . 铜陵杨山冲尾矿库能源植物生产示范基地的特征化. 广西农业科学, 2009,40:691-695.
Huang S T, Song J, Luo Y M, Yu H B, Yang J H . Characterization of production demonstraion base for energy plants in Yangshan Chong copper mine tailing reservoir of Tongling. Guangxi Agric Sci, 2009,40:691-695 (in Chinese with English abstract).
[18] 朱国辉, 罗思施, 李守思, 梁计南, 谢君 . 重金属污染土壤能源甘蔗品种筛选及蔗汁发酵的研究. 可再生能源, 2008,26(2):60-63.
Zhu G H, Luo S S, Li S S, Liang J N, Xie J . Varieties screening of energy sugarcane in heavy metal polluted soils and the study on ethanol fermentation. Renew Energy Resour, 2008,26(2):60-63 (in Chinese with English abstract).
[19] 环境保护部, 国土资源部. 全国土壤污染状况调查公报. 中国环保产业, 2014,36:1689-1692.
Environmental Protection Department, Ministry of Land and Resources. Bulletin of the national survey on soil pollution. China Environ Prot Ind, 2014,36:1689-1692 (in Chinese).
[20] 陈丽莉, 俄胜哲 . 中国土壤重金属污染现状及生物修复技术研究进展. 现代农业科学, 2009,16(3):139-140.
Chen L L, E S Z . Current situation of soil contamination by heavy metals and research advances on the bioremediation techniques in China. Modern Agric Sci, 2009,16(3):139-140 (in Chinese with English abstract).
[21] 代全林, 袁剑刚, 方炜, 杨中艺 . 玉米各器官积累Pb能力的品种间差异. 植物生态学报, 2005,29:992-999.
doi: 10.3773/j.issn.1005-264x.2005.6.020
Dai Q L, Yuan J G, Fang W, Yang Z Y . Differences of Pb accumulation among plant tissues of Zea mays varieties. Acta Phytoecol Sin, 2005,29:992-999 (in Chinese with English abstract).
[22] 张丽红, 徐慧珍, 于青春, 李瑞敏, 马忠社, 曹峰, 李宏亮 . 河北清苑县及周边农田土壤及农作物中重金属污染状况与分析评价. 农业环境科学报, 2010,29:2139-2146.
Zhang L H, Xu H Z, Yu Q C, Li R M, Ma Z S . The investigation and evaluation of the heavy metal pollution in farmland soil and crop in the Qingyuan of Hebei, China. J Agro-Environ Sci, 2010,29:2139-2146 (in Chinese with English abstract).
[23] 邹素敏, 杜瑞英, 文典, 王富华, 张卫杰, 管颐雯 . 不同品种蔬菜重金属污染评价和富集特征研究. 生态环境学报, 2017,26:714-720.
Zou S M, Du R Y, Wen D, Wang F H, Zhang W J . Enrichment characteristics analysis and assessment on heavy metal contamination of different vegetables. Ecol Environ Sci, 2017,26:714-720 (in Chinese with English abstract).
[24] 顾继光 . 不同作物品种对重金属的积累特性及农产品品质安全. 中国科学院研究生院(沈阳应用生态研究所)博士学位论文, 辽宁沈阳, 2003.
Gu J G . Accumulative Characteristics of Heavy Metals by Crops and Quality Safety of Agricultural Products. PhD Dissertation of Institute of Applied Ecology Chinese Academy of Sciences (Shenyang Institute of Applied Ecology), Shenyang, Liaoning, China, 2003 (in Chinese with English abstract).
[25] 杨洋, 陈志鹏, 黎红亮, 廖柏寒, 曾清如 . 两种农业种植模式对重金属土壤的修复潜力. 生态学报, 2016,36:688-695.
doi: 10.5846/stxb201405040883
Yang Y, Chen Z P, Li H L, Liao B H, Zeng Q R . The potential two agricultural cropping patterns for heavy metals from soils. Acta Ecol Sin, 2016,36:688-695 (in Chinese with English abstract).
[26] 鲍桐, 廉梅花, 孙丽娜, 孙铁珩, 苏磊, 雷刚 . 重金属污染土壤植物修复研究进展. 生态环境, 2008,17:858-865.
Bao T, Lian M H, Sun L N, Sun T Y, Su L, Lei G . Research progress on phytoremediation of soils contaminated by heavy metals. Ecol Environ, 2008,17:858-865 (in Chinese with English abstract).
[27] Hammer D, Keller C . Phytoextraction of Cd and Zn with Thlaspi caerulescens in field trials. Soil Use Manage, 2003,19:144-149.
doi: 10.1111/j.1475-2743.2003.tb00295.x
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!